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Abstract

Alexander Scheinker

Model Independent Particle Accelerator Control and

Nonlinear Space Charge Compensation

This work can be broken down into two main parts, the first an analytic derivation for

the averaged dynamics of a space-charge dominated beam, which is matched into a

non-linear FODO lattice utilizing higher order magnetic poles and the second focused

on model independent accelerator control and component tuning. Because real, non-

idealized particle beams experience nonlinear space charge forces, it is impossible to

match them to a lattice of linear magnetic components such as a pure quadruple

FODO setup. As was calculated by Batygin, the introduction of nonlinear focusing

elements allows one to match a nonlinear space-charge dominated beam to a lattice,

which may be adiabatically changed into a standard quadrupole FODO lattice, in

such a way so that the beam itself becomes well matched to the linear lattice. The

first part of this thesis calculates the averaged dynamics of a beam in such a nonlinear

focusing lattice. Because particle accelerators are complex and beam dynamics are

nonlinear, with time-varying dynamics of and coupling between many components,

an adaptive, model-independent control or tuning scheme may be useful to replace

or greatly shorten the duration of typical lengthy hand-tuning of components, tuning

which must be re-done many times due to un-modeled behavior such as thermal

cycling, arbitrary phase drift of RF systems, and beam source fluctuations.
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Chapter 1

Introduction

The results of this thesis can be broken down into two main parts. Part I, Chapters 1

and 2 are concerned with an analytic derivation for the averaged dynamics of a space-

charge dominated beam, which is matched into a non-linear FODO lattice utilizing

higher order magnetic poles. The developed FODO lattice consists of a combination

of quadrupole and duodecapole components, which matches a realistic beam, with

non-linear space charge forces. As the duodecapole components are adiabatically

reduced, the beam is finally matched into a standard, purely quadrupole FODO lat-

tice. Part II, Chapters 3 - 8, are focused on a model-independent, adaptive control

scheme for automated control and tuning of uncertain systems, such as particle ac-

celerator magnet settings, despite unknown beam distribution, time varying system

characteristics, such as those due to thermal cycling and beam source fluctuations.
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Chapter 2

Nonlinear Magnets to Compensate

for Nonlinear Space Charge

2.1 Results

Nonuniform space charge dominated beams cannot be perfectly matched with a lin-

ear focusing channel resulting in emittance growth and halo formation. It was shown

by Y. Batygin [24] how to transport an intense, nonuniform beam without halo for-

mation. In this work we present a practical structure for the implementation of the

stabilizing fields as derived in [24]. The developed FODO lattice consists of a combi-

nation of quadrupole and duodecapole components, which matches a realistic beam,

with non-linear space charge forces. As the duodecapole components are adiabati-

cally reduced, the beam is finally matched into a standard, purely quadrupole FODO

structure.
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2.1.1 Overview

In Section 3 we give a brief review of the work by Batygin [24], in which the required

field for transport of a nonuniform space charge dominated beam without halo growth

was derived, having the form

~E =
[
−r̂
(
G2r cos(2ϕ) +G6r

5 cos(6ϕ)
)

+ϕ̂
(
G2r sin(2ϕ) +G6r

5 sin(6ϕ)
)]

sin(ω0t),

which would require a difficult to manufacture four vane quadrupole structure for

implementation. In Section 3.1 we remove the sin(ω0t) term by approximating it

with a FODO structure. We show that on average our structure gives us the same

FODO results as derived by Kapchinsky [25]. In Section 3.2 we demonstrate the

stabilizing properties with a numerical simulation.
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Chapter 3

Background: Matching of a

Nonuniform Space Charge

Dominated Beam

3.0.2 Self-consisten space charge potential of the beam

In [24] Batygin starts with a single-particle Hamiltonian in a focusing channel

K = c

√
m2c2 +

∥∥∥~P − q ~A∥∥∥2

+ qUext + qUb, (3.1)

where ~P = (Px, Py, Pz) is a canonical momentum of particles; ~A = (Ax, Ay, Az) is a

vector potential, Uext(x, y) is a scalar potential of the focusing field, and Ub(x, y) is

a space charge potential of the beam. By considering the Lorentz transformation of

a reference frame in which the particles are static, as well as making the assumption

that the Alfvén current I � βγIc, where Ic = 4πε0mc
3/q is the characteristic value

of beam current, Batygin arrives at the simplified single-particle Hamiltonian:

H =
p2
x + p2

y

2mγ
+ qUext + q

Ub
γ2
. (3.2)
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Next, in order to find a self-consistent particle distribution the following variables are

introduced:

Vext =
qUext

H0

, Vb =
qUb
H0

, ξ =
r

a
, H0 =

mc2

4γ

( ε
R

)2

, (3.3)

where a is the radius of the channel, R is the beam radius, and ε is 4×rms normalized

beam emittance. The unknown potential Vb is then expressed as a Fourier-Bessel

series,

Vb = V0 + V̄b,

where

V̄b =
∞∑
n=0

∞∑
m=1

Jn(νnmξ)(Anm cos(nϕ) +Bnm sin(nϕ)), (3.4)

where Jn(x) is a Bessel function and νnm is the mth root of the equation Jn(x) =

0. The expansion (3.4) satisfies the Dirichlet boundary condition at the conductive

surface of a round pipe Vb(a) = V0. The constant V0 is defined such that the total

potential of the structure vanishes at the axis:

Vext(0, ϕ) +
V̄b(0, ϕ)

γ2
+
V0

γ2
= 0. (3.5)

After making several approximations Batygin arrives at the simplified approximate

form of Poisson’s equation:

V0 + (1 + δ)V̄b = γ2(1− Vext), (3.6)

where

δ =
1

bk
� 1,

b =
2

βγ

I

ε2
R2

Ic
,

is the dimensionless beam brightness,

Ic =
4πε0mc

3

q
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is the characteristic value of beam current, and k is the average value of density

k =
ρ0

ρ̄

for different particle distributions. The self-consistent space charge dominated beam

potential near axis is then

Vb = − γ2

1 + δ
Vext (3.7)

and the electric field is given by ~E = −grad U as

~Eb = − γ2

1 + δ
~Eext. (3.8)

Equation (3.7) implies that a space charge dominated beam compensates for the

focusing field in the beam core regardless of the applied external focusing potential,

a phenomenon known as Debye shielding for nonneutral plasmas. The space charge

distribution required for matching is then derived from Poisson’s equation as

ρb = −ε0∆Ub =
ε0

1 + δ
γ2∆Uext. (3.9)

3.0.3 Matching channel for charge dominated beam

In [24] a uniform four vane structure with potential

U(r, ϕ, t) =

(
G2

2
r2 cos(2ϕ) +

G6

6
r6 cos(6ϕ)

)
sin(ω0t), (3.10)

is considered, where G2 is a quadrupole gradient, G6 is a duodecapole component, and

ω0 = 2πc/λ is an operational frequency. Equipotential lines and required matched

beam charge density distribution are shown in Figure 3.1. The electrical field of this

structure is

~E =
[
−r̂
(
G2r cos(2ϕ) +G6r

5 cos(6ϕ)
)

+ϕ̂
(
G2r sin(2ϕ) +G6r

5 sin(6ϕ)
)]

sin(ω0t), (3.11)
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b c da

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0
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0.0

0.5

1.0

1.5
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m

L
z=-0.05, m=6

-1

0

1

xHcmL

-1

0

1

yHcmL

0.0

0.5

1.0

Figure 3.1: Lines of equal values of the function C = 1
2
r2 +

ζr6 cos(4ϕ) + ζ2

2
r10, for ζ = −0.03: (a) C = 0.05, (b) C = 0.25,

(c) C = 0.5, and (d) C = 0.82 (left). Beam charge density distribu-

tion for (d) (right).

which can be described by effective potential

Uext(r, ϕ) =
mc2

q

µ2
0

λ2

[
1

2
r2 + ζr6 cos(4ϕ) +

ζ2

2
r10

]
, (3.12)

where µ0 is a smooth transverse oscillation and ζ is the ratio of field components:

µ0 =
qG2λ

2

√
8πmc2

√
γ
, ζ =

G6

G2

. (3.13)

By applying Eq.(3.9) an expression is found for a self consistent space charge distri-

bution of the beam in the structure (3.12):

ρb = ρ0(1 + 10ζr4 cos(4ϕ) + 25ζ2r8),

ρ0 =
2γ2

1 + δ

mc2

q

ε0µ
2
0

λ2
. (3.14)
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Integrating the space charge density over radius and azimuth angle 0 ≤ r ≤ R,

0 ≤ ϕ ≤ 2π gives the total number of transported particles per unit length,

N =
πρ0

q
(R2 + 5ζ2R10), (3.15)

from which the space charge particle density at the beam center and parameter k are

found to be

ρ0 =
1

1 + 5ζ2R8

I

βcπR2
,

k =
1

1 + 5ζ2R8
. (3.16)

Finally comparing equations (3.14) and (3.16) the required value of the focusing

gradient is found to be

G2 =
√

8π
mc2

qRλ

√
ε2

R2
+

3I

Icβγ
, G6 = − G2

12βγR4

I

Ic

(
ε2

R2
+

3I

Icβγ

)−1

. (3.17)

3.1 Main Results

The focusing field, (3.11), can be realized by a uniform four-vane structure with

specific pole-tip shape imposing duodecapole component in pure quadrupole. The

construction of such a structure is mechanically complicated and expensive. We

present a simpler and more practical structure, as shown in Figure 3.3. We consider a

FODO lattice of lenses with combined quadrupole G2(z) and duodecapole G6(z) mag-

netic field components. Such magnets can be done as a combination of conventional

quadrupoles with current sheet magnets [29]. The quadrupole field is kept constant

along the structure while duodecapole component gradually decreases from nominal

value to zero at a certain distance. It gives us the possibility to match initially non-

unifom beam with the non-linear focusing channel and adiabatically transform it to

the beam matched with quadrupole focusing structure.
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Δ

L=2(D+d)

z

D Dd

Figure 3.2: Two periodic sets of alternating magnets, in which

the individual magnet lengths are given by D and the separation

between magnets of the same kind is d, resulting in an overall, pe-

riodic structure with period L = 2(D + d). The offset between two

different types of magnets is ∆.

