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Stephen Vanderet 

 

Modeling a Standing Wave Linear Accelerator’s Dispersion Relationship and Field 

Profile via an Equivalent Circuit and Numerical Analysis. 

 

Industrial and medical standing wave linear accelerators are used to create mega voltage 

x-rays, which in turn are used to for imaging and oncology. In both fields, biperiodic 

structures Cavity tuning errors in these 

structures can produce unacceptable variations from the designed peak electric field 

values. Dispersion equations derived from equivalent circuit models have historically 

been used to calculate the stopband in inductively coupled structures. This thesis reviews 

two of those approaches, and in addition derives a new dispersion relationship for a 

capacitively coupled structure. This biperiodic capacitively coupled dispersion equation 

is shown to provide excellent agreement with a brazed, 9 mode, biperiodic, capacitively 

coupled x-band structure.  An equivalent circuit model is then solved numerically to 

illustrate the effect of tuning errors on a biperiodic 23 cavity capacitively coupled x-band 

standing wave accelerator’s electric field profile. Plots of field profiles caused by known 

tuning errors are provided. These can be used to diagnose the cause of unexpected field 

slope and/or steps.  
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1 Introduction 

 Standing wave linear accelerators are structures composed of coupled cavities. When 

microwave power is feed into a standing wave accelerator, electromagnetic fields form 

and oscillate in the structure’s cavities. Since all the cavities are coupled, the structure 

behaves like a series of coupled oscillators. Ideally the individual cavities are “tuned” 

such that a specific normal mode, conducive to particle acceleration, is formed when the 

structure is driven at the operating frequency. It is desirable to understand how these 

normal modes depend on the individual cavities resonant frequencies, so that accelerating 

structures can be manufactured in a reliable and repeatable process.  

 

In order to study this dependence, an equivalent circuit model is employed. In general, 

the model is a series of coupled RLC tank circuits; where the resistor relates to the 

resistance experienced by a cavity’s surface current, the inductor relates to a cavity’s 

ability to store magnetic energy, the capacitor relates a cavity’s ability to store electrical 

energy, and the mutual inductance and or mutual capacitance relates inter-cavity 

coupling.  Such models are used as both quantitative tools to “tune” accelerators, and as 

qualitative tools to diagnose a structure’s non ideal normal mode behavior.  

 

It is worth noting that an equivalent circuit model is not the only option for modeling a 

standing wave accelerator’s normal modes. Modern 3D electromagnetic software such as 

CST Microwave Studio would make the equivalent circuit model obsolete if computer 

power were unlimited. These programs can do everything an equivalent circuit model 
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can, and many things an equivalent circuit model can not. However, the trade off is that 

these codes are much more computationally intensive than a code which makes use of an 

equivalent circuit model. This makes 3D electromagnetic codes excellent for modeling 

segments of an accelerator, but limits their utility for modeling an entire coupled cavity 

accelerator.  

Equation Section (Next) 
 
 
 
Equation Section (Next) 
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2 Background 

2.1 Single Cavity modes 

Any volume enclosed by an electric conductor will have an infinite number of 

electromagnetic resonant modes associated with its given dimensions. An analytic 

solution for the field distribution and frequency of these modes exists for simple 

geometries such as the cylindrical pill box. [Jac 62] 

 
2 2

TM mn
mnp 2

c pf
a l

 (2.1) 

Where a is the radius of the pill-box, l is the cavities length, and is the nth zero of an 

mth order Bessel’s function, c is the speed of light in vacuum,  μ &  are properties of the 

material in the volume, and m, n, and p are mode numbers with the following ranges

0 m , 1 n , and 0 p . Equations (2.1), (2.3), and (2.4) assume that the 

walls of the cavity are infinitely conductive and that the cavity is filled uniformly with 

lossless dielectric. An equation for the TE modes is not shown because of these infinite 

modes most linear accelerator cavities employ only a TM010 like mode or fundamental 

mode.  

 TM
010

2.405
2

cf
a

 (2.2) 

There are practical reasons for this. This mode allows beam holes to go in center of the 

cavity (along the z-axis) where the E-field is peaked and the B-field is zero, allowing the 

beam of charged particles to be accelerated by the electric field and not be deflected by 

the magnetic field. The explicit solutions for the TM010 electric and magnetic fields are 

shown (2.3)(2.4).  
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2 2

0 0

2.405
i t

z

x y
E E J e

a
 (2.3)   

 
2 2

0 1

2.405
i t

x y
H j E J e

a
 (2.4) 

Both the electric and magnetic field exist in each cavity at the same time. The magnetic 

field is created by the time dependent electric field and the electric field is in turn created 

by the time dependent magnetic field which causes these fields to be 90  out of phase and 

the magnitude of each field to oscillate harmonically at the resonant frequency. 

 

Figure 2-1: TM010 field lines inside an ideal pillbox. 
 

In practice electromagnetic modeling software is used to calculate  cavity fields and 

resonant modes. However, this analytic solution is still useful to check the accuracy of 

new electromagnetic codes, or to provide a rough scaling for a new cavity design.  
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2.2  Coupled Cavity Normal Modes 

RF cavities can be coupled together in two ways. They can be coupled inductively and/or 

they can be coupled capacitively. When they are coupled inductively some of the 

magnetic energy propagates from one cavity to the other, and when they are coupled 

capacitively, some of the electric energy propagates from one cavity to the other. 

 

Figure 2-2: Electric field lines of the TM010 
mode shown in blue for periodic, on axis, 
capacitively coupled pillboxes. 

 

Figure 2-3: Magnetic field lines of the TM010 
mode shown in red for periodic, on axis, 
inductively coupled pillboxes.

 

Figs. (2-2) and (2-3) illustrate that the physical location of coupling slots determines how 

a structure is coupled. Notice that two normal modes are shown in Figs. (2-2) and (2-3). 

When N cavities are coupled together in a standing wave structure, each TM and TE 

single cavity mode is split up in N normal modes corresponding to different 

electromagnetic phase advance from cavity to cavity [Wan 98]. The normal modes are 

named by their phase advance in radians. The 0-mode has no phase advance from cavity 

to cavity, hence the “0”, since neighboring cavities are 0 radians out of phase with respect 

to each other. In the -mode neighboring cavities are 180° or  radians out of phase. 

 

With standing wave boundary value conditions, it is known that the extremum frequency 

normal modes will always be the 0-mode and -mode. Also, the modes in-between them 
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(with respect to frequency) will always differ in phase by ( 1)N radians. This rigid 

allowable phase advance between modes is a result of other phase advance values 

between cavities being canceled out by reflections. 

 

Note that, the word mode is being used twice to describe related but different types of 

resonance. Within the context of standing wave accelerators it’s common to only refer to 

the normal modes without reference to TM and TE single cavity modes, since it’s usually 

obvious the TM010 like mode is the one being employed.  

 

For example Fig. (2-4) shows a structure with 3 cavities. This structure has an infinite 

number of 0-modes corresponding to the 0-mode of each TM and TE single cavity mode. 

However, the 0-mode of the TM010 like mode is often referred as if it were the only 0-

mode, since it’s often the only one that matters. To help alleviate this confusion, I’ll use 

the term “single cavity modes” to describe the TM and TE modes described in section 1.2 

and the term “normal modes”, or just modes, to describe a resonances associated with 

coupled cavities. 

 

Figure 2-4: Electric field lines of the TM010 single cavity mode shown in blue for a 3 cavity segment of a 
biperiodic on axis capacitively coupled pillboxes. All three of this structure’s normal modes are shown. 
 



7 
 

 

Figure 2-5: Magnetic field lines of the TM010 mode shown in red for a 3 cavity segment of a biperiodic on 
axis capacitively coupled pillboxes. All three of this structure’s normal modes are shown. 
 

For cavities to couple, their single cavity modes need to be similar frequencies. However, 

there is no requirement on the specific shape of the cavities. This give rise to different 

possible accelerator designs. Biperiodic structures usually consist of a high quality factor 

(Q) accelerating cavity (a-cell) and a relatively low Q coupling cavity (c-cell). Guides 

operating in the /2 mode have minimal field in the c-cells, which causes losses in these 

cavities to be low despite their having a relatively small quality factor [Wan 98]. 

Biperiodic structures are the standard when it comes to medical and industrial 

accelerators. However, other designs are possible. For example, back in 1975, a tri-

periodic standing wave accelerator operating in the 2 3 mode was considered [Sch 75], 

and periodic structures are commonly used in super conducting accelerators. 
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2.3 The Tank Circuit 

 

Figure 2-6: The tank circuit is the basic building block of the standing wave linear accelerator circuit 
equivalent model used in this paper. 
  

This circuit goes by a few names: the antiresonant circuit, the tank circuit, and the 

electrical resonator circuit. I prefer tank circuit. At resonance, the capacitor and the 

inductor trade the same stored energy on alternate half cycles. When the capacitor 

discharges, the inductor charges, and vice versa. This makes the circuit ideal for 

modeling resonant cavities which analogously trade energy between oscillating electric 

and magnetic fields. These fields oscillating in resonant cavities induce and are driven by 

surface currents in the cavity’s walls. These surface currents experience ohmic losses 

analogous to the ohmic losses in the tanks circuit’s resistor. 

 

In order to compare a resonant cavity to a tank circuit the resonant frequency and the 

quality factor are used. Both of these attributes have the similar meaning in the tank 

circuit and the resonant cavity, despite being governed by different mechanisms. In the 

tank circuit the resonant frequency is the frequency at which the impedance becomes 

purely resistive via the capacitive reactance canceling with the inductive reactance. 

 
2

0 2

1 12 Rf
LC L LC

 when 0R L  (2.5)   
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Accelerator cavities are made out of pure copper and are operated at microwave 

frequencies, so the approximation is reasonable. The quality factor in the tank circuit is a 

dimensionless ratio that compares the reactive energy stored in the inductor or the 

capacitor each cycle to the resistive energy dissipated.    

 
maximum energy stored per cycle2

energy dissipted per cycle
Q  (2.6)   

 0

0

1 L
Q

CR R
 (2.7) 

These two relationships will be used later to transform a series of coupled tank circuits 

into a model of a chain of coupled resonant cavities. 

Equation Section (Next) 
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3 Dispersion Equations  

The dispersion relationship of a standing wave accelerator gives the frequency of the 

structure’s normal modes; typically as a function of phase advance, cavity tune, and 

coupling strength. One way to derive an approximation of this relationship is to use an 

equivalent circuit model. A group at Los Alamos did this in the mid 60’s [Nag 67] with 

great success. The first two sections of this chapter are a review of their work on 

inductively coupled periodic and biperiodic standing wave structures. The third and 

fourth sections look at how both the periodic and biperiodic dispersion relationships are 

affected by shifting from inductive coupling to capacitive coupling. 

 

Some simplifications to the circuit equivalent model are required in order to get analytic 

solutions. First, all cavities will be considered lossless. Resistance will be included at the 

beginning of each derivation, because it will be useful later when these same problems 

are solved with numerical techniques. Second, we will be satisfied to merely solve the 

homogeneous solution to the equivalent circuit model, as that is enough to find excellent 

agreement with experimental data for guides operating in steady state [Kap 68].   

 

The dispersion relation will illustrate terms such as bandwidth and stopband. In addition, 

it will shed some light on what is meant when a biperiodic structure is said to be “tuned.” 

These concepts are required to understand the cause and effect of tuning errors associated 

with biperiodic standing wave accelerators. 
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3.1 Inductively Coupled Periodic Standing Wave Structure 

The circuit equivalent model for this structure consists of N identical tank circuits 

coupled together via mutual inductance. For the periodic structure, only nearest neighbor 

coupling will be considered. This means mutual inductance will only exist between 

adjacent cavities as shown in Figs. (3-1) and (3-2). 

 

Figure 3-1: Periodic, inductively coupled standing 
wave structure. 

 

Figure 3-2: Equivalent circuit model of Fig (3-1).

 

Using Kirchhoff’s loop in the nth tank circuit yields the following relationship. 

 0 1 1
1 10

t

n n n n
n n n n n

n

i d di di di
i R L M L M L

C dt dt dt
 (3.1) 

1M is a unitless coupling constant which is defined such that the quantity 1
1

n
n

di
M L

dt
 is 

the voltage created across 1 2 1 2n n n effL L L L  when the current in cell 1n  changes 

with respect to time. Since each cavity is identical in this model, the coupling between 

adjacent cavities is the same. The Laplace transform Eqs (3.2) and (3.3) are used to 

greatly simplify the problem. 

 
0

1t f s
f d f t

s s
L L  (3.2) 

 0 0f t s f t f s f s fL L  (3.3) 

Now with the assumption that all currents equal zero at time zero (3.1) simplifies to (3.4). 
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 1 1 1 1
10 n n n n n n n

n

i R sL i sM L i sM L
sC

 (3.4) 

Because the steady state solution is what is of interest, the following substitution is made

s j . 

