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We model the phase-mixing self-injection of electrons into plasma-wakefield acceleration

structures driven in a longitudinally rising density gradient. Self-injection is a process

where some of the plasma electrons lose coherence with the wave due to non-linearities.

The non-linearity is inherently and intentionally induced in the plasma oscillations due to

the variation of the restoring force along the rising density gradient. These electrons then

get trapped and propagate with the accelerating phase of the plasma-wave. The electron

oscillations driven by matched energy-sources are shown to get trapped in the wakefields

similar in scaling to the phase-mixing of free oscillations. The onset of trapping is shown

to scale with the gradient of rising density and the amplitude of oscillations. The planar

longitudinal electron oscillations undergo trajectory crossing above a threshold amplitude

or in a density inhomogeneity leading to phase-mixing and trapping of the oscillating

electrons to a phase of the wave. In this thesis, we analyze the scaling of the phase-mixing

based trapping of electron oscillations, independent of a threshold, in planar geometry

driven by an electron beam in a rising density gradient. The cylindrical and spherical

geometry electron oscillations undergo phase-mixing irrespective of the amplitude of

oscillations. Here, driven radial electron oscillations in cylindrical geometry are shown

to undergo phase-mixing leading to trapping of the plasma electrons in a longitudinally

rising density gradient. We also present preliminary scaling results of phase-mixing based

trapping of radially oscillating electrons in a rising density gradient.
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Preface

Plasma electron oscillations [1] which are the characteristic response of a collision-less [2]

plasma were first detected based upon their energy modulating interactions with charged

particle streams. These oscillations were later formalized into a theory of electron density

waves with arbitrary relativistic phase velocities [3]. It was also formalized that such

electron oscillations or density waves could grow to non-linear density perturbations and

limiting electric field amplitudes [4]. A major breakthrough came when charged particle

acceleration was proposed using the large electric fields and high phase velocities of plasma

electron density waves. It was proposed to excite these waves in the wakefield of matched

intense energy sources such as an ultra-short laser pulse [5] or a bunch of charged particles

[6] propagating in a homogeneous plasma.

In this work, we study the scaling laws of the phase-mixing [4] based self-injection of

plasma electrons into the plasma-wakefield acceleration structures [5][6] excited in a longi-

tudinally rising plasma density gradient. Rising plasma density gradients, in the direction

of propagation of the driving energy sources, which is also the direction of the plasma

electron-wave wave-vector, are ubiquitous at the vacuum-plasma interfaces for confining

the plasma particles within the plasma container walls.

The plasma-wakefields are high phase-velocity (—
„

» 1) driven electron density waves

[3]. These waves are driven in the trail of appropriately shaped energy sources (—
es

» 1 u

—
„

) propagating in plasma of appropriate density, n0 [6]. The driven plasma-oscillations

are quite similar to the freely oscillating plasma electrons [1][2]. In a cold homogeneous

plasma, the e´ undergoing oscillatory motion (—
e

) to support the plasma waves may get
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trapped in their potential-well due to the non-linearity [4] of the electron trajectories.

The non-linearities could be introduced by the driver intensity and shape, wave ampli-

tude rising above a critical value or simply the geometry of electron oscillations. It is well

known that cylindrical and spherical geometry oscillations always develop non-linearities

independent of the wave amplitude. Phase-mixing of the plasma electrons results in tra-

jectories that are nearly stationary in the wave frame, —
e

´ —
„

» 0. Under this condition,

in the wave-frame, if these electrons do not have enough relative kinetic energy to escape

the wave potential-well, they are trapped. If the electrons are trapped at the right phase

of the wave, they co-propagate and also gain energy for an extended length.

In a rising density gradient (dÊ
pe

pxq{dx ° 0), intentional phase-mixing is introduced

by the oscillation amplitude varying at di�erent points along the density gradient. There-

fore, phase-mixing between e´ trajectories always occurs. When phase-mixing results in

accumulation of su�cient phase-di�erence between the individual oscillators, the electron

trajectories are a�ected by the fields of adjacent oscillators, to an extent that they get

trapped. We computationally verify the scaling laws of phase-mixing in 1-D driven oscil-

lations. In the 1-D phase-mixing model, the mixing time depends both upon the gradient

of the rising plasma density and the amplitude of the wake-potential.