In what follows, for notational simplicity, we describe dynamics in terms of an

electrical transverse field FODO structure. The average dynamics derived in this

way can be equivalently achieved by replaced electric poles with properly rotated

magnetic poles throughout, with an additional multiplicative factor depending on the

fixed beam velocity. The required electric field is:

~E =
[
−r̂
(
G2r sin(2ϕ) +G6r

5 sin(6ϕ)
)

+ ϕ̂
(
G2r cos(2ϕ) +G6r

5 cos(6ϕ)
)]

sin(ω0t)

(3.18)

and can be realized by a uniform four vane structure. The construction of such a

structure is mechanically complicated and expensive, requiring precision similar to

that of constructing a RFQ. We present a much simpler and more practical structure,

whose field, on average matches that of (3.18). Consider two FODO lattices, one of
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0 20 40 60 80 100 120

-1.0

-0.5

0.0

0.5

1.0

zHcmL

Quadrupole Gradient-Black Duodecapole Gradient-Blue

Figure 3.3: FODO quadrupole-duodecapole channel with com-

bined lenses with ∆ = 0, period L = 15cm, lens length of D = 5cm,

and adiabatic decline of duodecapole component to zero over a dis-

tance of 7 periods.

quadrupole and the other of duodecapole components, each with gaps of length d,

field regions of length D, offset from each other by a length of ∆. The total unit

length is then given by L = 2(D + d) and the arrangement is as in Figure 3.2. The

field equation is

~E=−r̂
(
GQ(z)G2r sin(2ϕ) +GD(z)G6r

5 sin(6ϕ)
)

+ϕ̂
(
GQ(z)G2r cos(2ϕ) +GD(z)G6r

5 cos(6ϕ)
)
,

which we write as

~E=~GD(r, ϕ)GD(z) + ~GQ(r, ϕ)GQ(z),
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where

~GQ(r, ϕ)=−r̂G2r cos(2ϕ) + ϕ̂G2r sin(2ϕ)

~GD(r, ϕ)=−r̂G6r
5 cos(6ϕ) + ϕ̂G6r

5 sin(6ϕ)

GQ(z)=



1 : z ≤ D
2

0 : D
2
≤z ≤ d+ D

2

−1 : d+ D
2
≤z ≤ d+ 3D

2

0 : d+ 3D
2
≤z ≤ 2d+ 3D

2
...

,

GD(z)=GQ(z −∆).

This structure is chosen so that its time dependence, from the point of view of a beam

traveling at high velocity is approximately sin(ω0t). In order to perform analysis we

represent these periodic lattices with their Fourier Series.

Given

an=
1

L

[∫ 2L

0

GQ(z) cos
(nπz
L

)
dz

]
, (3.19)

we rewrite the end point of the integral as 2L = 4(D + d) and expand

an=
1

L

∫ D
2

0

cos
(nπz
L

)
dz − 1

L

∫ d+ 3D
2

d+D
2

cos
(nπz
L

)
dz

+
1

L

∫ 2d+ 5D
2

2d+ 3D
2

cos
(nπz
L

)
dz − 1

L

∫ 3d+ 7D
2

3d+ 5D
2

cos
(nπz
L

)
dz

+
1

L

∫ 4d+4D

4d+ 7D
2

cos
(nπz
L

)
dz. (3.20)
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Evaluating the integrals in (3.20) we get

an=
1

nπ
sin

(
nπD

2L

)
− 1

nπ

[
sin

(
nπ

2
+
nπD

2L

)
− sin

(
nπ

2
− nπD

2L

)]
+

1

nπ

[
sin

(
nπ +

nπD

2L

)
− sin

(
nπ − nπD

2L

)]
+

1

nπ

[
− sin

(
3nπ

2
+
nπD

2L

)
+ sin

(
3nπ

2
− nπD

2L

)]
− 1

nπ

[
sin

(
2nπ − nπD

2L

)]
. (3.21)

We expand the terms in (3.21) using the trigonometric identities

sin(a+ b)=sin(a) cos(b) + cos(a) sin(b)

sin(a− b)=sin(a) cos(b)− cos(a) sin(b)

and after cancellations get

an=
1

nπ
sin

(
nπD

2L

)
cn, (3.22)

where

cn = 8, for n ∈ {2, 6, 10, 14...} = {4j − 2, j ∈ N} , (3.23)

and cn = 0 for all other values of n.

Therefore, we get the Fourier coefficients

an=
1

L

[∫ 2L

0

GQ(z) cos
(nπz
L

)
dz

]
=

1

nπ
sin

(
nπD

2L

)
cn, (3.24)

where

cn=8, for n ∈ {2, 6, 10, 14...} = {4j − 2, j ∈ N} ,

cn=0, otherwise. (3.25)
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Therefore

~GQ(z, r, ϕ) = ~GQ(r, ϕ)
∞∑
n=1

an cos
(nπz
L

)
. (3.26)

The duodecapole component of the field has the same Fourier Series as the Quadrupole

component, shifted by −∆, therefore ~GD(z, r, ϕ) = ~GQ(z −∆, r, ϕ),

~GD(z, r, ϕ)=~GD(r, ϕ)
∞∑
n=1

an1(∆) cos
(nπz
L

)
+~GD(r, ϕ)

∞∑
n=1

an2(∆) sin
(nπz
L

)
,

where

an1(∆) = an cos

(
nπ∆

L

)
, an2(∆) = an sin

(
nπ∆

L

)
. (3.27)

With z = vt = βct and ω = βcπ
L

the traveling particle’s dynamics obey

mr̈=q ~GQ(r, ϕ)
∞∑
n=1

an cos(nωt) + q ~GD(r, ϕ)
∞∑
n=1

an1(∆) cos(nωt)

+q ~GD(r, ϕ)
∞∑
n=1

an2(∆) sin(nωt). (3.28)

We would like to calculate an effective potential for this particle’s motion which will

be the combination of a large, slowly oscillating term which we shall label as R(t)

and small quickly oscillating terms which we shall group together as ζ(t).

r(t) = R(t) + ζ(t), R� ζ, R̈� ζ̈ . (3.29)

We take the first Taylor series terms of ~GQ and ~GD about R

~GQ(R)≈~GQ(R) + ζ ~∇ · ~GQ(R) (3.30)

~GD(R)≈~GD(R) + ζ ~∇ · ~GD(R). (3.31)

We now rewrite the dynamics equation (3.28) with (3.29) and the Taylor approxima-

tions, representing r̈ = R̈(t) + ζ̈(t) as:
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r̈=
q

m

[
~GQ(R) + ζ ~∇ · ~GQ(R)

] ∞∑
n=1

an cos(nωt)

+
q

m

[
~GD(R) + ζ ~∇ · ~GD(R)

] ∞∑
n=1

an1(∆) cos(nωt)

+
q

m

[
~GD(R) + ζ ~∇ · ~GD(R)

] ∞∑
n=1

an2(∆) sin (nωt) . (3.32)

Now we take into account that R� ζ and R̈� ζ̈ and so we rewrite the dynamics

as

ζ̈(t)=
q

m
~GQ(R)

∞∑
n=1

an cos(nωt)

+
q

m
~GD(R)

∞∑
n=1

an1(∆) cos(nωt),

+
q

m
~GD(R)

∞∑
n=1

an2(∆) sin(nωt), (3.33)

which we can solve explicitly, giving us

ζ(t)=− q

mω2
~GQ(R)

∞∑
n=1

an
n2

cos(nωt)

− q

mω2
~GD(R)

∞∑
n=1

an1(∆)

n2
cos(nωt)

− q

mω2
~GD(R)

∞∑
n=1

an2(∆)

n2
sin(nωt). (3.34)

We now plug this solution, (3.34), into (3.32) and we expand r̈ as:

r̈=
q

m

∞∑
n=1

[
~GQ(R)an cos(nωt) + ~GD(R)an1(∆) cos(nωt) + ~GD(R)an2(∆) sin(nωt)

]
− q2

m2ω2

∞∑
n=1

G(n,m),
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where G(n,m) is given by the sum of the terms:

~GQ(R)
an
n2

cos(nωt)~∇ · ~GQ(R)
∞∑
m=1

am cos(mωt)

~GQ(R)
an
n2

cos(nωt)~∇ · ~GD(R)
∞∑
m=1

am1(∆) cos(mωt)

~GQ(R)
an
n2

cos(nωt)~∇ · ~GD(R)
∞∑
m=1

am2(∆) sin(mωt)

~GD(R)
an1(∆)

n2
cos(nωt)~∇ · ~GQ(R)

∞∑
m=1

am cos(mωt)

~GD(R)
an1(∆)

n2
cos(nωt)~∇ · ~GD(R)

∞∑
m=1

am1(∆) cos(mωt)

~GD(R)
an1(∆)

n2
cos(nωt)~∇ · ~GD(R)

∞∑
m=1

am2(∆) sin(mωt)

~GD(R)
an2(∆)

n2
sin(nωt)~∇ · ~GQ(R)

∞∑
m=1

am cos(mωt)

~GD(R)
an2(∆)

n2
sin(nωt)~∇ · ~GD(R)

∞∑
m=1

am1(∆) cos(mωt)

~GD(R)
an2(∆)

n2
sin(nωt)~∇ · ~GD(R)

∞∑
m=1

am2(∆) sin(mωt).