 1 1 1 1
10 n n n n n n n

n

i R j L i M j L i M j L
j C

 (3.5)  

Next, (3.5) is divided by njL  and we introduce a constant 1k such that, 1 1 2M k . This 

may seem arbitrary since they are both just coupling constants, however this coupling 

constant k is what is used in the Los Alamos papers. So in order to get the same results 

that substation is required. The factor of 2 differences between the two coupling terms 

comes from the fact that I made my equivalent circuit model with half the inductance of 

their model. 

 1
1 12

10 1
2

n
n n n

n n n

R ki i i
jL L C

 (3.6) 

Using equations (2.5) and (2.7) equation (3.6) is transformed from an equation describing 

a series of coupled tank circuits into one describing of a chain of inductively coupled 

resonant cavities.   

 
2

1
1 120 1

2
n n

n n n
n

ki i i
jQ

 (3.7) 

In order to simplify the problem the cavities are assumed to be lossless, which 

corresponds to an infinite Q. Since all the cavities are identical let 0n    

 
2
0 1

1 120 1
2n n n
ki i i  (3.8) 

At this point we assume the correct solution for the current in the nth cavity.   
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 ( ) cos
1

qj t
n

qni q A e
N

 (3.9) 

Where N is the number of cells in the structure, q is the mode number and has a range of

0 ( 1)q N , and n is the cavity number with a range of 1 n N . 

 Since the cavities are lossless and identical, the peak current in each cavity must 

be equal to some constant 

Motivation for choosing this solution 

A   

 Each cavity will oscillate harmonically at its normal mode frequency qj te   

 Since this is a standing wave structure, phase advance from one mode to the next 

will be given by 
( 1)N

, and cavity to cavity phase advance of any given mode 

will be given by
1

qn
N

. So the magnitude of the current in cell n will be affected 

by the term cos
1

qn
N

 

Substituting (3.9) into (3.8) and dividing out the exponential factor and the constant A 

yields.  

 
2
0 1
20 1 cos cos ( 1) cos ( 1)

1 2 1 1
kqn q qn n

N N N
 (3.10) 

Let 
1

qna
N

, 
1

qb
N

 in order make use of (3.12).  

 
2
0 1
20 1 cos cos cos

2
ka a b a b  (3.11) 

 cos( ) cos( ) 2cos( )cos( )a b a b a b  (3.12)  
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2

2 0

11 cos
1

qk
N

 (3.13) 

Equation (3.13) is the dispersion relationship for an inductively coupled, periodic, 

lossless, standing wave chain of resonant cavities. From (3.13), it’s apparent that highest 

mode number (N-1) will have a resonant frequency equal to 0 1 k , where 0 equals 

to the resonant frequency a single cavity would resonate at if it were isolated from the 

rest of the chain. Similarly, from (3.13) it’s apparent that the lowest mode number (0) 

will have a resonant frequency equal to 0 1 k . The bandwidth of the structure is 

equal to (3.14) 

 0
1 1

1 1
BW

k k
 (3.14) 

The bandwidth of a linear accelerator is an important design parameter. Guides with 

larger bandwidth have larger mode separation, which is generally considered desirable in 

accelerators. However, as the bandwidth is increased the coupling factor becomes more 

significant in determining the structures resonance frequencies. Form (3.14), it’s apparent 

that BW approaches 0 as the coupling approaches 0, and increases as the coupling 

increases.  
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Figure 3-3: The dispersion curve for an inductively coupled, periodic, standing wave structure of N 
resonant cavities, given by Eq. (3.13). This curve is typical referred to as a “Brillouin curve” in reference to 
Léon Brillouin for his related work in solid state physics [Bri 46]. 
 

Fig. (3-3) shows that for any given structure the 2 mode will have the most mode 

separation of any of the other normal modes, whereas both the 0-mode and the -mode 

will have the least. 
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3.2 Inductively Coupled Biperiodic Standing Wave Structure 

Fig. (3-4) shows an on-axis inductively coupled biperiodic structure. However, no 

distinction in the circuit equivalent model between on-axis and off-axis coupling is 

required, and the model will work equally well for either.  

 

Figure 3-4: Coupled resonator model for a biperiodic chain of cavities with nearest neighbor and second 
nearest neighbor coupling. 

 

Figure 3-5: Equivalent circuit model for an inductively coupled, biperiodic, standing wave structure with 
N cavities. This model includes nearest and next nearest neighbor coupling. 
 

Fig. (3-4) shows that model is now allowing for next nearest neighbor coupling. Next 

nearest neighbor coupling means that the current in cavity N will affect the current in 

cavities N-2, and N+2. It’s worth noting that some accelerating structures might not need 

to include next nearest neighbor coupling in order to find good agreement with 
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experimental results, and others might need to include next next nearest neighboring 

coupling, depending on the coupling that particular accelerating structure.  

 

In this model the nth cell is an a-cell and every other (as in alternating) cell before and 

after it is identical, each with a resonant frequency equal to 1 . The nth+1 cell is a c-cell 

and every other (also as in alternating) cell before and after it is identical, each with a 

resonant frequency equal to 2 . 

 

Using Kirchhoff’s loop in the nth and nth+1 tank circuit yields the following relationships. 

 1 1 1 2 2 2
10 n n n n n n n n n

n

i j L R M j L i i M j L i i
j C

 (3.15)  

 1 1 1 1 1 2 3 1 1 3
1

10 n n n n n n n n n
n

i j L R M j L i i M j L i i
j C

 (3.16)  

(3.15) is divide by njL ,  (3.16) is divided by 1njL , and 1
1 2

kM , 2
2 2

kM , 3
3 2

k
M   

 1 2
1 1 2 22

10 1
2 2

n
n n n n n

n n n

R k ki i i i i
j L L C

 (3.17)   

 31
1 2 1 32

10 1
2 2

n
n n n n n

n n n

R kki i i i i
j L L C

 (3.18) 

Using (2.5) and (2.7) from the tank circuit section. 

1
1

n nL C
   and    1

n n

n

L
Q

R  

2
1 1

1

n nL C
   and    1 1

2
1

n n

n

L
Q

R  
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2

1 1 1 2
1 1 2 22

1

0 1
2 2n n n n n
k ki i i i i

jQ
 (3.19)   

 
2

32 2 1
1 2 1 32

2

0 1
2 2n n n n n

kki i i i i
jQ

 (3.20) 

As before, the problem is simplified by assuming the cavities are lossless. 

 
2
1 1 2

1 1 2 220 1
2 2n n n n n
k ki i i i i  (3.21)   

 
2

32 1
1 2 1 320 1

2 2n n n n n
kki i i i i  (3.22) 

Since the structure is now biperiodic the assumed solution will allow the amplitude to 

differ between the two types of cavities; however every cavity of the same type is 

assumed to have the same amplitude.    

 ( ) cos qj t
ni q A n e  (3.23)   

 1( ) cos 1 qj t
ni q B n e  (3.24) 

Where 
1

q
N

, 0 ( 1)q N , and 1 n N  

Substituting (3.23) and (3.24) into (3.21) yields (3.25) 

 

2
1 1
2

2

0 cos 1 cos 1 cos 1
2

cos 2 cos 2
2

kA n B n B n

k A n A n

 (3.25) 

Substituting (3.23) and (3.24) into (3.22) yields (3.26) 

 

2
2 1
2

3

0 cos 1 1 cos cos 2
2

cos 1 cos 3
2

kB n A n A n

k
B n B n

 (3.26) 
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(3.27), (3.28), (3.29), (3.30) Make extensive use of (3.12) 

 
1 1

1

cos 1 cos 1 cos cos
2 2

cos cos

k k BB n B n n n

k B n
 (3.27) 

2 2

2

cos 2 cos 2 cos 2 cos 2
2 2

cos cos 2

k k AA n A n n n

k A n
 (3.28) 

1 1

1

cos cos 2 cos 1 cos 1
2 2

cos 1 cos

k k AA n A n n n

k A n
 (3.29) 

3 3

3

cos 1 cos 3 cos 1 2 cos 1 2
2 2

cos 1 cos 2

k k B
B n B n n n

k B n
 (3.30) 

Substituting (3.27) and (3.28) into (3.25). Then (3.29) and (3.30) into (3.26). 

 
2
1

1 220 1 cos cos 2A k B k A  (3.31)   

 
2
2

1 320 1 cos cos 2B k A k B  (3.32)  

Solving (3.32) for B     

 1
2
2

32

cos

1 cos 2

k A
B

k
 (3.33) 

Substituting (3.33) into (3.31)  

 

2 2 2 2 2
2 2 2 1 1 2 1

1 3 32 2 2 2

2
22

2 2 2 32

cos 1 cos 2 cos 2

cos 2 cos 2 cos 2

k k k

k k k k
 (3.34) 

Factoring (3.34) yields (3.35) the familiar form of the dispersion relationship. 

 2 2 2 2 2 2
1 1 2 2 3cos 1 cos 2 1 cos 2k k k  (3.35) 
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In Eq. (3.35)  is to the 4th power, resulting in two possible mathematical solutions for 

the dispersion relationship: one of these solutions corresponding to the positive root of 

the quadratic(3.39), and the other corresponding to the negative root (3.40).  

 2 2 2
1 2 3 2 3cos cos 2 cos 2 cos 2 1a k k k k k  (3.36) 

 2 2 2 2
2 1 2 2 1 3cos 2 cos 2b k k  (3.37) 

 2 2
1 2c  (3.38) 

 
2 4

2
b b ac

a
 (3.39) 

 
2 4

2
b b ac

a
 (3.40) 

Both (3.39) and (3.40) are symmetric about 2  and difference between them at 

2  is known as the stopband (SB). This problem is very similar to Brillouin’s 

treatment of a one-dimensional NaCl Lattice, where he used the term “stopping band” 

[Bri 46]. The Los Alamos group used the term “stopband”, and that seems to be the 

phrasing which stuck. 

 

Figure 3-6: Dispersion curve obtained from  (3.39) and (3.40) with (k2=k3=0) which is equivalent to saying 
no next nearest neighbor coupling. 
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The physical solution is actually a combination of both mathematical solutions. One root 

describes the structure between 0 and 2  phase advance, and the other root describes 

the structure between 2 and  as shown on Fig. (3-7). 

 

Figure 3-7: For any given structure only 1 of these solutions is possible at any given time. The frequency 
range of the solution in the region of 2 is referred to as the “upper pass band”, and as the 

“lower pass band” in the region of 0 2  is. The “stopband” occurs at 2 and is equal Eq. 
(3.41). 
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Figure 3-8: Lowest normal mode in a 3 cavity 
inductively coupled biperiodic off-axis standing 

wave accelerator exhibiting 0 phase advance as in 
solution 1 from fig. (3-7). 

 

Figure 3-9: Lowest normal mode in a 3 cavity 
inductively coupled biperiodic on-axis standing 

solution 2 from fig. (3-7). 
 

Fig. (3-8) shows the Los Alamos’s “model K” type biperiodic structure [Kap 68]. Their 

results agree with solution 1 in Fig. (3-7).  Fig. (3-9) shows a biperiodic structure 

proposed by several different groups. One example, is a proposed c-band accelerator 

presented at PAC07 [KIM 07]. This group’s results agree with solution 2 in Fig. (3-7).  

Note that both biperiodic structure shown in figures 3-8 and 3-9 make use of inductive 

coupling but the geometry of the coupling slots and coupling cavity’s dimensions 

determines which solution is correct for their dispersion relationship. 
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Figure 3-10: Dispersion curve obtained from (3.35) with next nearest neighbor coupling included. In this 
plot k3 is twice as large as k2 and 1 2 . Only one solution is shown for clarity. 

 

The stopband neglecting losses for an inductively coupled biperiodic standing-wave 

accelerator is equal to (3.41).  

 2 1

3 2

stopband
1 1

f f
k k

 (3.41) 

Remember at the beginning of the section 1 was defined as the resonant frequency of the 

a-cells and 2 was defined as the resonant frequency of the c-cells. Stopband is often 

referred to as an absolute value. I have found that is useful to always subtract the c-cell 

frequency from the a-cell frequency and leave the sign in the stopband value. This way, if 

you say you have a stopband of 10MHz, it’s known that the c-ells are 10MHz higher in 
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frequency than the a-cells. In chapter 5 I’ll show that the sign of the stopband is 

significant in determining the direction of field slope when an a-cell is mistuned.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

3.3 Capacitively Coupled Periodic Standing Wave Structure 

 

3-11: Periodic capacitively coupled standing wave 
structure. 
  