However, 2D cylindrical plasma oscillations have plasma electrons executing cylindrical

oscillations along the radial dimension. Thus, our analytical 1-D model of planar purely

longitudinal oscillations is inadequate. We show that even in radial oscillations in a cylin-

drical geometry, phase-mixing is introduced due to a longitudinal density gradient. The

phase-mixing of these radial oscillations also results in trapping of plasma electrons. In

spite of the limitation of our theoretical model for 2D cylindrical geometry oscillations, we

computationally find that the 1D scaling laws are still approximately valid.

The trapping of plasma-e´ in an up-ramp is critical for many applications such as con-

trolling the trapped e´ energy-spectra, trapping electrons in sub-threshold plasma wake-

fields, higher particle flux for high brightness radiation sources, understanding the energy

dissipation from the excited plasmon train [16] etc.
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Introduction

Particle acceleration techniques require sustained interaction of electromagnetic fields with

charged particles. The phase of the interacting electric field has to be “right” in the sense

that the field-particle interaction force results in a continuous transfer of the electromag-

netic field energy to the particle kinetic energy. Using this physical model we see that larger

the force on the particles faster is the gain of kinetic energy by the particles. Higher mag-

nitude forces require high power sources of electric, magnetic or electromagnetic energy.

Technologically, static electric or static magnetic fields are hard to engineer thus electro-

magnetic fields sources are used. Another important aspect of charged particle acceleration

is confining and maintaining the single-species plasma in the form of the charged particle

beam. This requires transverse confinement over the entire length of particle acceleration.

Thus transverse fields that focus the beam are also essential for particle acceleration.

The dominant modes of electromagnetic waves in free-space have electric and magnetic

fields that are transverse to the direction of propagation of the wave. Hence, free-space

electromagnetic wave cannot directly accelerate particles in the same direction as they

propagate. The transverse modes are dominant in the sense that most of the power of

the electromagnetic fields is distributed in these modes. Particle acceleration in directions

transverse to the direction of propagation of electromagnetic fields does not allow sustained

interaction of the right phase of electric field with the charged particles. This is because

the fields change phase rapidly over the interaction length. Thus the net energy gain of

the particles is small or zero in direct interaction of a free-space electromagnetic wave with

1
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a particle. Note that in an idealized plane wave the net energy gain is zero and this is the

so called Lawson-Woodward theorem [7].

However, when an electromagnetic wave interacts with boundaries which a�ect its elec-

tric fields the fraction of power in the free-space purely transverse modes is re-distributed.

The boundaries enforce the electromagnetic waves to reconfigure to modes with significant

longitudinal electric fields. Thus boundaries beyond which the fields cannot propagate

freely are required to confine the electromagnetic fields and transfer power to modes which

are useful for particle acceleration. This spatial confinement enables the transverse modes

to couple to longitudinal modes due to the geometry of the confined space.

1.0.1 Conventional RF acceleration and its limitations

The reconfiguring of the spatial modes of an electro-magnetic wave is primarily the principle

of Radio-frequency (RF) fields based charged particle acceleration used in almost all the

particle accelerators worldwide. Mostly cylindrical metallic cavities are used to confine

high power electromagnetic fields to create spatial modes in the cavity that have significant

longitudinal electric field. When the charged particles pass through the cavities the right-

phase of the electric fields can be made to interact continuously with the charged particles

resulting in energy transfer to the charged particles.

Higher the power of the electromagnetic field confined in the cavities higher is the

longitudinal electric field. Additionally, electromagnetic waves of higher frequencies have

lower wavelength and thus allow the spatial confinement dimension to be smaller. So,

confinement of electromagnetic fields with higher and higher frequencies requires smaller

sized cavities. With simple extension of the chain of argument above one can imagine that

higher and higher frequency electromagnetic fields with higher and higher power can allow

to miniaturize the cavities while also increasing the accelerating field. Thus smaller and

smaller accelerators can be built. Generally smaller also means lesser material costs thus

driving the overall costs lower as the accelerators get smaller.

So, why do higher particle energies need building a larger particle accelerator ? Simple
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answer to this is that mother nature imposes restrictions on confinement of electromagnetic

waves.