To analyze this system further we apply averaging. All of the time-dependent func-

tions have a common period of T = 2π
ω

and so we replace this system with a system

averaged over the window T

ḡ =
1

T

∫ T

0

g(t)dt. (3.35)

Notice that because ζ(t) is a highly oscillating term it will average to zero. Also any

products of the form cos(nωt) cos(mωt) or sin(nωt) sin(mωt) where m 6= n average

to zero as well as any products of the form cos(nωt) sin(mωt) for all values of m and
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n. And so we are left with

¨̄r=− q2

2m2ω2

∞∑
n=1

[
~GQ(R)~∇ · ~GQ(R)

a2
n

n2

+~GQ(R)~∇ · ~GD(R)
anan1(∆)

n2

+~GD(R)~∇ · ~GQ(R)
anan1(∆)

n2

+~GD(R)~∇ · ~GD(R)
a2
n1(∆)

n2

+~GD(R)~∇ · ~GD(R)
a2
n2(∆)

n2

]
. (3.36)

We now consider what happens for different choices of ∆.

3.1.1 ∆ = 0

If ∆ = 0, then going back to the definitions (3.27) we see that an1(0) = an and

an2(0) = 0, and we can rewrite (3.36) as

¨̄r=− q2

2m2ω2

[
~GQ(R)~∇ · ~GQ(R) + ~GQ(R)~∇ · ~GD(R)

+~GD(R)~∇ · ~GQ(R) + ~GD(R)~∇ · ~GD(R)
] ∞∑
n=1

a2
n

n2
.

We now consider the summation term in more detail, recalling (3.25) we notice that

all non-zero an are of the form

a2
4k−2 =

(
8

(4k − 2)π

)2

sin2

(
(4k − 2)πD

2L

)
, k ∈ N

and write
∑∞

n=1

(
an
n

)2
as

∞∑
k=1

1

(4k − 2)2

(
8

(4k − 2)π

)2

sin2

(
(4k − 2)πD

2L

)
=

4

π2

∞∑
k=1

sin2
(

(4k−2)πD
2L

)
(2k − 1)4

. (3.37)
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We consider the case where L > D, such that 0 < D
L
< 1

2
, we define s = D

L
and

rewrite (3.37) as

4

π2

∞∑
k=1

sin2
(

(4k−2)πs
2

)
(2k − 1)4

=
4

π2

∞∑
k=1

1− cos ([4k − 2]πs)

2(2k − 1)4
. (3.38)

Changing variables to r = πs we get

4

π2

∞∑
k=1

1− cos ([4k − 2]r)

2(2k − 1)4

=
4

π2

∞∑
k=1

1

2(2k − 1)4
− 4

π2

∞∑
k=1

cos ([4k − 2]r)

2(2k − 1)4

=
4

π2

π4

96
− 4

π2

∞∑
k=1

cos ([4k − 2]r)

(2k − 1)4

=
4π2

96
− 4

π2

∞∑
k=1

cos ([4k − 2]r)

(2k − 1)4

=
4π2

96
− 4

π2
16

∞∑
k=1

cos ([4k − 2]r)

(4k − 2)4
. (3.39)

We now manipulate the sum (3.39) by repeatedly rewriting sine as the integral of

cosine and vice versa, until it takes a form that we can recognize.

16
∞∑
k=1

cos ([4k − 2]r)

(4k − 2)4

= 16
∞∑
k=1

[∫ r

0

− sin([4k − 2]s)

(4k − 2)3
ds+

1

(4k − 2)4

]
= 16

∞∑
k=1

∫ r

0

− sin([4k − 2]s)

(4k − 2)3
ds+ 16

∞∑
k=1

1

(4k − 2)4

= 16
∞∑
k=1

∫ r

0

− sin([4k − 2]s)

(4k − 2)3
ds+ 16

π4

16× 96

=16
∞∑
k=1

∫ r

0

− sin([4k − 2]s)

(4k − 2)3
ds+

π4

96
. (3.40)
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Continuing in the same way we get

16
∞∑
k=1

[∫ r

0

− sin([4k − 2]s)

(4k − 2)3
ds

]
= 16

∞∑
k=1

[∫ r

0

(∫ s

0

− cos([4k − 2]w)

(4k − 2)2
dw

)
ds

]
. (3.41)

Taking one more integral we rewrite (3.41) as

16
∞∑
k=1

∫ r

0

(∫ s

0

(∫ w

0

sin([4k − 2]t)

(4k − 2)
dt

)
dw

)
ds

−16
∞∑
k=1

∫ r

0

(∫ s

0

(
1

(4k − 2)2

)
dw

)
ds

=16
∞∑
k=1

∫ r

0

(∫ s

0

(∫ w

0

sin([4k − 2]t)

(4k − 2)
dt

)
dw

)
ds

−16
∞∑
k=1

∫ r

0

(
s

(4k − 2)2

)
ds

=16
∞∑
k=1

∫ r

0

(∫ s

0

(∫ w

0

sin([4k − 2]t)

(4k − 2)
dt

)
dw

)
ds

−16
∞∑
k=1

r2

2(4k − 2)2

=16
∞∑
k=1

∫ r

0

(∫ s

0

(∫ w

0

sin([4k − 2]t)

(4k − 2)
dt

)
dw

)
ds

−16
r2

2

∞∑
k=1

1

(4k − 2)2

=16
∞∑
k=1

∫ r

0

(∫ s

0

(∫ w

0

sin([4k − 2]t)

(4k − 2)
dt

)
dw

)
ds

−8r2π
2

32

=16
∞∑
k=1

∫ r

0

(∫ s

0

(∫ w

0

sin([4k − 2]t)

(4k − 2)
dt

)
dw

)
ds

−r
2π2

4
.
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Finally we consider the term

16
∞∑
k=1

∫ r

0

(∫ s

0

(∫ w

0

sin([4k − 2]t)

(4k − 2)
dt

)
dw

)
ds

= 8
∞∑
k=1

∫ r

0

(∫ s

0

(∫ w

0

sin([4k − 2]t)

(2k − 1)
dt

)
dw

)
ds. (3.42)

We now exchange the order of integration and summation and rewrite (3.42) as

8

∫ r

0

(∫ s

0

(∫ w

0

[
∞∑
k=1

sin([4k − 2]t)

(2k − 1)

]
dt

)
dw

)
ds. (3.43)

Recalling that the square function of period π, has the formula:

squarewave(t) =
4

π

∞∑
k=1

sin([4k − 2]t)

(2k − 1)
(3.44)

we recognize that the sum in our equation is of the form

π

4
squarewave(t) (3.45)

and since we are considering the range 0 < t < π
2
, squarewave(t) ≡ 1 over our region

of integration and so we have

8
π

4

∫ r

0

(∫ s

0

(∫ w

0

dt

)
dw

)
ds = 2π

∫ r

0

(∫ s

0

wdw

)
ds

= 2π

∫ r

0

(
s2

2

)
ds = 2π

r3

6
=
r3π

3
. (3.46)
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We have shown that, with our change of variables s = D
L

and r = πs

∞∑
n=1

(an
n

)2

=
4π2

96
− 4

π2
16

∞∑
k=1

cos ([4k − 2]r)

(4k − 2)4

=
4π2

96
− 4

π2

[
π4

96
− r2π2

4
+
r3π

3

]
=

4π2

96
− 4π2

96
+ r2 − 4r3

3π

=r2 − 4r3

3π
= π2s2 − 4π3s3

3π

=
π2D2

L2
− 4π2D3

3L3

=
π2D2

L2

[
1− 4D

3L

]
. (3.47)

Therefore, finally, (3.37) has simplified to

π2D2

L2

(
1− 4D

3L

)
, (3.48)

therefore we get

¨̄r = − q2

4m2ω2

π2D2

L2

(
1− 4D

3L

)
∇
(
~GQ + ~GD

)2

, (3.49)

which we rewrite as

¨̄R = − µ2
0

L2γ2
∇
(
~GQ + ~GD

)2

, (3.50)

where the term

µ0 =

(
qGm

γmβc

)(
LD

2

)√
1− 4

3

D

L
(3.51)

matches up exactly with the result calculated by Kapchinsky for a FODO lens system