 

3-12: Equivalent circuit model of Fig (3-11). 

The circuit equivalent model for this structure consists of N tank circuits coupled together 

via mutual capacitance. As before, with the inductively coupled periodic structure in 

section 3.1, only nearest neighbor coupling will be considered. So mutual capacitance 

will only exist between adjacent cavities.  

 

Using Kirchhoff’s loop in the nth tank circuit yields the following relationship. 

 1 10 0 0
1 10

t t t

n n nn
n n n

n n n

i d i d i ddi
i R L M M

C dt C C
 (3.42) 

1M  is a unit less coupling constant defined in way similar to how it was in the previous 

sections, where 1
10

t

n
n

M i d
C

 is the voltage created across 1 2 1 2n n n effC C C C  

when the current in cell n-1 changes with respect to time. Each cavity is identical, so the 

coupling between adjacent cavities will be the same. The Laplace transform equations 

(3.2) and (3.3) are used, and the following substitution is made s j . 

 1 1 1 110 n n
n n n

n n n

i M i M
i j L R

j C j C j C
 (3.43) 
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Notice the only difference between (3.5) and (3.43) is in the coupling terms as one would 

expect. Next, Divide by njL  and let 1
1 2

kM .  

 1 11
2 2 2

10 1
2

n n n
n

n n n n n n n

R i iki
jL L C C L C L

 (3.44) 

Using the relations described in the tank circuit section as in previous sections. 

 
2 2 2

1
1 12 2 20 1

2
n n n n

n n n
n

ki i i
jQ

 (3.45) 

The structure is assumed to be lossless so Q becomes infinite. And, since all the cavities 

are identical, the following substation is made 0n . 

 
2 2
0 1 0

1 12 20 1
2n n n
k

i i i  (3.46)   

The solution for the current in the nth cell (3.9) will be the same as it was in the periodic 

inductively coupled case. The same arguments used as motivation in that problem hold in 

this case as well. Substituting Eq. (3.9) into (3.46)   

 
2 2
0 1
2 20 1 cos cos ( 1) cos ( 1)

1 2 1 1
nkqn q qn n

N N N
 (3.47) 

After dividing out the exponential factor and the constant A, let 
1

qna
N

, 
1

qb
N

, and 

make use of (3.12)   

 
2 2
0 1
2 20 1 cos cos cos

2
nk

a a b a b  (3.48) 
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The dispersion relationship for a capacitively coupled periodic resonant cavity chain is 

given by.    

  2 2
0 11 cos

1
qk

N
 (3.49) 

 

Figure 3-13: Comparison of an inductively coupled periodic structure vs. a capacitively coupled periodic 
structure.  
 

The major difference between the two curves is that the curve corresponding to inductive 

coupling experiences a maxima at  and a minima at 0 . Whereas the curve 

corresponding to capacitive coupling experiences a minima at 0 , and a maxima at 

. Besides this inversion about 0 , the curves also have a slightly different 

dependence on k. However, for small k values this difference is small. 
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3.4 Capacitively Coupled Biperiodic Standing Wave Structure 

The derivation of this structure’s dispersion equation (3.64) is very similar to how (3.35) 

was derided in section 3.2. The coupling terms are defined in the previous section. 

 

Figure 3-14: Coupled resonator model for a biperiodic chain of cavities with nearest neighbor and second 
nearest neighbor capacitive coupling. 

 

Figure 3-15: Circuit equivalent model for a capacitively coupled, biperiodic, standing wave structure with 
N cavities. This model includes nearest and next nearest neighbor coupling. 
 

Using Kirchhoff’s loop in the nth and nth+1 tank circuit yields the following relationships. 

 1 2
1 1 2 2

10 n n n n n n n
n n n

M Mi j L R i i i i
j C j C j C

 (3.50) 

 31
1 1 1 2 1 3

1 1 1

10 n n n n n n n
n n n

MMi j L R i i i i
j C j C j C

 (3.51) 
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Divide (3.50) by njL  and (3.51) by 1njL  then let 1
1 2

kM , 2
2 2

kM , and 3
3 2

k
M in 

both (3.52) and (3.53). 

 1 2
1 1 2 22 2 2

10 1
2 2

n
n n n n n

n n n n n n n

R k ki i i i i
j L L C L C L C

 (3.52) 

1 31
1 2 1 32 2 2

1 1 1 1 1 1 1

10 1
2 2

n
n n n n n

n n n n n n n

R kki i i i i
j L L C L C L C

 (3.53) 

Using the relations described in the tank circuit section, and simplifying the problem by 

assuming cavities are lossless. 

1
1

n nL C
   and   2

1 1

1

n nL C  

 
2 2 2
1 1 1 1 2

1 1 2 22 2 20 1
2 2n n n n n

k ki i i i i  (3.54) 

 
22 2
2 32 2 1

1 2 1 32 2 20 1
2 2n n n n n

kki i i i i  (3.55) 

The assumed solution for the current in the nth cell (3.56)  and in the nth+1 cell (3.57) is 

the same as it was in the biperiodic inductively coupled case. 

 ( ) cos qj t
ni q A n e  (3.56) 

 1( ) cos 1 qj t
ni q B n e  (3.57) 

Where 
1

q
N

, 0 ( 1)q N , and 1 n N  

Substituting (3.56) and (3.57) into (3.54) and then dividing out the exponential term. 
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2 2
1 1 1
2 2

2
1 2

2

0 cos 1 cos 1 cos 1
2

cos 2 cos 2
2

kA n B n B n

k A n A n

 (3.58) 

Substituting (3.56) and (3.57) into (3.55) and then dividing out the exponential term. 

 

2 2
1 2 1
2 2

2
2 3

2

0 cos 1 1 cos cos 2
2

cos 1 cos 3
2

kB n A n A n

k
B n B n

 (3.59) 

Substituting (3.27) and (3.28) into (3.58)  

 
2 2 2
1 1 1 1 2
2 2 20 1 cos cos 2k kA B A  (3.60) 

Substituting (3.29) and (3.30) into (3.59) 

 
22 2
2 32 2 1

2 2 20 1 cos cos 2kkB A B  (3.61) 

Solving (3.61) for B 

 

2
2 1

2

22
2 32

2 2

cos

1 cos 2

k A
B

k
 (3.62) 

 

2 2 22 2 2 2 2 2
2 2 2 3 1 2 31 2 2 1 1 2

14 2 2 2 4 4

2 22 2 2
21 2 2 31 2 1 2 2

2 4 4

cos 1 cos 2 cos 2

cos 2 cos 2 cos 2

k k
k

k kk k
 (3.63) 

After simplifying Eq. (3.63) by factoring, canceling common terms, and pulling out 

negative sings; the biperiodic capacitively coupled dispersion equation is given by Eq. 

(3.64). 

 2 2 2 2 2 2
1 1 2 2 3cos 1 cos 2 1 cos 2k k k  (3.64) 
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As was the case in the biperiodic inductively coupled dispersion, Eq. (3.64) has two 

mathematical solutions, and the two possible physical solutions are again combinations of 

both mathematical solutions. However, the dispersion Eqs. (3.64) and (3.35) differ in 

which roots are used to produce the physical solutions. This can be seen in Fig. (3-16) by 

which cavity type (a-cell or c-cell) determines the value of the lower pass band frequency 

at 2 . In the capacitively coupled case it’s 1  the a-cell, and in the inductively 

coupled case it’s 2  the c-cell. This is in agreement with the work published by a group 

at the Institute of Nuclear Power in Poland in 1985 [Sek 85]. 

 

Figure 3-16: Comparison of inductive vs. capacitive coupled biperiodic dispersion curves with stopband. 
Only the solution where the lowest frequency normal mode is the 0-made is shown in both cases. 
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Their paper included a review of the biperiodic inductively coupled dispersion equation 

derived at Los Alamos [Nag 67]. They found that which cavity type a-cell ( 1 ) or c-cell  

( 2 ) determines the value of the lower pass band frequency (at 2 ) depends on the 

sign of the nearest neighbor coupling term (kab in their notation). Fig.2 in their 

publication shows that when kab (k1 in our notation) is negative fa ( 1 ) is used, and when 

kab is positive fb ( 2 ) is used. A negative kab (k1) term implies the nearest neighbor 

coupling is predominantly capacitive if the model was derived using inductive coupling. 

This is because of the phase difference between inductive and capacitive reactance.  

 

The stopband of capacitively coupled biperiodic standing wave structure is given by 

Eq.(3.65).  

 2 3 1 2stopband = 1 1f k f k  (3.65) 
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3.5 Determining Dispersion Parameters, the “five mode” Method. 

In order to make use of the dispersion equation derived in sections 3.2 and 3.4, a method 

is needed for determining k1, k2, k3, f1, and f2. This can be done by measuring at least 5 

normal modes of a given standing wave structure. The group from the Institute of 

Nuclear Power in Poland published this “five mode” method using Eq.(3.35) as the 

dispersion equation, as well as using a dispersion equation they derived from a circuit 

equivalent model which had both inductive and capacitive coupling at the same time [Sek 

85]. Despite this papers existence, four years later, a group in India was unable to find an 

analytic 5 mode method using equation Eq.(3.35) as the dispersion equation, and 

published a method for determining the coupling coefficients using fitting techniques 

[Sha 89]. More recently another group from Institute of Nuclear Power in Poland 

presented another analytic solution using Eq.(3.35) as the dispersion equation at PAC09 

[Kul 09].  

 

This chapter shows a five mode method for the biperiodic capacitively coupled dispersion 

equation given by Eq.(3.64). For its 5 normal modes, it makes use of the 0, 4 , 2 , 

3 4 , and  normal modes frequencies. 
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 After measuring 0f , 
4

f , 2f , 3 4f , and f  of at least five capacitively coupled 

biperiodic cavities. Eq. (3.64) can be rewritten as Eqs. (3.66) through (3.70). 

 
2 2

20 0
2 3 12 2

1 2

1 1f f
k k k

f f
 (3.66) 

 
2 2

4 4 2
12 2

1 2

11 1
2

f f
k

f f
 (3.67) 

 
2 2

2 2
2 32 2

1 2

1 1 0
f f

k k
f f

 (3.68) 

 
2 2

3 4 3 4 2
12 2

1 2

11 1
2

f f
k

f f
 (3.69) 

 
2 2

2
2 3 12 2

1 2

1 1f f
k k k

f f
 (3.70) 

 

Eqs. (3.66) through (3.70) are five nonlinear coupled equations with 5 unknowns. The 

problem is to solve for the five unknown terms in terms of the five measured frequencies. 

This problem is a little trickier than it sounds. 

 

The first consideration when solving this problem is how 2f was measured. More 

specifically, what boundary conditions were used when it was measured. Boundary 

conditions will dictate whether the  normal mode will be located in the accelerating 

cavities or in the coupling cavities. The former is the most common, as it is created easily 

by terminating half of an a-cell with an electrical boundary. Fig. (4-2) shows this type of 

test set up. In the case depicted by Fig. (4-2), the correct solution to Eq. (3.68) is Eq. 

(3.71). 

 2 1 21f f k  (3.71) 
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However, alternative boundary conditions have been proposed which would allow one to 

measure the normal mode centered in coupling cavities [Yan 10]. None of the math 

shown here would apply to such a measurement. All equations in this section assume that 

ormal mode located in the a-cells. 

 

The couple between a-cells (k2) is then given by Eq. (3.72). 

 
2

2
4

2
B B ACk

A
 (3.72) 

For our relatively narrow-band structures, C<<1 with the result that 2k is negative of 

order unity, while 2k , is small and positive. The correct root is 2k , where A, B, and C 

are given by (3.73), (3.74), and (3.75). 

 
2 22 2

4 3 40
2 2 4

2 2 2

1 1 2
f ff f

A
f f f

 (3.73) 

 
2 22 2 2 2

4 3 40 0
2 2 2 2 4

2 2 2 2 2

1 1 1 1 4
f ff f f f

B
f f f f f

 (3.74) 

 
2 22 2

4 3 40
2 2 4

2 2 2

1 1 2 2
f ff f

C
f f f

 (3.75) 

k2 can then be used solve for the coupling between c-cells (k3) using Eq. (3.76), where  

is given by Eq. (3.77) and  is given by Eq. (3.78). 

 2
3

2

1
1 1

k
k

k
 (3.76) 

 2 2
02

2

1 f f
f

 (3.77) 



36 
 

 2 2
4 3 42

2

1 f f
f

 (3.78) 

   

 f1 and f2 can then be solved for using k2. 

 1 2 21f f k  (3.79) 

 2 2 2
2 4 3 4 1f f f f  (3.80) 

And lastly 1f  and 2f are used to solve for the coupling between a-cells and c-cells (k1). 