The two major problems with the approach of using cavities of materials available in

nature comes from - (a) confinement of high power and (b) confinement of high-frequency

electromagnetic fields. As the power density or the power per unit area incident on the

metallic walls used for confining the electromagnetic fields increases the electric fields can

become high enough to ionize the material. Once the walls are ionized they can undergo

an avalanche mechanism and be broken down completely and incapable of confining the

fields. Secondly as the frequency of the electromagnetic fields increases their wavelengths

get to the dimensions which can resonate with quantum-mechanical state of the material

resulting in material undergoing ionization for much lower power of the electromagnetic

fields. In the extreme cases for instances extreme ultra-violet frequencies the waves simply

cannot be constrained or reflected by the metallic materials.

This is the reason that the peak accelerating longitudinal electric fields in standing-wave

and traveling-wave RF cavity based accelerators are of the order of E
acc

“ 100MV/m. So,

to accelerate an electron beam to 1GeV would need about 10 meters of cavities to interact

with the beam.

1.0.2 Lawson-Woodward theorem - Direct-Laser and Ponderomotive Acceleration

As described in the App.A, in relativistically high intensity laser systems, the electric fields

can impart relativistic momentum to the electron. However, the nature of the momentum is

oscillatory and electrons quiver around without gaining significant longitudinal momentum.

So, the question naturally arises is it possible to accelerate electrons in vacuum using laser

electric fields?. The answer to this lies in the Lawson-Woodward (LW) theorem.

The LW theorem states that no net energy gain is possible directly from the laser

electric field in vacuum under the following assumptions:

1. the laser fields are in vacuum with no walls or boundaries present

2. the electron is highly relativistic (v
e

» c) along the acceleration path
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3. no static electric or magnetic fields are present

4. the region of interaction is infinite

5. ponderomotive e�ects (nonlinear forces, e.g., the v̨ ˆ B̨ force) are neglected

One or more of the assumptions of LW theorem must be violated in order to achieve a

nonzero net energy gain by using laser fields in vacuum.

When trying to accelerate electrons by direct action of a laser field in vacuum and

gases, the process is intrinsically limited by di�raction, electron slippage, ionization, and

the smallness of the laser wavelength. In vacuum, the motion of an electron in a laser field

is determined by the Lorentz force equation: d

˜̨
p

dct

“ Ę ` v̨ ˆ B̨ “

Bą

Bct

´

˜̨
p

“̃

ˆ Ǫ̀ ˆ ą, where ˜̨p

is the electron momentum normalized to m
e

c and “̃ “

a
1 `

˜̨p. ˜̨p is the relativistic Lorentz

factor.

1. Direct energy gain in laser field - linear response of the electron to the electric field

E of the laser.

2. Ponderomotive laser acceleration - nonlinear response to the v ˆ B force.

For any laser system there is always a finite laser focus spot size and this points towards

the existence of an axial component of the electric field of the laser because Ǫ̀.Ę “ 0 ñ

B
Bz

E
z

“ ´ÒKEK »

1
kr0

EK.

Therefore, this axial field can be very large, which suggests that this axial field could

directly impart a net energy gain for a relativistic electron (“̃ " 1) co-propagating with

laser pulse along the axis, with the energy gain scaling as
≥

dzv
z

E
z

. However, the phase

velocity, of the optical field along the axis (z) is greater than c and is v

p

h

c

»

´
1 `

1
kZ

R

¯
near

the focus (since, the vacuum dispersion relation of the laser is Ê

2

c

2 “

´
k

z

`

2k

z

Z

R

¯
. And, if we

have relativistic electrons co-propagating with the laser pulse then, v
ph

° c, electrons with

v
z

“ c will phase slip with respect to the accelerating (laser axial) field and decelerate.

This will occur over a dephasing length (z
slip

over which phase slips by fi), which for highly
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relativistic electrons is fiZ
R

(k
z

z
slip

|

v

z

c

´

v

ph

c

| “ fi ñ z
slip

» fiZ
R

), therefore, the dephasing

length is of the order of di�raction length. Hence, interaction over an infinite length would

cause the net acceleration to cancel out net deceleration. So, the interaction length has

to be limited (region of length 2Z
R

about the focus, violating LW), but this is practically

hard to implement, due to the ionizing characteristic of high-intensity lasers.