[25]. Therefore the beam’s dynamics are described by the effective potential

Ueff(r, ϕ) =
µ2

0

L2γ2

(
G2

2r
2 + 2G2G6r

6 cos(6ϕ) +G2
6r

10
)
. (3.52)

The potential (3.52) matches exactly the desired effective potential (3.12) as analyt-

ically derived in [24].
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3.1.2 ∆ = −L
4

If ∆ = −L
4
, then going back to the definitions (3.27) we see that for all non-zero an,

a2
n1(−L

4
) = 0 and a2

n2(−L
4
) = an, and therefore we can rewrite (3.36) as

¨̄r = − q2

2m2ω2

[
~GQ∇ · ~GQ + ~GD∇ · ~GD

] ∞∑
n=1

(an
n

)2

, (3.53)

which we simplify to

¨̄r = − q2

4m2ω2

π2D2

L2

(
1− 4D

3L

)
∇
(
~G2
Q + ~G2

D

)
, (3.54)

which we rewrite as

¨̄R = − µ2
0

L2γ2
∇
(
~G2
Q + ~G2

D

)
. (3.55)

Therefore the beam’s dynamics are described by the effective potential

Ueff(r, ϕ) =
µ2

0

L2γ2

(
G2

2r
2 +G2

6r
10
)
. (3.56)

The potential (3.56) does not match up with the desired effective potential (3.12), we

are missing the cross-term between the components because they are displaced.

3.2 Simulation Results

In the following simulation we consider a realistic beam described by a parabolic

distribution in phase space [26], [27],

f = f0

(
1− x2 + y2

2R2
−
p2
x + p2

y

2p2
0

)
, (3.57)

which has a projection in configuration space close to a truncated Gaussian distribu-

tion:

ρb =
3I

2πcβR2

(
1− r2

2R2

)2

. (3.58)
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The quadrupole and duodecapole must then satisfy

ρb=
ε0

1 + δ
γ2∆Ueff

=
2ε0

1 + δ

µ2
0

L2

(
G2

2 + 10G2G6r
4 cos(4ϕ) + 25G2

6r
8
)

=G2
2

2ε0
1 + δ

µ2
0

L2

(
1 + 10ζr4 cos(4ϕ) + 25ζ2r8

)
,

where ζ = G6

G2
and µ0 is as defined in (3.51). Therefore in order to provide matching

[27], we choose

G2=

√
8πmc2

qλR

√
ε2

R2
+

3I

Icβγ
, (3.59)

G6=− G2

12βγR4

I

Ic

(
ε2

R2
+

3I

Icβγ

)−1

. (3.60)

The results of the particle-in-cell the simulation of a 150 keV, 100 mA, 0.06πcm mrad

proton beam with G2 = 50kV/cm2 and G6 = −1.9kV/cm2 are shown in Figure 3.4.

3.3 Conclusions

We have demonstrated that a simple FODO structure with quadrupole and duodecao-

ple components is capable of preventing emittance growth in space charge dominated

beams. Such a structure would provide great benefit at facilities such as the proton

accelerator at Los Alamos National Laboratory (LANSCE), where beam current is

limited by halo formation due to space charge.
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Figure 3.4: Comparison of emittance growth and halo formation

(two left columns) and adiabatic matching (two right columns) of the

50 keV, 20 mA, 0.05 π cm mrad proton beam in FODO quadrupole

channel with the period of L = 15 cm, lens length of D = 5 cm

and field gradient of G2 = 1.325 kV/cm2 and adiabatic decline of

duodecapole component from G6 = −0.005 kV/cm6 to zero for the

distance of 7 periods. Numbers indicate FODO periods.
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Chapter 4

Rotation Rate Adaptive Tuning

In this chapter, we intuitively motivate our adaptive tuning scheme, rotation rate

(RR) tuning [14, 15, 16], which we mathematically justify in the Chapters that follow.

4.0.1 Physical Motivation

It is well known that by adding a fast, small oscillation into a system’s dynamics, un-

expected stability properties may be achieved. The classic example is of the inverted

pendulum, whose vertical equilibrium point may be stabilized by rapidly vertically

oscillating the pendulum’s pivot point. The dynamics of this process were first an-

alytically described in the 1950s by Kapitza [18]. The adaptive scheme has some

similarities to this approach, in that we introduce high frequency oscillations into a

system in order to force certain points of the state space to become stable equilib-

rium points towards which the system’s trajectory converges. By abstracting this to

a general state space and choosing such a point to be the minimum of a cost function,

we are able to tune a wide range of systems towards various performance goals.

We start with a simple example, we do not introduce any destabilizing terms

in (4.1), (4.2), which are discussed in remark 3. To give a simple 2D overview of
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this method, we consider finding the minimum of a measurable function C(x, y), for

which we cannot simply implement a gradient descent for the trajectory of (x(t), y(t))

because we are unaware of its analytic form. We propose the following adaptive

scheme:

∂x

∂t
=
√
αω cos (ωt+ kC(x, y)) (4.1)

∂y

∂t
=
√
αω sin (ωt+ kC(x, y)) . (4.2)

Note that although C(x, y) enters the argument of the adaptive scheme, we do not

rely on any knowledge of the analytic form of C(x, y), we simply assume that it’s

value is available for measurement at different locations (x, y).

The velocity vector,

v=

(
∂x

∂t
,
∂y

∂t

)
=
√
αω [cos (θ(t)) , sin (θ(t))] , (4.3)

θ(t)=ωt+ kC(x(t), y(t)), (4.4)

has constant magnitude, ‖v‖ =
√
αω, and therefore the trajectory (x(t), y(t)) moves

at a constant speed. However, the rate at which the direction of the trajectories’

heading changes is a function of ω, k, and C(x(t), y(t)) expressed as:

∂θ

∂t
=ω + k

∂C

∂t
. (4.5)

Therefore, when the trajectory is heading in the correct direction, towards a decreas-

ing value of C(x(t), y(t)), the term k ∂C
∂t

is negative so the overall turning rate ∂θ
∂t

(4.5), is decreased. On the other hand, when the trajectory is heading in the wrong

direction, towards an increasing value of C(x(t), y(t)), the term k ∂C
∂t

is positive, and

the turning rate is increased. On average, the system ends up approaching the mini-

mizing location of C(x(t), y(t)) because it spends more time moving towards it than

away.
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The ability of this direction-dependent turning rate scheme is apparent in the

simulation of system (4.1), (4.2), in Figure 4.1. The system, starting at initial location

x(0) = 1, y(0) = −1, is simulated for 5 seconds with update parameters ω = 50, k = 5,

α = 0.5, and C(x, y) = x2 +y2. We compare the actual system’s (4.1), (4.2) dynamics

with those of a system performing gradient descent:

∂x̄

∂t
≈−kα

2

∂C(x̄, ȳ)

∂x̄
= −kαx̄ (4.6)

∂ȳ

∂t
≈−kα

2

∂C(x̄, ȳ)

∂ȳ
= −kαȳ, (4.7)

whose behavior our system mimics on average, with the difference

max
t∈[0,T ]

‖(x(t), y(t))− (x̄(t), ȳ(t))‖ (4.8)

made arbitrarily small for any value of T , by choosing arbitrarily large values of ω.

The derivation of this relationship and of the rate of the gradient descent are given

in the Chapters that follow.

Towards the end of the simulation, when the system’s trajectory is near the origin,

C(x, y) ≈ 0, and the dynamics of (4.1), (4.2) are approximately

∂x

∂t
≈
√
αω cos (ωt) =⇒ x(t) ≈

√
α

ω
sin (ωt) (4.9)

∂y

∂t
≈
√
αω sin (ωt) =⇒ y(t) ≈ −

√
α

ω
cos (ωt) , (4.10)

a circle of radius
√

α
ω

, which is made arbitrarily small by choosing arbitrarily large

values of ω. A detailed overview of how to choose the values k, α, and ω is given in

Section 7. Convergence towards a maximum, rather than a minimum is achieved by

replacing k with −k.
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Figure 4.1: The subfigure in the bottom left shows the rotation

rate, ∂θ
∂t

= ω+ ∂C(x,y)
∂t

, for the part of the trajectory that is bold red,

which takes place durring the first 0.5 seconds of simulation. The

rotation of the parameters’ velocity vector v(t) slows down when

heading towards the minimum of C(x, y) = x2 + y2, at which time

k ∂C
∂t

< 0, and speeds up when heading away from the minimum,

when k ∂C
∂t

> 0. The system ends up spending more time heading

towards and approaches the minimum of C(x, y).
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Chapter 5

Control Theory Background

The adaptive control method results that we will present perform optimization by

maximizing or minimizing a detectable, but analytically unknown cost function. The

motivation behind this approach is in stabilizing systems at certain points of their

state space, about which analytic results are typically proven using Lyapunov func-

tions. In what follows, we consider cost functions in an analogous manner to Lyapunov

functions, and implement controllers which force the stable equilibrium point of the

system to be the maximizing or minimizing values for the desired cost functions, in

this was we force parameters to converge to optimal values. Before we get into the

details of the analysis, we perform a quick review of some technicalities that come

up.