 
2 2

4 3 4
1 2 2

1 2

2 2
f f

k
f f

 (3.81) 

These equations are very helpful for determining if the stopband has been closed in a 

segment of capacitively coupled biperiodic cavities. The stopband is given by Eq. (3.82). 

 2 3 2stopband 1f k f  (3.82) 

These equations are verified in the next section with measured data. 

 

 

 

 

Equation Section (Next) 
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4 Measured 5-mode data  

It’s known that the biperiodic inductively coupled dispersion equation provides good 

agreement with measured normal modes in biperiodic standing wave structures [Kap 68]. 

However, the biperiodic capacitively coupled equation (3.64) is, to my knowledge new 

and still needs to be verified. To that end, the 9 normal modes of an unturned section of a 

biperiodic capacitively coupled x-band accelerator were measured and compared to 

equation (3.64). 

 

Figure 4-1: Shown is a segment of a x-band, capacitively coupled, 
biperiodic, standing wave accelerator used to validate the dispersion 
relationship obtained through the capacitively coupled equivalent 
circuit model.  

 

Figure 4-2: Depiction of test set 
up used to measure normal mode 
frequencies listed in Table 1 

 

An Agilent N5230A PNA-L was employed to measure the power transmitted from one 

magnetic field probe to the other as a function of frequency. The peaks in the resulting 

spectrum are the result of the structure filling with microwave power at the structures 

normal mode frequencies. Special care must be taken when designing the end plate, 
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which will house the magnetic field probes such that the mode being measured isn’t 

perturbed. By cleverly choosing the location of the holes it is possible reduce the 

capacitance and inductance of a given cavity for the TM101 mode equally, thus not 

changing the resonant frequency.  

Table 1: Measured normal frequencies of the resonant 
structure shown in Fig. (4-2). 

Mode Phase Advance 
[deg] 

Mode frequency 
[MHz] 

0 9192.81 
22.5 9204.08 
45 9232.87 

67.5 9271.29 
90 9300.43 

112.5 9350.12 
135 9374.26 

157.5 9389.12 
180 9394.92 

 

Table 2: Dispersion parameters           
obtained using equations (3.72) through 
(3.81) and the data in Table 1. 

k1 0.0213 
k2 0.0029 
k3 -0.0070 
f1 9313.96 MHz 
f2 9293.69 MHz 

a-cell 9300.43 MHz 
c-cell 9326.29 MHz 

stopband 25.86 MHz 
        

  

 

Figure 4-3: The blue curve is equation (3.64) plotted using the parameters in Table 2. The red squares are 
the measured modes listed in Table 1. The capacitively coupled dispersion equation shows good agreement 
even with a modest stopband of about +26MHz.Equation Section (Next) 
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5 Equivalent Circuit with Losses and Dissimilar Parts. 

As useful as the dispersion equations in chapter 3 are, they are limited by the fact that 

they assume cavities are lossless, and that the structure contains no dissimilar parts. In 

practice, industrial and medical accelerators do have dissimilar parts. In general these 

accelerators are made of buncher cavities, some type of periodic cavity, coupler cavities, 

and end cells. Buncher sections typically have cavities which are shorter than periodic 

cavities with respect to the beam line. They may also have different cell to cell coupling 

in order to produce a desirable field step. Coupling cavities have an iris which allows RF 

power to flow from the waveguide into the accelerating structure. Even the periodic 

cavities, which are machined as identical as possible, can have differences. These 

differences in dimensions between cavities cause tuning errors. Schemes can and have 

been devised for correcting these types of frequency errors by mechanically deforming 

(tuning) problem cavities as a final manufacturing step. However, understanding how 

dissimilar parts effect the structure’s operating mode allows one to develop new tuning 

schemes or to design untuned accelerating structures with acceptable tolerances. 

 

This chapter details how to include losses and dissimilar parts into the equivalent circuit 

model using numerical analysis techniques. This numerical model will illustrate how 

various types of tuning errors affect a structure’s field profile. This problem will require 

solving a system of N coupled nonlinear differential equations, where N is the number of 

cavities in the structure. Calculating a system of coupled oscillator’s normal modes is a 

familiar problem for students of classical mechanics [Tay 05], or mathematics [Edw 00]. 

Solving these problems usually amounts to describing the systems, and solving for the 
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possible eigenvectors, which satisfy an assumed solution and a given set of boundary 

value conditions.  
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5.1 3 cavity problem 

 As an example, let’s use a circuit equivalent model of three cavities which 

exhibited both nearest neighbor coupling, and next nearest neighbor coupling. The goal 

will be to solve for the steady state current of each cavity. The inductively coupled circuit 

will be solved side by side with the capacitively coupled circuit.  

 

Figure 5-1: Inductively coupled three cavity 
circuit equivalent model. 
  

 

Figure 5-2: Capacitively coupled three cavity 
circuit equivalent model.

Using Kirchhoff’s loops in the same manner as in chapter 3. 

1 1 1 2 1 1 3 2 1
1

1V i R sL i sM L i sM L
sC

2 2 2 1 1 2 3 1 2
2

10 i R sL i sM L i sM L
sC

3 3 3 2 1 3 1 2 3
3

10 i R sL i sM L i sM L
sC

 

3 22 1
1 1 1

1 1 1

1 i Mi MV i R sL
sC sC sC

 

3 11 1
2 2 2

2 2 2

10 i Mi Mi R sL
sC sC sC

2 1 1 2
3 3 3

3 3 3

10 i M i Mi R sL
sC sC sC

Since we are interested in the steady state solution we let s j . Again, following the 

approach described in chapter 3, the tank circuit equations are used. This time however 

the structure is not assumed to be periodic or biperiodic. 
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  Inductive        

2 2

1 1
1 2 1 3 2

1 1

V
i j i j M i j M

L Q

Capacitive 

 

2 2
2 2

2 1 1 3 1
2

0 i j i j M i j M
Q

 

2 2
3 3

3 2 1 1 2
3

0 i j i j M i j M
Q

 

2 2

1 1
1 2 1 3 2

1 1

2 2
1 1V

i j i j M i j M
L Q

2 2
2 2

2 1 1 3 1
2

2 2
2 20 i j i j M i j M

Q
2 2

3 3
3 2 1 1 2

3

2 2
3 30 i j i j M i j M

Q

 

All terms are now only reference cavity parameters, except that the drive term is being 

divided by the coupling cavity’s inductance. This is acceptable because our interests are 

in the phase and amplitude of the individual cavity’s current with respect to each other. 

The drive term will affect the magnitude of each cavity’s current equally, leaving the 

normalized peak current in each cavity unchanged. These three equations can now be 

written as a matrix equation in an Ohms law like form, where the product of an 

impedance matrix and a current matrix equals a voltage matrix. 

(5.1)      (5.2) 

2 2
1 1

1 2
1

112 2
2 2

1 1 2
2

32 2
3 3

2 1
3

0
0

j j M j M VQ
Li

j M j j M i
Q

i

j M j M j
Q

 2 2 2 2
1 1 1 1

1 2
1

112 2 2 2
2 2 2 2

1 1 2
2

32 2 2 2
3 3 3 3

2 1
3

0
0

j j M j M VQ
Li

j M j j M i
Q

i

j M j M j
Q

Now to solve for the individual cavity currents, the 3 by 3 impedance matrix is inverted 

and multiplied by the drive term (voltage) matrix.    

(5.3)       (5.4)

12 2
1 1

1 2
1

1 12 2
2 2

1 1 2
2

32 2
3 3

2 1
3

0
0

j j M j M VQ
L i

j M j j M i
Q

i

j M j M j
Q

 12 2 2 2
1 1 1 1

1 2
1

1 12 2 2 2
2 2 2 2

1 1 2
2

32 2 2 2
3 3 3 3

2 1
3

0
0

j j M j M VQ
L i

j M j j M i
Q

i

j M j M j
Q
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Numerical decomposition techniques can be employed to invert the impedance matrix 

and solve for each cavities current as a function of frequency. This technique is described 

in section 5.3 and shown in Appendix A. 
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5.2 N cavity problem 

It is desirable to solve this coupled cavity problem for an arbitrary number of cavities, so 

that this work can be applied to numerous different efforts. Eqs. (5.3) and (5.4) are useful 

for showing patterns that can be used to solve the N cavity problem, where N is number 

of coupled cavities in a given system. The impedance matrix’s dimensions in this case are 

N by N. The main diagonal is the same for both an inductive and capacitively coupled 

structure. Each element in the main diagonal has a value given by Eq.(5.5). 

 
2 2

i i

i

j
Q

 (5.5) 

The subscript i in Eq. (5.5) has a range of 1 i N , and it references which cavity a 

given property applies to. All other non-zero elements in the impedance matrix are 

coupling terms. These coupling terms values differ slightly between the capacitively 

coupled model and the inductively coupled model. The inductive coupling term is shown 

by Eq. (5.6) and the capacitive coupling term is shown by Eq. (5.7).  Remember that 

2M k can be used if the Los Alamos coupling notation is preferred. This is explained 

in Section 3.1. 

(inductive) j M  (5.6) 

(capacitive) 
2
ij M  (5.7) 

The elements in the diagonals adjacent to the right and left of the main diagonal describe 

the systems nearest neighbor coupling. The elements in the diagonals adjacent to the 

nearest neighbor coupling diagonal describe the systems next nearest neighbor coupling. 

And similarly, the elements in the diagonals adjacent to the next nearest neighbor 

coupling diagonal describe the systems next next nearest neighbor coupling. I use M1, M2, 
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and M3 to represent nearest neighbor, next nearest neighbor, and next next nearest 

neighbor coupling, respectively. The i  term in Eq. (5.7) references the cavity who’s 

impedance is being “seen” by the neighboring cavities, consequently the subscript i is 

equal to the row number the coupling term is in, within the impedance matrix. 

 

Larger systems models will have a sparsely populated impedance matrix. Besides the 

main diagonal and two other minor diagonals for each level coupling being included, all 

other elements will be zero. So models including nearest neighbor coupling will have 3 

non-zero diagonals, models including next nearest neighbor coupling will have 5 non-

zero diagonals, etc. 

 

The voltage matrix will be an N by 1 matrix with all 0 elements except in the rows 

corresponding to driven cavities. For example, since the first cavity is driven in Figs. (5-

1) and (5-2), the element in the first row of the voltage matrix in Eqs. (5.1) and (5.2) are 

non zero.  

 

The current matrix will be an N by 1 matrix, which holds the fields in each cavity when 

the system is driven at a steady frequency . The next section describes a C++ computer 

code which was written to solve this coupled cavity problem.   
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5.3  “equivalent” code description 

“Equivalent” is a win32 C++ consol code, which was written to solve for the steady state 

currents of every cavity in a chain of N coupled cavities using the equivalent circuit 

model described in the previous section. Almost the entire code has been included in 

Appendix A.  The purpose of this section is to give a brief description of what the code 

does with a little explanation of how it does it. In this explanation I’ll point out the code 

line numbers using apostrophes, for example (line number).   

  

The program reads its input variables from an input file. An example of this input file is 

shown in Appendix C. The first thing the program reads is the number of cavities (36), 

this allows the program to know how to size every vector container in the code. The 

program then reads in the start frequency (59), the stop frequency(63), and the number of 

points used to discretize the frequency space (67). 

 

The program then reads in the voltage matrix or drive terms (84-97). Any non-zero value 

is equivalent to the corresponding cavity being driven. The structure being modeled with 

the input file shown in appendix C is driven by the 13th cavity. The magnitude of this 

variable is arbitrary and will affect the magnitude of the current in each cavity equally.  

 

Cavity quality factor (98-107) and cavity frequency (108-117) are read in the same 

fashion. In all three cases the values are held in a vector container in sequential order 

from first to last. Since each cavity’s properties are entered into the code individually, 
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any coupled cavity structure can be modeled: periodic, biperiodic, tri-periodic, dissimilar 

parts, etc.  

 

The nearest neighbor coupling terms are read into a similar vector, M1[i] (118-130). 

Again the vector is sequential, with the first number being the coupling between cavity 1 

and cavity 2, and the last number being the coupling between the second to last and last 

cavity. Since each coupling terms is entered separately, dissimilar coupling can be 

modeled as well. The next nearest neighbor coupling, M2[i], is read in to the program 

(131-143) in sequential order, with the first number being the coupling between cavity 1 

and cavity 3, the second number being the coupling between the cavity 2 and cavity 4, 

etc. Next, next nearest neighbor coupling, M3[i], is read into the program (144-156) in 

the same fashion as M1[i] and M2[i]. All the work in this thesis sets all the M3[i] values 

to zero, but I programmed them in for future work.   