Non-linear e�ect that can be associated with the high-intensity lasers is the action of

nonlinear or ponderomotive forces associated with the laser-electron interaction. This e�ect

(arising due to v̨ ˆ B̨ force) can potentially violate the LW theorem to impart a net energy

gain. Considering the equation with non-linear e�ects, d

˜̨
p

dct pv̨ˆ ˛

Bq “ ´

˜̨
p

“̃

ˆǪ̀ˆą “ ´Ǫ̀
´ ˜̨

p

“̃

.̨a
¯

`

˜̨
p

“̃⇢
⇢
⇢⇢>

gauge´
Ǫ̀.̨a

¯
“ ´

m

e

c

2
“̃

B
Bz

´
a

2
2

¯
. The non-linear term is, F

p

z

» ´

m

e

c

2
“̃

Ò
z

´
a

2
2

¯
, is responsible for

changes in the electron energy due to “ponderomotive” force. These ponderomotive forces

can provide substantial energy gains even in the limit of an infinite interaction region. A

major drawback to ponderomotive force acceleration scheme (including the Inverse Free

Electron Laser acceleration) is that the force reduces as particles accelerate, F
p

z

9

1
“

.

1.0.3 Plasma acceleration

Plasma acceleration is based on the fields excited in the plasma by appropriately shaped

energy sources for charged particle acceleration. Plasma is a quasi-neutral fluid of freely

moving charged particles that undergo collective oscillations [1]. There are at least two

species of charged fluids - electrons and ions. When the energy sources couple to the plasma

they excite density modulations of the particles in the plasma. The density modulations

are di�erent due to the di�erence in inertia of species. The di�erence in the density

modulations results in charge separation between the electrons and the ions. The spatial

charge-separation excites electric fields in the direction in which it is excited. As it will be

shown below the charge-separation fields in the plasma are proportional to the square-root

of the particle density, n0 which is the number of particles per unit volume. The electric

field can be as high as E
acc

“ 96.2
a

n0pcm´3
q V{m which gives E

acc

pn0 “ 1018cm´3
q “
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96.2GV{m. If a beam of charged particles is placed in the “right” phase of these charge-

separation fields, continuous transfer of energy to the beam is possible. In comparison to

RF fields, electron beam can be accelerated to 1GeV in a distance in the plasma of the

order of a centimeter (10´2m). Note that this acceleration length is 3 orders of magnitude

smaller than the RF case.

Several questions may arise regarding the e�ect of the background plasma on the ac-

celerated particles - (i) would the accelerated particle not scatter o� the nuclei of the

background ions by mechanisms such as Coulomb scattering, bremsstrahlung, hadronic and

nuclear interactions etc. ? (ii) would the particles not lose energy by the radiation mecha-

nisms such as Cherenkov radiation, high-energy photons by e`
´ e´ pair production, etc. ?.

Since the plasma fields can rapidly accelerate the particles, the particles attain high energy

in a short distance. Interaction cross-sections for scattering are inversely proportional to

the square of the particle energy, ‡
cs

9 E´2
beam

. Thus, the scattering processes are only rel-

evant in cases where the particle beam interacting with the plasma is low energy. On the

other end, such processes become important when the beam density of a high energy beam

exceeds some threshold. Such a situation may arise when the beam undergoes adiabatic

damping at very high energies. Secondly, the radiation losses due to the interaction with

the plasma are small because the radiation length are many orders of magnitude larger

than the acceleration length.

The processes occurring in the plasma can be distinctly classified into two based upon

their characteristic time-scales - collision-less [2] and collisional. It can be shown that the

collisional mean-free path in a fully-ionized plasma is many orders of magnitude larger

than the characteristic response distance of the plasma, the Debye wavelength. And,

therefore the electron-ion collision frequency is many orders of magnitude smaller than the

collective oscillation frequency. In a weakly-ionized plasma the collisions are dominated

by the electron-neutral collisions and the dynamics can be di�erent. In all the following

analysis we consider only fully-ionized plasmas. This is a reasonable assumption because

in plasma acceleration techniques often the intensity of the energy-sources used is high
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enough to result in gas ionization by various processes like barrier-suppression, above the

threshold, multi-photon ionization etc. Therefore the collision-less processes occur over

time-scales that are much smaller than the mean-time between the probability of successive

electron-ion collisions.