5.1 Lyapunov Functions and Stability Theory

5.1.1 Stability

In what follows we deal primarily with systems of the form:

ẋ = f(x, t) + g(x, t)u(x, t), (5.1)
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in which u(x, t) is the control input that we are free to design. For our review of some

stability concepts, for notational convenience, we group the two terms on the right

side of (5.1) and simply write:

ẋ = f(x, t), (5.2)

keeping in mind that f(x, t) may contain the influence of a feedback controller that

we have designed.

Remark 1 For any point y0 ∈ Rn, by translating to a new coordinate system x =

y− y0, we translate the equilibrium point to x = 0 without changing the dynamics of

system (5.1), therefore, in the definitions that follow, without loss of generality, x = 0

is assumed to be the system’s equilibrium point.

We now present some of the most common forms of stability, with which our analysis

is concerned [13]:

Definition 1 The equilibrium point x = 0 of (5.2) is

• stable if, for each ε > 0, there is δ = δ(ε, t0) > 0 such that

‖x(t0)‖ < δ =⇒ ‖x(t)‖ < ε, ∀t ≥ t0 (5.3)

• uniformly stable if, for each ε > 0, there is δ = δ(ε) > 0, independent of t0,

such that (5.3) is satisfied

• asymptotically stable if it is stable and there is a positive constant c = c(t0) such

that x(t)→ 0 as t→∞, for all ‖x(t0)‖ < c.

• uniformly asymptotically stable if it is uniformly stable and there is a positive

constance, c, independent of t0, such that for all ‖x(t0)‖ < c, x(t) → 0 as

t→∞, uniformly in t0.
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Figure 5.1: Stable (a), asymptotically stable (b), and exponentially

stable (c) equilibrium point x = 0.

• globally uniformly asymptotically stable if it is uniformly and asymptotically

stable, globally, regardless of the initial conditions.

• exponentially stable if there exist c, k, and γ > 0 such that

‖x(t)‖ < k ‖x(t0)‖ e−γ(t−t0), ∀ ‖x(t0)‖ < c. (5.4)

• globally exponentially stable if (5.4) holds for all values of x(t0) ∈ Rn.

5.1.2 Lyapunov Functions

Determining if a system is stable is obvious for a simple system, for which an analytic

solution can be found, such as all linear time-invariant systems:

ẋ = Ax, (5.5)

which can analytically be solved:

x(t) = eAtx(0), (5.6)
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in which case, the origin is an exponentially stable equilibrium point if and only if all

of the eigenvalues of the matrix A have negative real parts, that is, if A is a Hurwitz

matrix. For example, the scalar system

ẋ = −x, (5.7)

has the analytic solution

x(t) = e−tx(0), (5.8)

of which the origin is obviously an exponentially stable equilibrium point. A system

of two coupled linear differential equations, such as

ẋ1=−2x1 + x2, (5.9)

ẋ2=2x1 − 3x2, (5.10)

can be re-written in matrix form as:

ẋ =

−2 1

2 −3

x1

x2

 = Ax, (5.11)

in which the matrix A is Hurwitz, with eigenvalues {λ1 = −4, λ2 = −1}, and the

origin is therefore an exponentially stable equilibrium point.

In the case of a nonlinear system, determining stability is not so straight forward,

consider the example of a pendulum, whose equation of motion is given by (setting

the length and mass equal to 1 for notational simplicity):

θ̈ = − sin(θ)− bθ̇, (5.12)

where the −bθ̇ term is due to damping. From basic physics we know that this system

will settle at the equilibrium point θ = 0, after oscillating, as it is continuously

slowed by the frictional force. The analytic solution of this system is, however, very
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complicated, and one way to prove the stability condition is to consider the total

energy of the system, which is given by:

E = (1− cos(θ)) +
1

2
θ̇2. (5.13)

If we consider the time derivative of the total energy, we get

dE

dt
=θ̇ sin(θ) + θ̇θ̈ = θ̇ sin(θ)− θ̇ sin(θ)− bθ̇2 = −bθ̇2 < 0, (5.14)

and therefore the energy of the system is continuously decreased, as it asymptotically

settles to θ̇ = 0, at θ = 0.

The idea of a system’s energy was generalized by Aleksandr Mikhailovich Lya-

punov with his idea of a Lyapunov function:

Definition 2 V (x, t) is a Lyapunov function for the system:

ẋ = f(x, t), (5.15)

if

V (0, t) = 0, and V (x 6= 0, t) > 0.

The main stability result that we are interested in, utilizing Lyapunov’s generalized

energy functions, is then:

Theorem 1 If x = 0 is an equilibrium point of system (5.15) and there exists a

Lyapunov function, V (x, t), and positive constants k1, k2, k3, and a, such that:

k1 ‖x‖a ≤ V (x, t) ≤ k2 ‖x‖a , (5.16)



5.2 Weak Convergence 33

and

dV

dt
=
∂V

∂t
+

n∑
i=1

∂V

∂xi

∂xi
∂t

=
∂V

∂t
+

n∑
i=1

∂V

∂xi
fi(x, t)

=
∂V

∂t
+
[
∂V
∂x1

∂V
∂x2
. . . ∂V

∂xn

]

f1(x, t)

f2(x, t)
...

fn(x, t)


=
∂V

∂t
+
∂V

∂x
f(x, t) ≤ −k3 ‖x‖a , (5.17)

then x = 0 is exponentially stable.

Example 1 Consider again the system

ẋ1=−2x1 + x2, (5.18)

ẋ2=2x1 − 3x2, (5.19)

and consider the Lyapunov function:

V (x1, x2) =
1

2
‖x‖2 =

1

2
x2

1 +
1

2
x2

2, (5.20)

which satisfies

V̇=x1ẋ1 + x2ẋ2 = x1 (−2x1 + x2) + x2 (2x1 − 3x2) = −2x2
1 + 3x1x2 − 3x2

2

=−3

2
(x1 − x2)2 − x2

2 −
1

2

(
x2

1 + x2
2

)
< −1

2
‖x‖2, (5.21)

and therefore, by Theorem 1, the origin is exponentially stable.

5.2 Weak Convergence

The averaging and stability analysis of the systems which we will consider depend on

the functional analysis results of Kurzweil, Jarnik, Sussmann, and Liu [21, 22, 23],
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which allows one to relate the trajectories of a highly oscillatory system to those of

a simplified Lie bracket averaged system. First, we briefly recall the notion of weak

convergence.

For any given time interval of interest t ∈ [t0, t0 + T ], we consider the space of

integrable functions

L2 ([t0, t0 + T ]) =

{
u : [t0, t0 + T ]→ R

∣∣∣∣ ∫ t0+T

t0

u2(t)dt <∞
}
, (5.22)

and recall the notion of weak convergence:

Definition 3 A sequence of functions {un} ⊂ L2 ([t0, t0 + T ]) converges weakly to

u ∈ L2 ([t0, t0 + T ]) if

lim
n→∞

∫ t0+T

t0

un(t)v(t)dt =

∫ t0+T

t0

u(t)v(t)dt, ∀v ∈ L2 ([t0, t0 + T ]) . (5.23)

Example 1 The sequences of functions cos(nωt) and cos2(nωt) weakly converge to 0

and 1
2
, respectively, that is, according to the Riemann-Lebesgue Lemma, the following

limits hold ∀v ∈ L2 ([t0, t0 + T ]):

lim
n→∞

∫ t0+T

t0

cos(nωt)v(t)dt=

∫ t0+T

t0

0v(t)dt = 0, (5.24)

lim
n→∞

∫ t0+T

t0

cos2(nωt)v(t)dt=

∫ t0+T

t0

1

2
v(t)dt =

1

2

∫ t0+T

t0

v(t)dt. (5.25)

We now state the general Theorem that we are interested in:

Theorem 2 [21, 22, 23] For T ∈ [0,∞), and a compact set K ⊂ Rn, consider a

sequence (k ∈ N) of sets of n coupled differential equations (x = (x1, . . . , xn)):

ẋ = f(x, t) +
n∑
i=1

gi(x, t)ϕi,k(t), x(0) = x0, (5.26)

where ẋ denotes ∂x
∂t

and the functions f(x, t), gi(x, t), and ϕi,k(t) are continuous and

Lipschitz, and their first and second derivatives are continuous and bounded. If the
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functions ϕi,k(t) are continuous and their integrals satisfy:

Φi,k(t) =

∫ t0+t

t0

ϕi,k(τ)dτ → 0 uniformly as k →∞, (5.27)

and there exists measurable functions λi,j(t), which are the weak limits of the functions

ϕj,k(t)Φi,k(t), such that

lim
k→∞

∫ t0+t

t0

ϕj,k(τ)Φi,k(τ)h(τ)dτ =

∫ t0+t

t0

λi,j(τ)h(τ)dτ, ∀h(t) ∈ L2 ([t0, t0 + t]) .