 

The “cavity to be plotted” variable allows the user to pick any cavity’s current spectrum 

to be plotted (157-176). The plot will come out as a post script file, and will plot the log 

of the modulus of the selected cavity’s current (421-456) as a function of frequency.  

 

 

The coupling type is read into program (177-182) and controls how the impedance matrix 

is calculated. If inductive coupling is selected, then the coupling terms are calculated 

using Eq. (5.6). If capacitive coupling is selected, then the coupling terms are calculated 

using Eq.(5.7).  
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The last option on the input file is to select if the simulated beadpull function should be 

run  (188-192). This function is explained in the next section. 

  

Once all the input information has been read into the program, the program starts solving 

for each cavity’s complex current at every frequency specified by the input file (219). 

Each frequency will have a different impedance matrix, so this matrix has to built and 

inverted at every frequency. The impedance matrix is built using a case structure. Case 1 

(222-289) is used for inductively coupled models, and case 2 (290-363) is used for 

capacitively coupled models. Both cases use Eq. (5.5) for the main diagonal. The values 

for every element in the impedance matrix are initially held in “M_con” (81) which is a 

vector filled with object of the complex class. “M_con” is passed into the object “a” 

(371) using a call by reference, and then “a” is passed into the function “comgaussj” 

(373). This function is declared in the header file “comgaussj.h” which is shown in 

Appendix B. This is a version of the published header gaussj.h  [Pre 07] which has been 

modified to accept objects of the type NRmatrix<complex>. “comgaussj” returns the 

inverse of the impedance matrix using a Gauss-Jordan elimination method with full 

pivoting. In the future I plan to test LU decomposition methods in effort to speed up the 

program. The current matrix is then obtained by taking the product of the inverted 

impedance matrix and the voltage matrix (375-383). These current values are logged in a 

comma delimited excel sheet, and in the variable “databrick”, which will hold the value 

of every cavity’s current at every frequency step. Then, the loop then steps forward one 

step in frequency space (397-398), and the process starts over. 
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After the main loop is complete, the variable “databrick” contains the steady state 

complex current of every cavity at every frequency value used. The “databrick” is then 

passed into the “mass_peak_finder” function (502-559). This function looks at the 

modulus of every cavity’s current and searches for peaks in that spectrum. It defines a 

peak as a value that is larger than its three nearest neighbors on either side in its 

spectrum. The peaks that are found are recorded in a comma delimited excel sheet, and in 

a variable named “peakbrick”. 
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5.4 “Equivalent” code simulated beadpull  

This section of code (457-475) can be ignored or activated by entering a “y” or “n” in the 

input file. Strictly speaking, this section of code doesn’t simulate a beadpull experiment 

at all, since no fields are being perturbed, and no modal frequency shift is being 

measured. I call it a simulated beadpull because it provides the relative peak electric field 

values in each cavity, much like a beadpull experiment.  

 

When this code is executed, the user is prompted to enter a frequency. The code takes this 

entered frequency and returns the square of the modulus of every cavity’s current at the 

closest point to that frequency. These values are then recorded in a coma delimited text 

file called “beadpull.txt”.  
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5.5 No stopband 

In order to glean some understanding from the equivalent code, specific examples can be 

used. Fig. (5-3) shows a graphical depiction of a biperiodic x-band standing wave 

accelerator which was designed and built at Varian Medical Systems. This structure will 

be used in all the case studies in this chapter. 

 

Figure 5-3: Depicted is a 23 cavity biperiodic, on axis, capacitively coupled, x-band linearly accelerator 
operating in the /2’s mode. Simplified electric field lines shown in blue at a phase corresponding to peak 
electric field. 
 

 
This accelerator structure has 12 accelerating cavities (a-cells) and 11 coupling cavities 

(c-cells). It is coupled to waveguide through an iris in the 7th a-cell. The coupling 

constants are shown in Table 2 and again in Table 3. These values are assumed to be 

constant throughout the structure. The quality factor of each cavity was set to 10,000. 

This value is higher than is realistic for the a-cells and certainly too high for the c-cells, 

but fixing the value will serve the purpose of reducing the number of variables while the 

affects of tuning are studied. 

 

Since this structure is biperiodic and capacitively coupled, Eq. (3.64) was used to set f1 

(a-cell) and f2 (c-cell) such that the stopband given by Eq.(3.65) was zero. f1 was set equal 

to 9013.96 MHz since that is what was measured in chapter 4. Using these parameters, 
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the f2 value which minimizes the stopband is 9267.06 MHz. These settings are shown on 

Table 3 with the inputs in blue boxes, and the calculated values in green boxes. 

Remember that f1 and f2 are the frequencies that the cavities would resonate at if they 

were by themselves, and fa-cell and fc-cell are the frequencies they resonate at now that they 

are coupled to other cavities. Eqs. (5.8) and (5.9) are derived from Eq. (3.64), and are 

used to calculate how fa-cell and fc-cell depend on f1 and f2. This relationship is plotted on 

Fig. (3-16). 

 a-cell 1 21f f k  (5.8) 

 c-cell 2 31f f k  (5.9)

Fig. (5-4) shows the equivalent codes simulated beadpull using the inputs described 

above. The equivalent code calculated the normal mode frequency to be 9301.53 

MHz. 

Table 3: Blue boxes show 
values used as inputs into 
the equivalent code. Green 
boxes show properties 
predicted by equation(3.64), 
most notably the absence of 
a stopband. 

k1 0.0213 

k2 0.0029 

k3 -0.007 

f1  9313.96 

f2 9268.06 

fa-cell 9300.44 
fc-cell 9300.44 

Stopband 0 Figure 5-4: Equivalent code simulated bead pull. All E2 values are 
normalized to the largest value. Structure shows moderate field steps in the 
accelerating cavities at the end cells. Simulated field levels taken at 
9301.53MHz. 
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The first thing to notice about Fig.(5-4) is that field levels are, in general, just what one 

would expect them to be; There are nulls in the coupling cavities, and the square of 

accelerating cavity’s electric field amplitude is relatively flat across the structure. 

 normal mode frequency is 1.09 MHz higher than Eq.(3.64) predicts, 

and looking closer at the field levels Fig.(5-5) does show some non-ideal behavior.  

 

Figure 5-5: Same result shown on Fig. (5-5) except the scales on the y-axes have been adjusted to provide 
a magnified view. 

There are two noticeable field steps at both ends of the structure. This is due to the end 

cells being mistuned. Unlike every other accelerating cavity in the structure, the end cells 

are only coupled through next nearest neighbor coupling to one other accelerating cavity.

In order to compensate for this, f1 in the end cells, needs to be adjusted. To calculate an 

approximate value for this end cell frequency correction, Eq. (5.10) is used with  
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fa-cell equal to (9300.44 MHz) and k2 equal to (0.0029/2).  

2
end a-cell 1

2
kf f  (5.10)

When this new fend value (9307.19MHz) is used at both end cells of the structure, the 

resulting field profile is much more ideal as shown by Fig. (5-6).  

 

Figure 5-6: Equivalent code simulated beadpull with ideal tuning and end cell frequencies adjusted 
according to Eq.(5.10). Plot shows significantly more ideal field distribution compared to Fig. (5-5). 
Simulated field levels taken at 9300.44MHz. 

normal mode frequency at 9300.44 MHz in agreement with Eq. (3.64) as in table 3. The 

small amount of droop, seen in Fig. (5-6), on either side of cavity number 13 in the 

acceleration cavities, and cavity 12 in the coupling cavities is caused by cavity losses.
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Fig. (5-7) shows the equivalent code beadpull simulation using the same parameters as 

those used in Fig. (5-6), except the modeled structure was made lossless.  

 

Figure 5-7: Equivalent code simulated bead pull with ideal tuning, end cell frequency adjusted, and 
lossless cavities. Resulting simulated field profile match the ideal  field profile. 
Simulated field levels taken at 9300.44MHz. 

One important observation from this section is that “correct” tuning in the acceleration 

cavities always resulted in reduced field in the coupling cavities. In general, elevated 

field levels in the coupling cavities indicate tuning errors in the accelerating cavities. Fig. 

(5-8) takes the data from Fig. (5-7) zooms in on just the field profile of the accelerating 

cavities. 
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Figure 5-8: Simulated beadpull showing that there is very small effect which causes the driven cavity to be 
slightly mistuned by the drive term. Simulated field levels taken at 9300.44MHz. 

This field “bump” at the drive cavity is very small, but present. This effect is caused by 

the drive term, but is not dependent on the magnitude of the drive term. I’m not sure if 

this is real effect or an artifact of the equivalent code. This effect could be tuned out by 

adjusting the f1 value of the drive cavity. However, since the effect is so small, I’ll just 

point it out here and then ignore it for the rest of the paper. 

 

The reader may be wondering why the frequency in end coupling cavities were not 

adjusted in the same manner as the end accelerating cavities since they also experiences 

half of the next nearest neighbor coupling as every other coupling cavity. One expects

that adjustment to be necessary; however, in all of the examples shown in this paper it 

had a negligible effect on the field profile. 
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5.6 Single a-cell tuning errors with minimal stopband 

In chapter 3 we looked at two dispersion relationships of biperiodic structures. Because 

the structures in that chapter were considered perfectly biperiodic, those models had 

analytic expressions for their stopband. However, once dissimilar parts are considered, an 

analytic expression is not available. Despite this, it is still critical to understand how a 

largely biperiodic structure will behave when some of its cavities are mistuned. Chapter 6 

looks at possible ways to determine stopband in a system with dissimilar parts. 

 

Fig. (5-7) shows the ideal field distribution for a biperiodic accelerator operating in the 

normal mode. Figs. (5-9) and (5-10) show how this profile is perturbed when one of 

a-cells in the structure is mistuned. These figures were produced using the same input 

files as those used to produce the fields shown in Fig. (5-7), except that the 4th a-cell was 

mistuned by +20 MHz in Fig. (5-9) and by -20 MHz in Fig. (5-10). 

 

The field “bump” or “dip” shown in those figures is the characteristic effect of a single 

mistuned a-cell in a biperiodic structure with minimal stopband. I say minimal, and not 

zero because the one mistuned cavity is enough to produce a small stopband. The small 

amount of field slope seen between cavity 8 and cavity 23 is caused by this  combination 

of the 4th a-cell tuning error and a small stopband. The field slope effect is more closely 

looked at in the sections 5.7 and 5.8. 
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Table 4: Blue and red boxes 
show values used as inputs 
into the equivalent code. 
Green boxes show properties 
predicted by Eq.(3.64), most 
notably the absence of a 
stopband. 

k1 0.0213 

k2 0.0029 

k3 -0.007 

f1  9313.96 

f2 9268.06 

fend 9307.19 

fmistuned 9333.96 

fa-cell 9300.44 

fc-cell 9300.44 

Stopband 0 Figure 5-9:  Equivalent code simulated bead pull with ideal tuning in 
every cavity except the 7th. The 7th cavity or the 4th accelerating cavity has 
been perturbed by +20MHZ.  Minimal stopband in structure. 

Table 5: Blue and red boxes 
show values used as inputs 
into the equivalent code. 
Green boxes show properties 
predicted by Eq.(3.64), most 
notably the absence of a 
stopband. 

k1 0.0213 

k2 0.0029 

k3 -0.007 

f1  9313.96 

f2 9268.06 

fend 9307.19 

fmistuned 9293.96 

fa-cell 9300.44 

fc-cell 9300.44 

Stopband 0 

Figure 5-10:  Equivalent code simulated bead pull with ideal tuning in 
every cavity except the 7th. The 7th cavity or the 4th accelerating cavity has 
been perturbed by -20MHZ.  Minimal stopband in structure. 
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5.7 Single a-cell tuning errors with stopband 

A mistuned a-cell will have a different effect from that seen in section 5.6, depending on 

both the magnitude and sign of the structure’s stopband. Field slope is observed when a 

biperiodic structure has both an a-cell tuning error and a stopband. This slope increases as 

the tuning error in the a-cell and/or the stopband increase. The direction of the slope 

depends on the sign of both the tuning error in the a-cell and the stopband. If both have 

the same sign, the slope will be negative in the direction going outward from the 

mistuned a-cell. Otherwise, the slope will be positive in the direction going outward of 

the mistuned a-cell. 

  

Figure 5-11: Equivalent code simulated beadpull showing field profiles with both positive and negative a-
cell tuning errors in combination with positive and negative stopband. 
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The input file used to produce the plots in Fig. (5-11) was very similar to the ones used to 

make Figs. (5-9) and (5-10). The only difference was the presence of a larger stopband in 

Fig. (5-11). Plots in Fig (5-11) labeled as having a stopband of -10MHz had f2 values of 

9258.06MHz, and those labeled as having a stop band of +10MHz had f2 values of 

9278.06MHz.  
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5.8 End cell tuning errors with stopband 

End cell mistuning with stopband has a very similar effect on a structure’s field profile as 

any other mistuned a-cell with a stopband. Both produce field slope, and in both cases the 

direction of that slope is determined in the same way.  However, in most cases shown in 

Fig. (5-12), when the end cells are mistuned there is a greater difference between the 

minimum and maximum peak cavity field throughout the structure. Practically, this 

means that end cell tuning errors have the potential to be more costly in standing wave 

accelerators similar to the one shown in Fig. (5-3).  