The large di�erence between the mass of electrons and ions results in separate charac-

teristic time-scales of their collective motion. Hence, when the plasma is excited by energy

coupling from the energy sources to the plasma, the first collective response is by the

plasma electrons. The energy sources propagating in the plasma leave behind a wakefield

in their trail. Due to the shorter time-scales of the electron plasma waves these are known

and shown to be the dominant phenomenon in the wakefield [5]. A plasma electron density

wave is characterized by its frequency [1],

Ê
pe

“

d
4fin0e2

m
e

“ 2fi 8978.7
a

n
e

pcm´3
q Hz (1.1)

(in cgs units) and its amplitude ”npr̨, tq “ npr̨, tq´n0 where n0 is the density of plasma

at equilibrium, n is the perturbed electron density and ”n is the net excessive electron

charge at a point r̨ in space at a time, t.

Note that all the equations and theoretical formulation in the rest of the

thesis is in c.g.s. (centimeter-gram-second) units as this is the system in which

plasma physics is traditionally studied.

Another important point to note is that the plasma we considered is cold. The equilib-

rium Maxwell-Boltzmann velocity distribution of the electrons is completely randomized

in space (6-D phase-space is reduced to 3-D velocity space) and the velocity distribution of

the thermalized electrons is, fpvth

e

q “ C 4fi
`
vth

e

˘2
e

´ m

p

v

th

e

q

2

2k

B

T

e where C “

´
m

2fik

B

T

e

¯3{2
. The

Boltzmann energy distribution in 3-D velocity space is fvpv
x

, v
y

, v
z

q “ C exp
”
´m

v

2
x

`v

2
y

`v

2
z

2k

B

T

e

ı

where C “

´
m

2fik

B

T

e

¯3{2
. The velocity distribution is obtained by normalizing over the ve-
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locity. The energy distribution function is normalized by multiplying with the surface area

of the velocity sphere, 4fipvth

e

q

2. For the purpose of studying the motion of the plasma

electrons in collective phenomenon like electron plasma waves we assume that the initial

thermal velocities are negligible in comparison to the velocities excited as part of supporting

the waves, vth

e

! c—
e

.

1.0.4 Exciting plasma acceleration structures

The energy sources such as a bunch of photons or charged particles can propagate in

the plasma at relativistic velocities. The relativistically propagating energy sources excite

plasma waves with relativistic phase-velocities in their trail. It is well-known that relativis-

tic phase-velocity electron plasma waves [3] are supported in the plasma. It is essential

to control the phase velocity of the plasma waves because the distance over which the

accelerating phase of wave electric fields interacts with the accelerated bunch decides the

extension of acceleration length. If the accelerated bunch quickly outruns the accelerating

phase of the plasma wave then the net average electric field over the interaction length

may be negligible.

The electron plasma waves support large charge separation electric fields which are

many times the RF fields of the conventional accelerators. So, the electric fields of the

plasma waves can be used for accelerating charged particles. However, an acceleration

mechanism must be capable of letting the acceleration structure and the accelerated beam

interact over extended distances to constitute as a useful acceleration technique. The use of

high phase-velocity plasma electron waves to accelerate electrons (e´) [5] was first proposed

in 1979 using a laser pulse. The coupling mechanism from the laser to the plasma-wave

or a plasmon is the instability of interaction of the laser pulse with the plasma electrons

referred to as the Raman forward scattering. The instability originates in the mixing

between the electron momentum in the laser field and its momentum in the plasma wave.

Such mixing leads to exchange of energy from the laser pulse to the longitudinal plasma

density oscillations.
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The proposal of the laser wakefield based plasma electron waves [5] realized and impor-

tant aspect regarding the phase velocities of these wave. The phase-velocity of the electron

plasma wave is shown to be nearly equal to the group velocity of the laser pulse. Thereby

the phase velocity of the wake-wave could be controlled by controlling the laser pulse group

velocity.

It was similarly shown that intense relativistic electron beams could be used to excite

e´ plasma-waves used for acceleration [6]. The particle beams propagating in a plasma

would interact with the plasma through their space-charge fields. In the beam-frame the

electrostatic fields of the bunch would drive the plasma electrons away from the equilibrium.

The energy coupling mechanism in this case is the two-stream instability. This instability

is excited in the plasma due to the fact that the beam velocity can resonate with the phase

velocity of the electron plasma wave and result in energy exchange.