(5.28)

Then, for all t ∈ [t0, t0 + T ] and x ∈ K, the sequence of solutions of (5.26):

xk(t) = x0 +

∫ t0+t

t0

(
f(xk, τ) +

n∑
i=1

gi(xk, τ)ϕi,k(τ)

)
dτ (5.29)

converges uniformly with respect to k, over (x, t) ∈ K × [t0, t0 + T ] to the solution

x(t) satisfying:

ẋ = f(x, t)−
n∑

i,j=1

λi,j(t) (Dgi(x, t)) gj(x, t), x(0) = x0. (5.30)

The following special case of Theorem 2 is applied in what follows:

Corollary 1 For T ∈ [0,∞), and any compact set K ⊂ Rn such that the functions

f(x, t), hi(x, t), gi(x, t) satisfy the assumptions of Theorem 2, for any δ > 0, there

exists ω? such that for all ω0 > ω?, the trajectory x(t) of the system

ẋ=f(x, t) +
n∑
i=1

hi(x, t)
√
ωi cos (ωit)−

n∑
i=1

gi(x, t)
√
ωi sin (ωit) , (5.31)

and the trajectory x̄(t) of the system

˙̄x = f(x̄, t)− 1

2

n∑
i 6=j

[
∂gj
∂x̄

hi −
∂hi
∂x̄

gj

]
, x̄(0) = x(0), (5.32)

satisfy the convergent trajectories property:

max
t∈[t0,t0+T ]

‖x(t)− x̄(t)‖ < δ, (5.33)

where ωi = ω0ri such that ri 6= rj,∀i 6= j.
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Proof 1 Theorem 2 is satisfied for

ϕi,ω=
√
ωi cos (ωit) , Φi,ω(t) =

1
√
ωi

sin(ωit)

ϕ̂i,ω=−
√
ωi sin (ωit) , Φ̂i,ω(t) =

1
√
ωi
cos(ωit)

such that ∀h(t) ∈ L2 ([t0, t0 + T ]) we get, for mixed terms s.t. i = j:

lim
ω→∞

∫ t0+T

t0

ϕi,ω(t)Φ̂j,ω(t)h(t)dt= lim
ω→∞

∫ t0+T

t0

cos2(ωit)h(t)dt =

∫ t0+T

t0

1

2
h(t)dt,

− lim
ω→∞

∫ t0+T

t0

ϕ̂i,ω(t)Φj,ω(t)h(t)dt= lim
ω→∞

∫ t0+T

t0

sin2(ωit)h(t)dt =

∫ t0+T

t0

1

2
h(t)dt,

for mixed terms s.t. i 6= j:

lim
ω→∞

∫ t0+T

t0

ϕi,ω(t)Φ̂j,ω(t)h(t)dt= lim
ω→∞

∫ t0+T

t0

cos(ωit) cos(ωjt)h(t)dt = 0,

− lim
ω→∞

∫ t0+T

t0

ϕ̂i,ω(t)Φj,ω(t)h(t)dt= lim
ω→∞

∫ t0+T

t0

sin(ωit) sin(ωjt)h(t)dt = 0,

and for all non-mixed terms:

lim
ω→∞

∫ t0+T

t0

ϕi,ω(t)Φj,ω(t)h(t)dt= lim
ω→∞

∫ t0+T

t0

cos(ωit) sin(ωjt)h(t)dt = 0,

− lim
ω→∞

∫ t0+T

t0

ϕ̂i,ω(t)Φ̂j,ω(t)h(t)dt= lim
ω→∞

∫ t0+T

t0

sin(ωit) cos(ωjt)h(t)dt = 0,

and therefore

λi,j =


1
2

:mixed terms ϕi,ωΦ̂j,ω, ϕ̂i,ωΦj,ω s.t. i = j

0 :mixed terms ϕi,ωΦ̂j,ω, ϕ̂i,ωΦj,ω s.t. i 6= j

0 :all non−mixed terms ϕi,ωΦj,ω, ϕ̂i,ωΦ̂j,ω

To illustrate the application of the above methods, we present two simple exam-

ples:

Example 2 Consider the differential equation:

ẋ =
√
ω cos(ωt)−

√
ω sin(ωt)x2, (5.34)
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by application of Corollary 1, by choosing arbitrarily large values of ω, the trajectory

x(t), of (5.34), can be made arbitrarily close to the trajectory x̄(t) of:

˙̄x = −x̄, x̄(0) = x(0). (5.35)

Example 3 Consider the differential equation:

ẋ =
√
ω cos(ωt)−

√
ω sin(ωt)V (x, t), (5.36)

by application of Corollary 1, by choosing arbitrarily large values of ω, the trajectory

x(t), of (5.36), can be made arbitrarily close to the trajectory x̄(t) of:

˙̄x = −1

2

∂V

∂x̄
, x̄(0) = x(0). (5.37)

If V (x, t) happens to be a Lyapunov function for system (5.36), then our average

system obeys:

V̇ =
∂V

∂x̄

∂x̄

∂t
=
∂V

∂x̄

(
−1

2

∂V

∂x̄

)
= −1

2

∥∥∥∥∂V∂x̄
∥∥∥∥2

< 0, (5.38)

and therefore the origin of the average system is stable and therefore so is that of the

actual system, as the trajectories of the two are arbitrarily close.

Our final example demonstrates the application of the above method for simulta-

neous tuning of many parameters, for minimization of unknown functions.

Example 4 Consider the differential equations:

ṗ1=
√
ω1 cos (ω1t+ C(p1, p2, t)) , (5.39)

ṗ2=
√
ω2 cos (ω2t+ C(p1, p2, t)) , (5.40)

where C is an analytically unknown function of two parameters p1 and p2, which

we would like to minimize. Using trigonometric identities, we expand the system

dynamics as:

ṗ1=
√
ω1 cos (ω1t) cos (C(p1, p2, t))−

√
ω1 sin (ω1t) sin (C(p1, p2, t)) , (5.41)

ṗ2=
√
ω2 cos (ω2t) cos (C(p1, p2, t))−

√
ω2 sin (ω2t) sin (C(p1, p2, t)) . (5.42)
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If ω1 = ωr1 and ω2 = ωr2, such that r1 6= r2, by application of Corollary 1, by

choosing arbitrarily large values of ω, the trajectory x(t), of (5.36), can be made

arbitrarily close to the trajectory x̄(t) of:

˙̄p1=−1

2

∂C(p̄1, p̄2, t)

∂p̄1

(
sin2 (C(p1, p2, t)) + cos2 (C(p1, p2, t))

)
, (5.43)

˙̄p2=−1

2

∂C(p̄1, p̄2, t)

∂p̄2

(
sin2 (C(p1, p2, t)) + cos2 (C(p1, p2, t))

)
, (5.44)

which simplifies to

˙̄p1=−1

2

∂C(p̄1, p̄2, t)

∂p̄1

, (5.45)

˙̄p2=−1

2

∂C(p̄1, p̄2, t)

∂p̄2

, (5.46)

which we combine as

˙̄p = −1

2
∇C(p̄, t), (5.47)

and therefore the parameters p1 and p2 perform a gradient descent towards a mini-

mizing value of C.

Remark 2 The advantage of putting the unknown cost function C(p, t) inside the

argument of cos() or sin() is that the parameter update rate has a known bound
√
ωi,

despite the unknown analytic form of C.
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Chapter 6

General Adaptive Scheme

6.1 Adaptive Feedback for Simultaneous Multi-Parameter

Optimization

It is clear to see how the controller developed above can be used for optimization

of unknown functions. For general tuning, we consider the problem of locating an

extremum point of the function C(p, t) : Rn × R+ → R, for p = (p1, . . . , pn) ∈

Rn, which we can measure the value of, but whose analytic form is unknown. For

notational convenience, in what follows we sometimes write C(p) or just C instead

of C(p(t), t).

The explanation presented in the previous section used sin(·) and cos(·) functions

for the x and y dynamics to give circular trajectories. The actual requirement for

convergence is for an independence, in the frequency domain, of the functions used to

perturb different parameters. In what follows, replacing cos(·) with sin(·) throughout

makes no difference.

Theorem 3 Consider the setup shown in Figure 6.1 (for maximum seeking we replace
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C(p
1
,...,p

n
,t)

u
i

p
i
(t)

cos(•)√αωi

ω
i
t

C

k

1

s

Figure 6.1: Tuning of the ith component pi of p = (p1, . . . , pn) ∈

Rn. The symbol 1
s

denotes the Laplace Transform of an integrator,

so that in the above diagram pi(t) = pi(0) +
∫ t

0
ui(τ)dτ .

k with −k):

ṗi =
√
αωi cos (ωit+ kC(p, t)) , (6.1)

where ωi = ω0ri such that ri 6= rj ∀i 6= j. The trajectory of system (6.1) approaches

the minimum of C(p, t), with its trajectory arbitrarily close to that of

˙̄p = −kα
2
∇C, p̄(0) = p(0) (6.2)

with the distance between the two decreasing as a function of increasing ω0. Namely,

for any given T ∈ [0,∞), any compact set of allowable parameters p ∈ K ⊂ Rm, and

any desired accuracy δ, there exists ω?0 such that for all ω0 > ω?0, the distance between

the trajectory p(t) of (6.1) and p̄(t) of (6.2) satisfies the bound

max
p,p̄∈K,t∈[0,T ]

‖p(t)− p̄(t)‖ < δ. (6.3)

Proof 2 By expanding

cos (ωit+ kC) = cos(ωit) cos (kC)− sin (ωit) sin (kC) (6.4)

we rewrite the pi (1 ≤ i ≤ n) dynamics as

ṗi =
√
ωi cos(ωit)