 

Figure 5-12: Equivalent code simulated beadpull showing field profiles with both positive and negative 
end cell tuning errors in combination with positive and negative stopband. As in section 5.7, the stopband 
was formed by changing all the f2 values by ±10MHz.  
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5.9 Single c-cell tuning errors 

A single mistuned coupling cavity has surprisingly little effect on a structures field 

profile, if all other cavities are tuned properly. Even a tuning error as large as 50MHz has 

a negligible effect on this structure’s field profile. 

 

5-13: Cavity 6 (3rd c-cell) is mistuned by +50MHz the rest of the structure is perfectly tuned with the 
exception of the coupling cavity, discussed in section 5.5. Simulated field levels taken at 9300.44MHz. 

This field step between the 5th and 7th cavity is the characteristic effect of a mistuned c-

cell. However, this effect is negligible if the rest of the structure is near perfectly tuned. 

 

The field bump seen at cavity 13 is caused by the coupling cavity being slightly 

mistuned. This was discussed in section 5.5. 
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5.10  Combinations of c-cell & a-cell tuning errors 

Fig. (5-14) used the same input file as Fig. (5-13) except that cavity 21 (a-cell 11) was 

mistuned by +10 MHz. The mistuned a-cell caused the now expected characteristic field 

bump, but it also increased the magnitude of the field step between cavity 5 and 7 by  

a factor of about 400. Note the tuning errors on opposite sides of the structure are still 

coupled together and there effects are interdependent. 

 

5-14: Cavity 6 (3rd c-cell) is mistuned by +50MHz, and cavity 21 (11th a-cell) is mistuned by -10 MHz. 
Simulated field levels taken at 9299.58 MHz.  

The direction of the field step caused by the mistuned c-cell also depends on the sign of 

the a-cell tuning error. Fig. (5-15) illustrates. In all four cases the magnitude of the step 

stays the same and the field bump/dips in the 11th a-cell are all as predicted by section 
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5.6, but the direction of the step depended on if the c-cell and a-cell errors had the same 

sign or not. 

 

5-15: Cavity 6 (3rd c-cell) is mistuned by ±50MHz, and cavity 21 (11th a-cell) is mistuned by ±10 MHz. 
Plot (d) is the same as Fig. (5-14). Besides cavity tuning being changed as described above all plots use the 
same parameters as Fig. (5-7). 
 

Complementary to the plots in Chapter 5 we notice that the fields in the coupling cavities 

increase as they approach the mistuned a-cells. Also, notice that any change that made the 

field in a-cells flatter (more ideal) also decreased the field in the coupling cavities. These 

are useful pieces of information when developing tuning protocols for biperiodic standing 

wave accelerators. 
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5.11 Coupling errors 

Just as cavity tuning errors are caused by mechanical dimensional errors in high field 

areas of the cavities, coupling errors are caused by mechanical dimensional errors in 

areas where magnetic or electric fields lines move into nearby cavities. Errors that cause 

dissimilar coupling within the biperiodic standing wave structure have a very noticeable 

effect on the structures electric field profile. 

 

If for example, a coupling slot is dissimilarly reduced in size by some factor, the first and 

most significant effect of that reduction will be caused by the change in nearest neighbor 

coupling between the two cavities on either side of the slot. Despite not directly effecting 

the resonant frequency of either cavity, the perturbation in nearest neighbor coupling will 

cause a field step; as depicted in Fig. (5-16). 

 

5-16: Nearest neighbor coupling was decreased by 10% in plot (a) and increased by 10% in plot (b). In 
both plots the coupling between the 3rd and 4th cavity was changed. Besides nearest neighbor  coupling term 
being changed both plots use the same parameters as Fig. (5-7). Simulated field levels taken at 
9300.44MHz. 
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The second effect will be from the next nearest neighbor coupling also being affected. 

Changes to next nearest neighbor coupling will cause the resonant frequency to shift in 

the adjacent cavities by approximately the amount predicted by Eqs. (5.8) and (5.9). The 

resulting frequency shifts affect the electric field profile in the manner described in 

sections 5.6 and 5.7.  

 

5-17: Next nearest neighbor coupling was decreased by 10% between the 3rd and 4th a-cell. This increased 
the frequency of the two neighboring a-cells (Eq.(5.8) and a-cells dissimilarly tuned high in frequency 
cause field dips. Besides next nearest neighbor coupling term being changed 5-17 uses the same parameters 
as Fig. (5-7). Simulated field levels taken at 9300.54 MHz (slightly higher than 5-7). 

Equation Section (Next) 
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6 Measuring stopband  

Field profiles are not the only way to extract useful information from the equivalent code. 

Since all the cavities are coupled, the current spectrum of each cavity contains 

information about every other cavity in the structure. Fig. (6-1) shows cavity field 

spectrums of both an a-cell (cavity 13) and a c-ell (cavity 12), produced by the equivalent 

code modeling the structure depicted in Fig. (5-3). In this simulation the a-cells were 

given a quality factor of 10,000 and the c-cells were given a quality factor of 5,000. The 

end cell f1 values were corrected as described in section 5.5. 

 

6-1: Simulated current spectrum of the structure depicted in Fig. (5-3). This spectrum shows the value each 
normal mode when the structure is perfectly tuned. 
 

The peaks on these curves occur at the structures normal modes, and their location can be 

used to measure the stopband of a given structure. The catch is that the ideal mode 

placement must be known, and the structure cannot be too mistuned. In this case it is 
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known that the model structure used to produce Fig. (6-1) was perfectly tuned, so Fig. (6-

1) shows the ideal location of every normal mode in the structure. 

 

Fig. (6-2) shows how this ideal spectrum is shifted when the coupling cavities are equally 

mistuned producing a known stopband of -10MHz. 

move but every other mode is shifted. The direction of the shift is given by the sign of the 

stopband. In this case the stopband is negative, so the spectrum is shifted down in 

frequency. However, if the stopband had been positive, the spectrum would have shifted 

up in frequency. Also, notice that the magnitude of the shift is about twice as large on the 

positive, than the shift on 

 

 

6-2: Spectrum shift caused by a uniform -10MHz tuning error in the coupling cavities. The sum of the shift 
in the neighboring modes yields the value of the stopband. 
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The sum of the frequency shift from the ideal value of normal modes of equal modal 

 

structures stopband. 
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7 Summary 

To apply the results of this thesis work to analyze a biperiodic standing wave accelerator, 

the first step is to determine the coupling parameters. The easiest way to do that is by 

using the 5-mode method described in chapter 5. These 5 modes can be obtained via 

microwave measurements on a portion of the structure, or using electromagnetic 

simulation software like Ansoft or CST Microwave Studio. Of course the equations in 

chapter five describe a capacitively coupled device, so if the structure is inductively 

coupled, the references noted in chapter 5 should be used. Once the coupling constants 

are known, the optimum “end cell” resonate frequencies can be determined using 

equation (5.10). Then the equivalent code can be used to model the structures field 

profile. The combination of this with a macro particle code permits one to relate 

industrial accelerator specs like output, spot size, and power requirements with 

mechanical manufacturing tolerances.  

 

Alternatively, chapters 5 and 6 can be used more qualitatively to help diagnose the cause 

of a misbehaving biperiodic accelerator.  

 

In the future one could improve on the equivalent code approach in some of the following 

ways. The speed of the program could be greatly improved by using more specialized 

algorithm to invert the impedance matrix (chapter 5.3), and rewrite the codes using 

Microsoft’s PPL (parallel patterns library) to invert multiple impedance matrices at the 

same time. If sufficient speed improvement is achieved it might be possible to have the 
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program read in a field profile measurement, and then solve for the most likely cavity 

properties capable of producing that profile.  
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Appendix 

A. “Equivalent” Code 

#include "nr3.h" 1 
#include "comgaussj.h" 2 
#include "psplot.h" 3 
#include <cmath> 4 
 
using namespace std; 5 
 
typedef const NRmatrix<Complex> MatComplex_I;  6 
typedef NRmatrix<Complex> MatComplex, MatComplex_O, MatComplex_IO;  7 
 
//global definitions 8 
int num_cav, Npoints; 9 
double f_step, f_start; 10 
 
int main() { 11 
 #define _USE_MATH_DEFINES 12 
 int end; 13 
 int i, j, k; 14 
 int cav_to_plot; 15 
 double count; 16 
 int status = 0; 17 
 const double PI = 3.14159265358979323846; 18 
 char buff[256]; 19 
 complex<double> mem; 20 
 double f_end, w_step; 21 
 double fi, wi; 22 
 int cavplot = 0; 23 
  
//declaring functions 24 
 double max(VecDoub test_vec); 25 
 double min(VecDoub test_vec); 26 
 int peak_finder(VecDoub test_y, VecDoub test_x); 27 

vector<vector<double>> mass_peak_finder(int cav_num, vector<vector<complex<double>>> 28 
databrick, vector<double> f_index); 29 

  
//read input file 30 
 ifstream in; 31 
 in.open("infile.txt");  32 
 ofstream check_out("in_check.txt"); 33 
 
// reading number of cavities, defining num_acell 34 
  in.getline(buff, 255, ':');  35 
  in >> num_cav;   36 
  check_out << "Number of Cavities: " << num_cav << '\n'; 37 
  cout << "number of cavities: " << num_cav << '\n'; 38 
  vector<double> f(num_cav); 39 
  vector<double> Q(num_cav); 40 
  vector<double> V(num_cav); 41 
  vector<double> M1(num_cav); 42 
  vector<double> M2(num_cav); 43 
  vector<double> M3(num_cav); 44 
  vector<double> coup1(num_cav); 45 
  vector<double> coup2(num_cav); 46 
  vector<double> coup3(num_cav); 47 
  vector<double> w(num_cav); 48 
  vector<double> R(num_cav + 1); 49 
  vector<double> D(num_cav + 1); 50 
  vector<complex<double>> I(num_cav); 51 
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  vector<complex<double>> drive(num_cav); 52 
  vector<vector<double>>  peakbrick(num_cav,num_cav); 53 
  int num_acell; 54 
  num_acell = (num_cav/2)+1; 55 
  cout << "number of a-cells " << num_acell << '\n'; 56 
 
// reading start frequency 57 
  in.getline(buff, 255, ':'); 58 
  in >> f_start; 59 
  check_out << "Start frequency: " << f_start << '\n' ; 60 
 
// reading end frequency 61 
  in.getline(buff, 255, ':'); 62 
  in >> f_end;   63 
  check_out << "Stop frequency: " << f_end << '\n'; 64 
 
// reading number of points, defining w_step, f_step, M_con, databrick, and f_index 65 
  in.getline(buff, 255, ':'); 66 
  in >> Npoints; 67 
  check_out << "Number of points: " << Npoints << '\n'; 68 
  //checks if the end frequency is greater than the start frequency 69 
  if(f_end <= f_start) {  70 
   std::cout << "f_end must be larger than f_start";  71 
   std::cout << '\n' <<'\n'; 72 
   std::cout << "enter any key to quit" << '\n'; 73 
   std::cin >> end;  74 
   return 1; 75 
  }  76 
  else { w_step = 2*PI* ((f_end - f_start)/(Npoints-1));} 77 

cout << "frequency step: " << ((f_end - f_start)/(Npoints-1))*1000 << " kHz" << 78 
'\n'; 79 

  f_step = (f_end - f_start) / Npoints;  //used in mass peak finder 80 
   
  vector<complex<double>> M_con( (num_cav*num_cav));      81 
  vector <vector <complex <double> > > databrick(Npoints,num_cav); 82 
  vector<double> f_index(Npoints); 83 
 
// reading V's 84 
  in.getline(buff, 255, ':'); 85 
  for(i=0; i < num_cav; i++)  86 
  { in >> V[i]; } 87 
  //making the drive value complex 88 
  for(i=0; i < num_cav; i++) { 89 
   drive[i] = complex<double> (V[i],0); 90 
  } 91 
  check_out << '\n' << "Drive voltage" << '\n'; 92 
  for(int i=0; i < num_cav; i++) { 93 
   check_out << drive[i] << "   "; 94 
   if( (i+1) % 10 == 0) { check_out << '\n'; } 95 
  } 96 
  check_out << '\n'; 97 
 