The fields that are excited in the plasma electron wave are dependent upon its den-

sity. Following a back of the envelope approach to analyze the electrons oscillating in

a plasma electron wave we use the Lorentz equation, d p̨

Î
e

d t

“ m
e

cd “

e

˛

—

Î
e

d t

“ ´eĘÎ in 1-D

and assume a linear, “
e

» 1 and non-relativistic, “
„

“

´
1 ´ —2

„

¯´1{2
» 1 plasma-wave

with purely sinusoidal electron velocity, —Î
“ maxp—

Î
e

q cospÊ
pe

tq. Under these assumptions

´m
e

cÊ
pe

maxp—
Î
e

q sinpÊ
pe

tq “ ´eEÎ. Then the amplitude of the field is

|EÎ
max

| “

m
e

cÊ
pe

e
maxp—Î

e

q.

1.1 Wave-breaking - self-steepening and trapping

The wave is sustained only until the electron velocity is smaller than the phase velocity of

the wave, maxp—
Î
e

q † —
„

.

As the particle velocity in the particle-density wave approaches the wave phase-velocity.

The velocity of the particles gets higher as the potential of the wave get higher. In the

wave-frame, the particles at small relative velocities interact with the wave-potential and
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gain energy. The charged particles can be at a phase of the field or potential of the

wave which accelerates them in the direction of the wave propagation. Since the density-

wave has a direction of its phase-velocity, the particles with relative velocity in the same

direction as the wave velocity get accelerated. Whereas, the particles with relative velocity

in opposite direction get decelerated. As it can be seen from this qualitative picture, the

particles start bunching close the accelerating phase of the wave. This process is referred

to as wave-steepening or self-steepening. In later sections we observe this phenomenon in

simulations.

Trajectory crossing is related to the ordering of the oscillating 1-D electron sheets and

maintaining linearity of the trajectories that are driven as part of supporting the wave [4].

The electron density wave would break when maxp—
Î
e

q • —
„

and this condition is referred to

as wave-breaking limit. Thus, when maxp—
Î
e

q “ —
„

the maximum electric field sustainable

by an electron density wave is |EÎ
max

| “

m

e

cÊ

pe

e

» 96
a

n0pcm´3
q V{m, n0 is the plasma

density in cm´3. Technologically, for plasmas with densities of the order of 1018cm´3 the

fields are Emax

Î » 96.2 GV{m[7].

Interestingly the electron bunch to be accelerated by the plasma structures could be

generated by trapping plasma electrons and thereby external injector and tedious syn-

chronizations mechanisms could be averted. In fact the initial experiments dealt with two

major challenges - (i) driving a large amplitude plasma wave [7] (ii) controlling the un-

wanted trapping of plasma electrons. The unwanted trapping in earlier experiments lead

to large energy spreads as the electrons were trapped in all the phases of the accelerating

field and over the acceleration length gained a wide range of energies [10]. Experimental

confirmation of the acceleration of electron beams as visualized in the original theoretical

proposals with accelerating and focussing fields of the order of 10GV/m were subsequently

demonstrated for a laser-pulse driver in 2004 [9] and an electron-beam driver in 2014 [11].

These experiments showed the potential of plasma acceleration to excite and sustain fields

predicted by theory. Secondly, they opened pathways towards the possibility of improv-
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ing beam quality especially the energy-spread and emittance. Controlling the trapping of

plasma electrons within the plasma acceleration structures is the topic of this thesis.

Plasma acceleration structures are excited by coherent motion of the plasma e´ driven

in response to energy packets in the plasma. The plasma electrons oscillate within the

potential well of the background ions, with time scales of oscillations at the plasma electron

frequency, 2fi

Ê

pe

. The excited oscillations are strong in amplitude only if the energy packet

exciting the motion has spatial frequencies of the order of plasma spatial frequency, k
p

“

c{Ê
pe

. This is important because drivers with length longer than 2fi

k

p

would be acted upon

by the plasma oscillation fields created in their wake and thereby take away energy from the

oscillations. Since the plasma e´ are within the potential well of the background ions, they

are spatially limited to a single plasma spatial-oscillation bucket and do not co-propagate

with the driver.