√
α cos (kC)−

√
ωi sin(ωit)

√
α sin (kC) , (6.5)
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and apply Corollary 1 with respect to ω0 and ν = 0.5. The trajectory of system (6.1)

uniformly converges to the trajectory of

˙̄pi=−
kα

2

∂C (p̄, t)

∂p̄i

(
cos2 (kC (p̄, t)) + sin2 (kC (p̄, t))

)
=−kα

2

∂C (p̄, t)

∂p̄i
, (6.6)

where we have used the fact that mismatched terms of the form cos(ωit) sin(ωjt), ∀i, j,

and terms of the form cos(ωit) cos(ωjt), and sin(ωit) sin(ωjt), ∀i 6= j weakly, uni-

formly converge to zero. Combining all the pi components we get:

˙̄p = −kα
2
∇C. (6.7)

Remark 3 The stability of this scheme is verified by the fact that an addition of an

un-modeled, possibly destabilizing perturbation of the form f(p, t) to the dynamics of

ṗ results in the averaged system:

˙̄p = f(p̄, t)− kα

2
∇C, (6.8)

which may be made to approach the minimum of C, by choosing kα large enough

relative to the values of
∥∥∥(∇C)T

∥∥∥ and ‖f(p̄, t)‖. Detailed stability analysis is available

in [12].

Remark 4 Although it is glossed over in the averaging analysis presented above, if

one looks into the details of the proof of Theorem 2, in the case of a time-varying

max/min location p?(t) of C(p, t), there will be terms of the form:

1√
ω

∣∣∣∣∂C(p, t)

∂t

∣∣∣∣ , (6.9)

which are made to approach zero by increasing ω. Furthermore, in the analysis of the

convergence of the error pe(t) = p(t)− p?(t) there will be terms of the form:

1

kα

∣∣∣∣∂C(p, t)

∂t

∣∣∣∣ . (6.10)
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Together, (6.9) and (6.10) imply the intuitively obvious fact that for systems whose

time-variation is fast, in which the minimum towards which we are descending is

quickly varying, both the value of ω and of the product kα must be larger than for the

time-invariant case.

Remark 5 In the case of different parameters having vastly different response char-

acteristics and sensitivities (such as when tuning both RF and magnet settings in the

same scheme), the choices of k and α may be specified differently for each component

pi, as ki and αi, without change to the above analysis.

6.1.1 Multi-Objetive Optimization

One of the strengths of the above described method is that multi-objective opti-

mization is easily implemented by simply defying a cost function which takes each

objective into account, with different weights for each objective chosen depending

on the desired results. Comparing the results of several optimizations, with vary-

ing weighs between different objectives then gives the user the same type of choice

amongst results, as is typically done with genetic algorithms.

Given m objectives O1, O2, . . . , Om, which correspond to the minimization of m

costs C1, C2, . . . , Cm, the adaptive scheme is applied as:

ṗi =
√
αωi cos (ωit+ Cmo(p, t)) , where Cmo(p, t) =

m∑
j=1

kmCm(p, t), (6.11)

where the km values are weights chosen by the user, in order to emphasize the impor-

tance of one objective over another. The trajectory of system (6.11) approaches the

minimum of Cmo(p, t), with its trajectory arbitrarily close to that of

˙̄p = −α
2
∇Cmo, p̄(0) = p(0) (6.12)
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6.2 Some Discussion on the RR Method

RR is related to dithering-based optimization/stabilization schemes, known in control

theory as extremum seeking (ES), which have been used for optimizing unknown

outputs of known, stable, systems, by tuning known controllers. Originally introduced

in 1922 [10], an overview of its development is available in [11]. Recently, ES has been

extended to perform stabilization and optimization of unknown, possible unstable

systems [12]. RR is a further improvement and modification of those results [14].

There are many existing model dependent numerical methods for multi-dimensional

/ multi-parameter optimization, such as GA, MOGA, Newton-Raphson and gradient

descent based on the analytic form of ∇C. Many optimization methods are actu-

ally built into existing accelerator design codes [17]. Since accelerators have many

coupled parameters, they are prime candidates for genetic algorithm (GA) and multi-

objective genetic algorithm (MOGA) based multidimensional, nonlinear optimization

schemes. In fact, MOGAs and GAs have been used to successfully optimize many as-

pects of particle accelerators, such as magnet and radio frequency (RF) cavity design

[1], photoinjector design [2], damping ring design [3], storage ring dynamics [4], global

optimization of a lattice [5], neutrino factory design [6], simultaneous optimization of

beam emittance and dynamic aperture [7], and free electron laser linac drivers [8]. A

thorough review of GA for accelerator physics applications is given in [9].

The main strengths of RR is its model independent nature and ability to deal with

multiple parameters simultaneously, even for time-varying systems, such as thermal

cycling, or unexpected component damage. Some very simple, but computation-

ally intensive and inefficient, model-independent methods are grid and random point

searches, especially for systems with many parameters. Gradient descent, based on

a numerical approximation of an unknown ∇C is another model-independent ap-

proach, but especially in the case of a multi-parameter, noisy calculation of C, may
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face difficulties, whereas RR is both robust to noise in C and does not need to try

and estimate ∇C. Only samples C(n) are required.

Simplex Fitting, in the sense that it samples many different directions in multi-

dimensional parameter space, has the most in common with RR. A major benefit of

RR is that its complexity does not grow with parameter number, regardless of the

number of parameters being tuned. The scheme basically depends on three choices,

the values of k, ω, and α. Regarding noisy data, the RR scheme is, on average, not

influenced by noise, unless it happens to both match an RR parameter’s perturbation

frequency and be large in magnitude relative to that perturbation. Also, noise is

easily handled by standard methods, such as averaging and filtering.

Although RR is model independent and able to tune many parameters simul-

taneously, unlike GA, it is a local technique, similar to gradient descent, and may

become trapped in local minimums. Therefore, we plan on exploring (in future work)

a combination of GA and RR, in which a GA is first used for global optimization

followed by RR for local, in-hardware tuning, to make up for modeling errors and

time variation.
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Chapter 7

Guidelines for Digital

Implementation

7.0.1 Cost and Constraints

The first step is to choose tunable machine parameters, p = (p1, . . . , pm) and a

cost function to be minimized, C = C(p1(t), . . . , pm(t), t). Next, constraints for all

parameters are chosen

pmax=(p1,max, . . . , pm,max) ,

pmin=(p1,min, . . . , pm,min) .

Implementing initial parameter settings p(1), which are chosen based on the physics

model and numerical methods, allows one to calculate C(p(1)). The iterative update

scheme is then:

pi(n+ 1) = pi(n) + ∆
√
αωi cos (ωin∆ + kC(p(n))) , (7.1)

which is based on the finite difference approximation of the derivative:

pi(t+ ∆)− pi(t)
∆

≈ ∂pi
∂t

=
√
αωi cos (ωit+ kC(p(t), t)) , (7.2)
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which, according the Theorem 3 will drive the system towards a minimum of C. The

constraints are implemented by checking the updated parameters at each step and

confining them to their bounds if necessary:

IF pi(n+ 1) > pi,max, THEN pi(n+ 1) = pi,max,

IF pi(n+ 1) < pi,min, THEN pi(n+ 1) = pi,min.

7.0.2 Choice of ω, and ∆

It is important that ωi � kC, so that the adaptive scheme is operating on a faster

time scale then and able to adapt to time variation of the cost function. Because

RR depends on distinguishing between different frequency components of the cost, ∆

should be chosen in the range of:

∆ ≈ 2π

40×max {ωi}
, (7.3)

ensuring that at least 40 iterations (20× the Nyquist sampling rate) are required to

perform one complete cosine oscillation in the iterative scheme (7.1). Choosing smaller

values of ∆ results in smoother parameter oscillation and more iterative steps required

for convergence, larger values of ∆ speed up the convergence, but may destabilize the

overall scheme.

According to Theorem 3, the only requirement on the choices of ωi is that they are

big enough and distinct, but in practice, the more harmonically independent they are

(such as ωi 6= 2ωj for all i 6= j) the better. The sensitivity to frequency independence is

different for every system and depends on the coupling between different components.

One simple method is to choose a scaling factor, ω0, and

ωi = ω0ri, (7.4)

where the values ri are distinct.
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The update scheme (7.1) is only valid as a finite difference approximation as in

(7.2) if ∆� 1 and ωi �
√
α, kC. Taking into account (7.3), we choose a large value

of ω0, relative to kC, typically at least

min {ωi}
kC(p(1))

> 20, (7.5)

is a safe choice, where C(p(1)) is the initial cost calculated based on initial parameter

settings p(1).

These choices may vary from system to system based on sensitivity. A good

approach is to fix values of k and α, define the various relationships (7.3) - (7.5), and

increase ω0 if necessary.

7.0.3 Choice of k and α

The rate of convergence is proportional to the product kα, increasing either k or α

speeds up convergence, as long as they are not too big relative to the value of ω0, so

that the finite difference is an accurate approximation of the derivative. If, after ω0

has been chosen, the convergence is too slow, or if a local minimum is suspected, k

or α may be increased, with the possible need to increase ω0 as well. The vector p is

moving through the parameter space Rm in ellipses with approximate major axes of

magnitude
√

α
ω

, increasing α causes larger steady state parameter oscillations, which

is not a problem if the adaptation is turned off following successful convergence.