// reading Q's 98 
  in.getline(buff, 255, ':'); 99 
  for(i=0; i < num_cav; i++)  100 
  { in >> Q[i]; } 101 
  check_out << '\n' << "Cavity Q Values:" << '\n'; 102 
  for(int i=0; i < num_cav; i++) { 103 
   check_out << Q[i] << "   "; 104 
   if( (i+1) % 10 == 0) { check_out << '\n'; } 105 
  } 106 
  check_out << '\n'; 107 
   
// reading f's 108 
  in.getline(buff, 255, ':'); 109 
  for(i=0; i < num_cav; i++)  110 
  { in >> f[i]; } 111 
  check_out << '\n' << "Frequency Values:" << '\n'; 112 
  for(int i=0; i < num_cav; i++) { 113 
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   check_out << f[i] << "   "; 114 
   if( (i+1) % 10 == 0) { check_out << '\n'; } 115 
  } 116 
  check_out << '\n'; 117 
   
// reading M1's 118 
  if( num_cav > 1) { 119 
   in.getline(buff, 255, ':'); 120 
   for(i=0; i < num_cav-1; i++)  121 
   { in >> M1[i]; } 122 
  } 123 
  else { in.getline(buff, 255, ':'); } 124 
  check_out << '\n' << "Nearest Neighbor Coupling" << '\n'; 125 
  for(int i=0; i < num_cav-1; i++) { 126 
   check_out << M1[i] << "   "; 127 
   if( (i+1) % 10 == 0) { check_out << '\n'; } 128 
  } 129 
  check_out << '\n'; 130 
 
// reading M2's 131 
  if( num_cav > 2) { 132 
   in.getline(buff, 255, ':'); 133 
   for(i=0; i < num_cav-2; i++)  134 
   { in >> M2[i]; } 135 
  } 136 
  else { in.getline(buff, 255, ':'); } 137 
  check_out << '\n' << "Next Nearest Neighbor Coupling" << '\n'; 138 
  for(int i=0; i < num_cav-2; i++) { 139 
   check_out << M2[i] << "   "; 140 
   if( (i+1) % 10 == 0) { check_out << '\n'; } 141 
  } 142 
  check_out << '\n'; 143 
 
// reading M3's 144 
  if( num_cav > 3) { 145 
   in.getline(buff, 255, ':'); 146 
   for(i=0; i < num_cav-3; i++)  147 
   { in >> M3[i]; } 148 
  } 149 
  else { in.getline(buff, 255, ':'); } 150 
  check_out << '\n' << "Next Next Nearest Neighbor Coupling" << '\n'; 151 
  for(int i=0; i < num_cav-3; i++) { 152 
   check_out << M3[i] << "   "; 153 
   if( (i+1) % 10 == 0) { check_out << '\n'; } 154 
  } 155 
  check_out << '\n'; 156 
   
//reading cavity response to be plotted 157 
  in.getline(buff, 255, ':'); 158 
  in >> cav_to_plot; 159 
  check_out << '\n' << "Cavity responce to be plotted: " << cav_to_plot << '\n'; 160 
   161 
  if(cav_to_plot <= 0) { 162 
   std::cout << "cavity responce to plot must be larger than 0"; 163 
   std::cout << '\n' <<'\n'; 164 
   std::cout << "enter any key to quit" << '\n'; 165 
   std::cin >> end;  166 
   return 1; 167 
  } 168 
  if(cav_to_plot > num_cav){ 169 

cout << "cavity responce to plot must be smaller than or equal to the 170 
number of cavities"; 171 

   std::cout << '\n' <<'\n'; 172 
   std::cout << "enter any key to quit" << '\n'; 173 
   std::cin >> end;  174 
   return 1; 175 
  } 176 
//reading coupling mechanics 177 
  int coupling = -999; 178 
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  in.getline(buff, 255, ':'); 179 
  in >> coupling; 180 

check_out << '\n' << "Coupling(inductive = 1 or capacitive = 2): " << coupling << 181 
'\n'; 182 

 
//reading debug output 183 
  char debug = 'Z'; 184 
  in.getline(buff, 255, ':'); 185 
  in >> debug; 186 
  check_out << '\n' << "Debug Output: " << debug << '\n'; 187 
 
//bead pull test output 188 
  char bead_toggle = 'Z'; 189 
  in.getline(buff, 255, ':'); 190 
  in >> bead_toggle; 191 
  check_out << '\n' << "Beadpull Output: " << bead_toggle << '\n'; 192 
 
//closing input file 193 
in.close(); 194 
check_out.close(); 195 
  
//calculate cavity angular velocities 196 
 for(i=0; i < num_cav; i++) { 197 
  w[i] = 2 * PI * f[i]; 198 
 } 199 
 
//calculate R values 200 
 for(i=0; i < num_cav; i++) { 201 
  R[i] = ( w[i] / Q[i] ); 202 
 } 203 
 
//calculate start annular velocity  204 
 wi = (f_start*2*PI); 205 
 
//opening data stream and dumping all cavity responses into "data.csv" comma delimited. 206 
 ofstream out("data.csv"); 207 
 if(!out){ 208 
  std::cout << "can't open data file. \n"; 209 
  return 1; 210 
 } 211 
 //adding lables for the data output file 212 
 out << "frequency[MHz],"; 213 
 for(i=0; i < num_cav; i++) {  214 
 out << "LOG I" << i+1 << " [arb],";  215 
 } 216 
 out << '\n'; 217 
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//start of main loop 218 
 for(count=0; count < Npoints; count++) { 219 
  //fill M_con 220 
  switch(coupling) { 221 
  case 1: //inductive 222 
   //calculate coup1 223 
   if(num_cav > 1) { 224 
    for(i=0; i < num_cav; i++) {  225 
     coup1[i] = wi * M1[i];  226 
    } 227 
   } 228 
   //calculate coup2 229 
   if(num_cav > 2) { 230 
    for(i=0; i < num_cav; i++) { 231 
     coup2[i] = wi * M2[i]; 232 
    } 233 
   } 234 
   //calculate coup3 235 
   if(num_cav > 3) { 236 
    for(i=0; i < num_cav; i++) { 237 
     coup3[i] = wi * M3[i]; 238 
    } 239 
   } 240 
   //calculate D values 241 
   for(i=0; i < num_cav; i++) { 242 
    D[i] = -1*(((pow(w[i],2)) - (pow(wi,2))) / wi); 243 
   } 244 
   //fill matrix with 0's 245 
   for(i=0; i < num_cav*num_cav; i++) { 246 
    M_con[i] = complex<double>(0,0); 247 
   } 248 
   //fill in main diagonal  249 
   for(i=0, j=0; j < (num_cav); i += num_cav, j++) { 250 
    M_con[i+j] = complex<double>(R[j],D[j]); 251 
   } 252 
   //first coup1 253 
   if(num_cav > 1) { 254 
    for(i=0, j=0; j < (num_cav - 1); i += num_cav, j++) { 255 
     M_con[i+j+1] = complex<double>(0,coup1[j]); 256 
    } 257 
   } 258 
   //second coup1 259 
   if(num_cav > 1) { 260 

for(i=num_cav, j=0; j < (num_cav - 1); i += num_cav, j++) { 261 
     M_con[i+j] = complex<double>(0,coup1[j]); 262 
    } 263 
   } 264 
   //first coup2 265 
   if(num_cav > 2) { 266 
    for(i=0, j=0; j < (num_cav-2); i += num_cav, j++) { 267 
     M_con[i+j+2] = complex<double>(0,coup2[j]); 268 
    } 269 
   } 270 
   //second coup2 271 
   if(num_cav > 2) { 272 

for(i=2*num_cav, j=0; j < (num_cav-2); i += num_cav, j++) { 273 
     M_con[i+j] = complex<double>(0,coup2[j]); 274 
    } 275 
   } 276 
   //first coup3 277 
   if(num_cav > 3) { 278 
    for(i=0, j=0; j < (num_cav-3); i += num_cav, j++) { 279 
     M_con[i+j+3] = complex<double>(0,coup3[j]);  280 
    } 281 
   } 282 
   //second coup3 283 
   if(num_cav > 3) { 284 

for(i=3*num_cav, j=0; j < (num_cav-3); i += num_cav, j++) { 285 
     M_con[i+j] = complex<double>(0,coup3[j]); 286 
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    } 287 
   } 288 
   break; 289 
  case 2:  //conductive 290 
   //calculate coup1 291 
   if(num_cav > 1) { 292 
    for(i=0; i < num_cav; i++) {  293 
     coup1[i] = M1[i] / wi;  294 
    } 295 
   } 296 
   //calculate coup2 297 
   if(num_cav > 2) { 298 
    for(i=0; i < num_cav; i++) { 299 
     coup2[i] = M2[i] / wi; 300 
    } 301 
   } 302 
   //calculate coup3 303 
   if(num_cav > 3) { 304 
    for(i=0; i < num_cav; i++) { 305 
     coup3[i] = M3[i] / wi; 306 
    } 307 
   } 308 
   //calculate D values 309 
   for(i=0; i < num_cav; i++) { 310 
    D[i] = -1*(((pow(w[i],2)) - (pow(wi,2))) / wi); 311 
   } 312 
   //fill matrix with 0's 313 
   for(i=0; i < num_cav*num_cav; i++) { 314 
    M_con[i] = complex<double>(0,0); 315 
   } 316 
   //fill in main diagonal  317 
   for(i=0, j=0; j < (num_cav); i += num_cav, j++) { 318 
    M_con[i+j] = complex<double>(R[j],D[j]); 319 
   } 320 
   //first coup1 321 
   if(num_cav > 1) { 322 
    for(i=0, j=0; j < (num_cav - 1); i += num_cav, j++) { 323 

M_con[i+j+1] = complex<double>(0, (-coup1[j] * 324 
pow(w[j],2)) ); 325 

    } 326 
   } 327 
   //second coup1 328 
   if(num_cav > 1) { 329 

for(i=num_cav, j=0; j < (num_cav - 1); i += num_cav, j++) { 330 
M_con[i+j] = complex<double>(0, (-coup1[j] * 331 
pow(w[j+1],2)) ); 332 

    } 333 
   } 334 
   //first coup2 335 
   if(num_cav > 2) { 336 
    for(i=0, j=0; j < (num_cav-2); i += num_cav, j++) { 337 

M_con[i+j+2] = complex<double>(0, (-coup2[j] * 338 
pow(w[j],2)) ); 339 

    } 340 
   } 341 
   //second coup2 342 
   if(num_cav > 2) { 343 

for(i=2*num_cav, j=0; j < (num_cav-2); i += num_cav, j++) { 344 
M_con[i+j] = complex<double>(0, (-coup2[j] * 345 
pow(w[j+2],2)) ); 346 

    } 347 
   } 348 
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//first coup3 349 
   if(num_cav > 3) { 350 
    for(i=0, j=0; j < (num_cav-3); i += num_cav, j++) { 351 

M_con[i+j+3] = complex<double>(0, (-coup3[j] * 352 
ow(w[j],2)) );  353 

    } 354 
   } 355 
   //second coup3 356 
   if(num_cav > 3) { 357 

for(i=3*num_cav, j=0; j < (num_cav-3); i += num_cav, j++) { 358 
M_con[i+j] = complex<double>(0, (-coup3[j] * 359 
pow(w[j+3],2)) ); 360 

    } 361 
   } 362 
   break; 363 
  default: 364 

cout << "ERROR in input file. 1 or 2 not entered in coupling typr"; 365 
   std::cout << "enter any key to quit" << '\n'; 366 
   std::cin >> end;  367 
   return 1; 368 
} 369 
  
//define MatComplex 370 
 MatComplex a (num_cav, num_cav, &M_con[0]); 371 
 
//matrix is inverted 372 
 comgaussj(a); 373 
  374 
//multiply the inverted matrix by the drive vector 375 
 for(j=0; j < num_cav; j++) { 376 
  complex<double> mem (0,0); 377 
  for(i=0; i < num_cav; i++) { 378 
   mem = mem + (a[j][i] * drive[i]); 379 
   I[j] = mem; 380 
  }  381 
 }  382 
 
//calculate frequency, and output to "data.csv" 383 
 fi = wi / (2 * PI); 384 
 out << fi;  385 
//output the log of the modulus of each cavities response to "data.csv" 386 
 for(i=0; i < num_cav; i++) { 387 
  out << "," << log10(abs(I[i])); 388 
 } 389 
 out << '\n'; 390 
  
//store frequency values in "f_index" 391 
 f_index[count] = fi; 392 
 
//store complex current for each cavity in "databrick" 393 
 for(i=0; i < num_cav; i++) { 394 
  databrick[count][i] = I[i]; 395 
 } 396 
 