However, if the wake-potential exceeds the background ion-potential leading to wave-

breaking or if the electron oscillations are not spatially confined to background ion-potential

well by non-linear processes such as phase-mixing[4], the plasma electrons escape the po-

tential well. Trapping is a mechanism of self-injection of plasma e´ into the plasma

acceleration structure resulting in energy exchange (and acceleration) with the trapped

plasma-electron beam. The trapped e´ co-propagate with the energy packet across many

plasma-wavelengths locked to the crest of the wakefield. Therefore beam-loading of the

acceleration structure potential leads to dissipation from the wakefields[16].

The highest field amplitude plasmon-bucket is just behind the driver. The buckets

subsequent to the first have smaller fields as they dissipate energy to the surrounding

plasma and also to the plasma ions[16]. Most optimized injection schemes like external

injection, self-injection due to non-linear plasmon oscillations and returning trajectory

crossing, ionization injection, down-ramp injection[18], colliding-pulse injection etc. inject

into the first wakefield bucket to accelerate at the peak gradient.

Trapping plasma electrons within the plasma acceleration structures is challenging and

tricky because it is constrains the bunch properties right at where the bunch is trapped
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and thereby it is immensely interesting to study injection mechanisms. The primary bunch

properties that need to be addressed at the source are - transverse emittances, bunch charge,

energy spread, bunch length and number of bunches etc. In this thesis we show that by

controlling certain plasma and driver (laser or e´-beam) parameters the injection of plasma

electrons into accelerating structures can be controlled.

1.2 Plasma model - Linearized Kinetic theory

The characteristic e�ects of the plasma state are based upon collective phenomenon. The

plasma state once perturbed, unlike a gas does not relax to equilibrium state but continues

to oscillate as suggested by eq.1.1. It is shown that for the presence of sustained oscillations

it is crucial to introduce long-range forces. The collective phenomenon is characterized by

the motion of a set of charges that are connected over long distances through the oscillating

electric fields, Ę. Such long-range interaction is very di�erent from the stochastic collisional

encounters dictating the dynamics is a gas. This field interaction of local oscillations is

over distances much greater than the mean particle separation. However, such treatment

of sustained oscillation is only partially complete to understand the full situation over all

the di�erent time-scales of the plasma state. The condition on the temperature and its

e�ect on the plasma is not explicitly included in the equations such as eq.1.1, there is no

explanation for the non-propagation of these density waves, the role of interactions at large

distance are addressed by the Kinetic theory.

Just like in the conventional statistical mechanics the state of a fully ionized plasma is

determined by 2 di�erent 6D distribution functions: f
–

pr̨, p̨, tq where r̨ “ xx̂ ` yŷ ` zẑ and

p̨ “ p
x

x̂`p
y

ŷ`p
z

ẑ (v̨ “ m´1p̨) and – “ 1 for electrons and – “ 2 for ions. A change in the

number of particles within an element of the phase-space dx dy dz dp
x

dp
y

dp
z

due to the

motion of the particle or external forces is taken into account by the methodology of kinetic

theory. As the interaction of a charged particle and a neutral does not involve interaction

mediated by fields it can be taken as a purely collision interaction and accounted for using
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a sphere-of-action collisional approach. In plasma the interaction between charged particle

mediated through fields is of much more importance. The field interaction can be divided

into two di�erent parts: (i) interaction at a distance less than or on the order of mean inter-

particle separation (ii) interactions at distances greater than the mean particle separation.

In the equilibrium or the stationary state it is assumed that macroscopically the

number density of positive charges is equal to number density of negative charges implying

quasi-neutrality i.e. neutrality at a macroscopic scale. The positive current J̨` “ 0 and

the negative current J̨´ “ 0. The quasi-neutrality and zero net-current assumptions imply

that Ę0 “ 0 and H̨0 “ 0. This also implies that the stationary or the equilibrium state

is collision-dominated as the field-mediated interactions at the macroscopic scale are not

possible with zero fields. Any excitation by external fields or currents can be accounted

for by the long-range field-mediated approach.

The Kinetic theory of plasma electron dynamics can be studied using the Vlasov-

Maxwell equations valid for the plasma properties over the electron timescales.