7.0.4 Digital Resolution

Although the analytic form of C(n) may be unknown, at each iteration the parameters

are perturbed by a quantities with known bounds:

0 ≤ |∆
√
αωi cos (ωin∆ + kC(p(n)))| ≤ ∆

√
αωmax. (7.6)
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For a system with nb bits of resolution, and maximum bounds ±Mi on the parameter

settings, if ∆, α, and ωi are chosen such that ∆
√
αωi ≥ N × Mi

2nb
, then, as cos() varies

between 0 and 1, it is possible for the parameter value to take N discrete steps of

minimum resolution Mi

2nb
.

7.0.5 Normalization of Parameters

Different parameters pi may require individual values of ki and αi, in which case

normalizing the parameters to within [−1, 1] bounds may be useful. For example, at

each step n, one may compute the cost C(n) based on parameter settings p(n), then

translate into the scaled parameters ps(n):

ps,i(n) =
2 (pi(n)− Cp,i)

Dp,i

, (7.7)

where Cp,i =
pi,max+pi,min

2
and Dp,i = pi,max − pi,min, bounding each parameter within

[−1, 1]. We then perform the RR-update

ps,i(n+ 1) = ps,i(n) + ∆
√
αiωi cos (ωin∆ + kiC(p(n))) , (7.8)

force the scaled parameters to satisfy the constraints −1 and 1, and transform back

into un-scaled parameter values in order to calculate the cost for the next iteration:

pi(n+ 1) =
ps,i(n+ 1)Dp,i

2
+ Cp,i. (7.9)
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Chapter 8

Simulation Results

8.1 Tuning 22 Quadrupole Magnets and 2 Buncher

Cavities

In this section we present simulation results of using the RR scheme to tune up the

twenty two quadrupole magnets and two buncher cavities in the Los Alamos linear

accelerator H+ transport region, a simplified schematic of which is shown in Figure

8.1. The simulations were done using a GPU-accelerated online beam dynamics

simulator [19, 20], which is being developed to predict beam properties along the

linac using real time machine parameters. It can serve as a virtual beam experiment

environment and contribute to the cost being minimized by the RR optimizer, by

providing pseudo realtime estimates of beam sizes and current information in parts

of the machine where diagnostics are not available. Currently being demonstrated

on the LANSCE low energy beam transport (LEBT) and drift tube linac (DTL),

simulating a bunch of 32K macro particles through the LEBT or DTL takes fractions

of a second, which is 40 times faster than the simple CPU version of the code.
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8.1.1 Magnet Tuning for Beam Transport

In a first, simple demonstration of the technique, we perform a simulation of only the

LEBT, with all initial magnet current set points set to 0A, and allowed to tune up

based purely on the RR scheme as described above, in which the four costs (j=1,2,3,4)

being minimized:

Cj = (Ij − 0.013)2 , (8.1)

were the square of the difference between initial beam current 0.013A and total current

making it through various parts of the transport region, at which diagnostics are

available. With reference to Figure 8.1, the current is sampled at four locations, I1,

following Q6, I2 following Q10, I3 following Q18 and I4 at the end of the transport

region. The magnets (i=1,...,22) were then updated according to:

Qi(n+ 1) = Qi(n) +
√
αωi∆ cos (ωi∆n+ kSi(n)) , (8.2)

where Si = C4 +C3 +C2 +C1 for Q1−Q6, Si = C4 +C3 +C2 for Q7−Q10, Si = C4 +C3

for Q11 −Q18 and Si = C4 for Q19 −Q22, so that magnets only saw costs which they

were able to influence. For the tuning parameters, we chose k = 250000, so that the

amplified costs kSj in (8.2) took values between 0 and 300. The ωi were chosen as

ω0ri, with ω0 = 1000 and ri uniformly distributed between 2.5 and 3.7, ∆ = 2π
20ω22

,

and α = 15. With these values, ωmin

kCmax
> 20.

Figure 8.2 shows the evolution of the surviving beam current at the end of the

transport region during the RR tuning scheme. Figure 8.3 shows the evolution of the

magnet current inputs. Figure 8.4 shows the RMS beam size through various parts

of the transport region at the end of RR tuning, and Figure 8.5 compares the RR

found magnet settings to that of the tune up in 2011.

This example demonstrates some of the strengths and limitations of the scheme,

and the importance of cost function choice. Although the cost has been minimized
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Figure 8.1: Simplified schematic of the LANSCE H+ injector and

transport region.
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Figure 8.2: The surviving current at the end of the beam transport

over 2500 iteration steps is shown for an initial beam current of

13mA.

and almost all current is making it to the end of the transport region, the beam is

beginning to diverge and in this form would not be matched to the DTL following the
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nets over 2500 iteration steps.
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Figure 8.4: RMS beam size at the end of the iterative tuning

scheme.

transport region. In practice it is of course better to start with physics-model based

initial parameters, this simulation was conducted starting with all magnet settings
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Figure 8.5: Magnet settings at the end of the iterative tuning

scheme compared to 2011 tune up settings.

at zero in order to fairly demonstrate the model-independent abilities of the RR

scheme. The next simulations start with the 2011 tune up for the magnet settings

and use current monitors following two tanks of the DTL, in which case surviving

beam corresponds with well-matched beam.

8.1.2 Magnet and RF Buncher Cavity Tuning

To demonstrate the use of this scheme for fine tuning of machine settings, we used

machine settings found during the 2011 tune up procedure, but with a slightly different

beam and incorrectly phased buncher cavities. The magnets were initialized to the

values recorded from one of the 2011 machine turn on tuning periods. We set the

phase settings for the buncher and pre-buncher to zero, which typically must be

re-tuned at each turn on, by a phase scan, to take care of arbitrary phase shift.

We used only the surviving current at the end of the second tank of the drift tube
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Figure 8.6: The surviving current at the end of the beam transport

over 2000 iteration steps is shown for an initial beam current of

15mA.

linac to create our cost, our tuning procedure for the parameters was:

Qi(n+ 1) = Qi(n) +
√
αiωi∆ cos (ωin∆ + kC(n)) , (8.3)

where αi = αm for the magnets and αi = αb for the buncher phases. In both cases

C(n) = (Iend − 15mA)2 .

For the tuning parameters, we chose k = 605000, αm = 25, αb = 550. The ωi were

chosen as ω0ri, with ω0 = 2000 and ri uniformly distributed between 2.5 and 4.3,

∆ = 2π
20ω24

. With these values, ωmin

kCmax
> 35.

With an initial beam current of 15mA, the typical surviving current after machine

tune up is roughly 80% or 12mA. After 2000 simultaneous iterations on these 24
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Figure 8.7: New magnet settings after optimization.

Optimization Step Number
0 500 1000 20001500

-50

0

50

100

150

200

A
rb

itr
ar

y 
Ph

as
e 

of
 B

un
ch

er
s (

de
g)

Pre Buncher

Main Buncher

Figure 8.8: Evolution of buncher cavity phase settings over 2000

iteration steps.

parameters (22 quads, 2 buncher phases), the surviving current at the end of Tank 2

was 12.25mA. The results of the optimization procedure are shown in Figures 8.6 -
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8.10. From Figures 8.7, 8.8 we see that only minor adjustments are made to magnet

settings compared to the RF phases. Figure 8.9 shows that the transverse beam size

has further focused throughout the transport region and the transverse match to the

DTL has slightly improved. Figure 8.10 compares surviving beam current at the end

of Tank 2 of the DTL before and after tuning.

8.1.3 Adaptation to Time Varying Phase Delay and Beam

Characteristics

In order to demonstrate the adaptive tuning abilities of the scheme, we started with

matched beam settings and varied both the characteristics of the input beam and
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Figure 8.14: New magnet settings after optimization.

added a time-varying phase drift to each buncher cavity.

Figures 8.11 shows the initial and final beam properties at the entrance to the

transport region, during which RR adaptive tuning maintains beam focus and match-

ing. Figure 8.12 shows the phase shift of the bunchers with and without tuning. These

changes took place starting at step 1000 and finished at step 19000, with beam prop-

erties staying constant before and after the interval. Also, during this beam changing

process, the phase of the first buncher was made to drift by 30 deg and that of the sec-

ond by 35 deg, as seen in Figure 8.12. The drift of beam characteristics and buncher

phase shifts took place over 18000 time steps, which for a conservative magnet/phase

update rate of 1Hz translates into drastically changing accelerator and beam prop-

erties over the course of just 5 hours. All tuning parameters were maintained exactly

the same as in the previous example.

Figure 8.13 shows the evolution of the magnet gradients throughout the process,

Figure 8.14 shows the new final magnet settings, and Figure 8.15 compares the initial
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for the 2011 tune-based magnet settings (dashed) and after the beam

initial conditions have changed and RR tuning has re-focused and
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and final beam profiles. In Figure 8.16 we see that adaptive RR tuning is able

to maintain ∼ 12mA of surviving beam during the time-varying beam and phase,

whereas almost all of the beam is lost without tuning.
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