//step forward in frequency space 397 
 wi += w_step; 398 
 
//display progression on the consol 399 
 status = 100 * (count / (Npoints-1)); 400 
 std::cout.precision(3); 401 
 std::cout << "main loop % complete: " << status << '\r'; 402 
 
//end of main loop  403 
} 404 
 
//close output to "data.csv" 405 
out.close(); 406 
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//output "un-inverted M.txt"  407 
if( debug=='Y' || debug=='y') { 408 
 ofstream out2; 409 
 out2.open("uninverted M.txt"); 410 
 for(i=0; i < (num_cav*num_cav); i++){ 411 
  out2 << M_con[i] << " "; 412 
  if((i+1) % num_cav == 0) {  413 
   out2 << '\n'; 414 
  } 415 
 } 416 
 out2.close(); 417 
} 418 
 
//find all maxima for every cavity 419 
peakbrick = mass_peak_finder(num_cav,databrick,f_index) 420 
//these vectors will be sent to be plotted 421 
 VecDoub Iany1(Npoints); 422 
 VecDoub f_plot(Npoints); 423 
 double peak_Iany1; 424 
 double min_Iany1; 425 
  
 //cout << "creation of Iany1 initiated" << '\n'; 426 
 for(i=0; i < Npoints; i++){ 427 
  Iany1[i] = log10(abs(databrick[i][cav_to_plot-1]));  428 
 } 429 
 //cout << "Iany1 creation compleat" << '\n'; 430 
 for(i=0; i < Npoints; i++){ 431 
  f_plot[i] = f_index[i]; 432 
 } 433 
 // finds the highest "y" value 434 
 peak_Iany1 = max(Iany1); 435 
 // find lowest "y" value 436 
 min_Iany1 = min(Iany1); 437 
 
//make plot 438 
 char *outname = "plot1.ps"; 439 
     PSpage pg(outname); 440 
 PSplot plot1(pg, 100.0, 550, 100.0, 550); 441 
// axis formatting (x-min,x-max,y-min,y-man) 442 
 plot1.setlimits(f_start, f_end, min_Iany1, peak_Iany1); //sets the axis mins and maxes 443 
      //plot1.setfont(); 444 
 plot1.xlabel("frequency [MHz]"); 445 
 plot1.ylabel("LOG S11"); 446 
 plot1.frame(); //draws a frame around the plot 447 
      //plot1.autoscales();  //auto scale doesn't look good with this plot 448 
 plot1.scales( (f_end-f_start)/10, (f_end-f_start)/100, (abs(min_Iany1 - peak_Iany1))/10, 449 
(abs(min_Iany1 - peak_Iany1))/100,2,1,1,1); //(major x-ticks, minor x-ticks, major y-ticks, minor 450 
y-ticks, 0 means no ticks, 1 means ticks only, 2 means numbers + ticks) 451 
     plot1.setcolor(0,50,250); // red, green, blue 452 
 plot1.lineplot(f_plot, Iany1); 453 
 plot1.setcolor(250,50,0); 454 
    pg.close(); 455 
     // pg.display();   //forces the plot open 456 
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//created bead pull data 457 
 if( bead_toggle == 'y' || bead_toggle == 'Y' ) {  458 
  double beadpull_f; 459 
  cout << "Enter operating mode frequency [MHz]: "; 460 
  cin >> beadpull_f; 461 
   
  ofstream out4; 462 
  out4.open("beadpull.txt"); 463 
  int k4 = 0; 464 
  k4 = int ((beadpull_f - f_start) / f_step); 465 
  out4 << "cavity number" << "," << "Mag" << '\n'; 466 
  for(i=0; i < num_cav; i++) { 467 

out4 << i+1 << "," << pow( (abs(databrick[k4][i])) , 2 )  << '\n'; 468 
  } 469 
  out4.close(); 470 
 } 471 
 cout << '\n' <<  "enter any key to quit: "; 472 
 cin >> end; 473 
 
 return 0; 474 
} 475 
 
//find test-vec's max value 476 
 double max(VecDoub test_vec) 477 
 { 478 
  cout << "max: INITIATED"; 479 
  double MAX = -10000; 480 
  for(int i = 0; i < Npoints; i++)  481 
  { 482 
   if(test_vec[i] >= MAX)  483 
   {MAX = test_vec[i];} 484 
  } 485 
  cout << '\r' << "max: COMPLETED" << '\n'; 486 
  return MAX; 487 
 } 488 
 
//find test-vec's min value 489 
 double min(VecDoub test_vec) 490 
 { 491 
  cout << "min: INITIATED"; 492 
  double MIN = 10000; 493 
  for(int i = 0; i <  Npoints; i++)  494 
  { 495 
   if(test_vec[i] <= MIN)  496 
   {MIN = test_vec[i];} 497 
  } 498 
  cout << '\r' << "min: COMPLETED" << '\n'; 499 
  return MIN; 500 
 } 501 
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//mass peak finder 502 
vector<vector<double>> mass_peak_finder(int cav_num, vector<vector<complex<double>>> databrick, 503 
vector<double> f_index) 504 
 { 505 
  cout << '\n' <<  "mass peak finder: INITIATED"; 506 
  int Npeaks = 0; 507 
  const double PI = 3.14159265358979323846; 508 
  vector<vector<double>>  peakbrick(num_cav+100, num_cav); 509 
  vector<vector<complex<double>>> normpeakbrick(num_cav+100,num_cav); 510 
  vector<vector<complex<double>>> normdatabrick(Npoints,num_cav); 511 
  vector<int> peaksfound(num_cav); 512 
   
  //loop through all cavities 513 
  for(int j=0; j < num_cav; j++) 514 
  { 515 
   int Npeaks = 0; 516 
   //loop through all data 517 
   for(int i=0; i <  Npoints - 6; i++) 518 
   {  519 

if( (abs(databrick[i+3][j]) > abs(databrick[i+2][j])) && 520 
(abs(databrick[i+3][j]) > abs(databrick[i+1][j])) && 521 
(abs(databrick[i+3][j]) > abs(databrick[i][j]))  522 
&& (abs(databrick[i+3][j]) > abs(databrick[i+4][j])) &&  523 
(abs(databrick[i+3][j]) > abs(databrick[i+5][j])) && 524 
(abs(databrick[i+3][j]) > abs(databrick[i+6][j]))) 525 

    { 526 
     peakbrick[Npeaks][j] = f_index[i+3]; 527 
     peaksfound[j] = Npeaks; 528 
     Npeaks++; 529 
    } 530 
   } 531 
  } 532 
  ofstream out; 533 
  out.open("peaks.csv"); 534 
  out.precision(9); 535 
   
  for (int j=0; j < num_cav; j++) 536 
  { 537 

out << "frequency cav" << j+1 << "[MHz]," << "Mag" << j+1 << "," << 538 
"phase" << j+1 << '\n'; 539 

   for( int i=0; i < Npoints; i++)  540 
   { 541 
    if(peaksfound[j] >= i)  542 
    { 543 
     int k = 0; 544 
     //k is  the same as count in main loop.    545 

k = ceil( ((peakbrick[i][j] - f_start) / f_step) - .5); 546 
out << peakbrick[i][j] << "," << abs(databrick[k][j]) << 547 
"," << (360 * atan2( imag(databrick[k][j]) , 548 
real(databrick[k][j]) )) / (2*PI) << '\n'; 549 

    } 550 
   } 551 
  out << '\n'; 552 
  } 553 
   
  out.close(); 554 
  cout << '\r' << "mass peak finder: COMPLETED" << '\n'; 555 
  cout << "Peaks found in cav1: " << peaksfound[0] + 1 << '\n'; 556 
  return peakbrick; 557 
 } 558 
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B. Header files 

nr3.h  & psplot.h The contents of these two header files are published [Pre 07]. 

Their content and usage rights are available by purchasing a copy of the work. The 

equivalent code in its form shown here does require them to run. 

comgaussj.h

 

 This is a version of the published header gaussj.h  [Pre 07] which has 

been modified to accept objects of the type NRmatrix<complex>. The purpose of 

showing the code below is to show the changes required to make the equivalent code 

function. Copying this routine from this work does not excuse the reader of the 

requirement to purchasing [Pre 07] in order to lawfully execute the code. 

typedef const NRmatrix<Complex> MatComplex_I; 1 
 typedef NRmatrix<Complex> MatComplex, MatComplex_O, MatComplex_IO; 2 
void comgaussj(MatComplex_IO &a, MatComplex_IO &b) 3 
{ 4 
 Int i,icol,irow,j,k,l,ll,n=a.nrows(),m=b.ncols(); 5 
 double big; 6 
 complex<double> dum,pivinv; 7 
 VecInt indxc(n),indxr(n),ipiv(n); 8 
 for (j=0;j<n;j++) ipiv[j]=0; 9 
 for (i=0;i<n;i++) { 10 
  big=0.0; 11 
  for (j=0;j<n;j++) 12 
   if (ipiv[j] != 1) 13 
    for (k=0;k<n;k++) { 14 
     if (ipiv[k] == 0) { 15 
      if (abs(a[j][k]) >= big) { 16 
       big=abs(a[j][k]); 17 
       irow=j; 18 
       icol=k; 19 
      } 20 
     } 21 
    } 22 
  ++(ipiv[icol]); 23 
  if (irow != icol) { 24 
   for (l=0;l<n;l++) SWAP(a[irow][l],a[icol][l]); 25 
   for (l=0;l<m;l++) SWAP(b[irow][l],b[icol][l]); 26 
  } 27 
  indxr[i]=irow; 28 
  indxc[i]=icol; 29 
  if (a[icol][icol] == 0.0) throw("gaussj: Singular Matrix"); 30 
  pivinv=1.0/a[icol][icol]; 31 
  a[icol][icol]=1.0; 32 
  for (l=0;l<n;l++) a[icol][l] *= pivinv; 33 
  for (l=0;l<m;l++) b[icol][l] *= pivinv; 34 
  for (ll=0;ll<n;ll++) 35 
   if (ll != icol) { 36 
    dum=a[ll][icol]; 37 
    a[ll][icol]=0.0; 38 
    for (l=0;l<n;l++) a[ll][l] -= a[icol][l]*dum; 39 
    for (l=0;l<m;l++) b[ll][l] -= b[icol][l]*dum; 40 
   } 41 
 } 42 
 for (l=n-1;l>=0;l--) { 43 
  if (indxr[l] != indxc[l]) 44 
   for (k=0;k<n;k++) 45 
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    SWAP(a[k][indxr[l]],a[k][indxc[l]]); 46 
 } 47 
} 48 
void comgaussj(MatComplex_IO &a) 49 
{ 50 
 MatComplex_IO b(a.nrows(),0); 51 
 comgaussj(a,b); 52 
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C. Sample Input File 

 

Input file must be named infile.txt and be in the same folder as the equivalent code. The 

infile shown below was used to generate the data shown in Fig (5-5). On my computer 

(intel i7 x980) completing this run takes 50 seconds. 

  

 

Number of Cavities: 23 
Start frequency: 9150 
Stop frequency: 9450 
Number of points: 60000 
 
Drive voltage: 
0 0 0 0 0 0 0 0 0 0 
0 0 100 0 0 0 0 0 0 0 
0 0 0 
  
Cavity Q Values: 
10000  10000  10000  10000  10000  10000  10000  10000  10000  10000  
10000  10000  10000  10000  10000  10000  10000  10000  10000  10000 
10000  10000  10000 
   
Frequency Values: 
9307.190 9268.058 9313.955 9268.058 9313.955 9268.058 9313.955 9268.058 9313.955 9268.058 
9313.955 9268.058 9313.955 9268.058 9313.955 9268.058 9313.955 9268.058 9313.955 9268.058 
9313.955 9268.058 9307.190 
  
Nearest Neighbor Coupling (1 less than # of Cavities): 
0.01065 0.01065 0.01065 0.01065 0.01065 0.01065 0.01065 0.01065 0.01065 0.01065 
0.01065 0.01065 0.01065 0.01065 0.01065 0.01065 0.01065 0.01065 0.01065 0.01065  
0.01065 0.01065 
  
Next Nearest Neighbor Coupling(2 less than # of Cavities): 
.00145 -0.0035 .00145 -0.0035 .00145 -0.0035 .00145 -0.0035 .00145 -0.0035 
.00145 -0.0035 .00145 -0.0035 .00145 -0.0035 .00145 -0.0035 .00145 -0.0035 
.00145 
  
Next Next Nearest Neighbor Coupling(3 less than # of Cavities): 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  
 
Cavity response to be plotted: 13 
 
Coupling (inductive = 1 or capacitive = 2): 2 
 
Debug output (Y/N): n 
 
Beadpull output (Y/N): y 
 
 
 
 
 
 

 