Bf{Bt ` v̨ ¨ Bf{Br̨ ` p´eqpĘ ` m´1c´1
rp̨ ˆ H̨sq ¨ Bf{Bp̨ “ 0

rBf
–

pr̨, p̨, tq{Btseq

coll

“ 0

linearized : B„{Bt ` v̨ ¨ B„{Br̨ `

dp̨p�0 ` „q

dt
¨ B�0{Bp̨ “ 0

Ǫ̀ ˆ H̨ “ c´1
BĘ{Bt ` 4fic´1

ª `8

´8
v̨fdv̨

Ǫ̀ ¨ Ę “ 4fi

ˆª `8

´8
fv̨dv̨ ´ n0

˙

Ǫ̀ ˆ Ę “ ´c´1
BH̨{Bt (1.2)

Note an essential feature of the Vlasov equation is that it is linearized under perturba-

tive expansion, f “ �0 ` „p1q
` Op„p2q

q where �0 is the equilibrium distribution function

and „pmq are the higher order terms in the expansion of the perturbed distribution function.

In the linearized approximation the dependencies on higher orders of the distribution
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function,

f “ �0 ` „,

are approximated to be negligible and we represent „p1q
“ „. We use the perturbative

approximation

dp̨p�0 ` „q

dt
B„{Bp̨ » 0

(separation of p̨p�0 ` „q is not possible and terms of order „2 or higher are neglected).

Also from the equilibrium condition,

B�0{Bt ` v̨ ¨ B�0{Br̨ `

dp̨p�0 ` „q

dt
¨ B�0{Bp̨ “ 0.

Note also that when the excitation of the plasma cannot be perturbatively expanded

due to large amplitude phenomenon a non-linear theory is required. Under this scenario

the theory of Bernstein-Greene-Kruksal (BGK) is used as it incorporates the trapping

of particles in large potential di�erence and the e�ect of these trapped particles on the

potential.

We can now separate out the equations in eq.1.2 to describe the particular solutions of

the two orthogonal dimensions using the two independent sets. The dimensions are chosen

as Î̂ along the wave-vector k̨ and K̂ perpendicular to the wave-vector k̨.

When there is only an irrotational (longitudinal) plasma field, EK “ HK “ H̨ “ 0

and EÎ ‰ 0. This implies vK “ „K “ 0. Correspondingly, vÎ ‰ 0 and „Î ‰ 0. Upon

substituting these conditions in the eq.1.2 we get the equation set describing a particular

solution of the longitudinal waves, eq.1.2Î.

B„Î{Bt ` v̨ ¨ B„Î{Br̨ ` e ĘÎB�0{Bp̨ “ 0

Ǫ̀. ĘÎ “ 4fie

ª `8

´8
„Î dv̨

´ BĘÎ{Bt “ 4fie

ª `8

´8
„Î v̨dv̨ (1.3)
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When there is only a rotational (transverse) plasma field, EÎ “ HÎ “ 0, EK ‰ 0

and HK ‰ 0. This implies vÎ “ „Î “ 0. Correspondingly, vK ‰ 0 and „K ‰ 0. Upon

substituting these conditions in the eq.1.2 we get the equation set describing a particular

solution of the transverse waves, eq.1.2K.

B„K{Bt ` v̨ ¨ B„K{Br̨ ` e pĘK ` pv̨ ˆ H̨qKqB�0{Bp̨ “ 0

Ǫ̀ ˆ H̨ “ c´1
BĘ{Bt ` 4fiec´1

ª `8

´8
v̨„dv̨

Ǫ̀ ˆ Ę “ ´c´1
BH̨{Bt, Ǫ̀ ¨ Ę “ 0, Ǫ̀ ¨ H̨ “ 0 (1.4)

The linearized equation along the orthogonal directions can be solved using spectral

methods. The longitudinal dispersion relation for a collective phenomenon in the form of

a longitudinal wave (Ê, k̨, v̨) in the plasma with the Boltzmann distribution at equilibrium

�0 and electron energy E is,

4fie2
ª `8

´8
dv̨

1
Ê |̨k|2

pv̨ ¨ k̨q

2

v̨ ¨ k̨ ´ Ê

B�0
BE “ 1 (1.5)

Similarly, the transverse dispersion relation for a transverse wave is given by,
4fie2

c2 |̨k|2 ´ Ê2
B�0
BE

ª 8

´8
dv̨ pê

k

¨ v̨q

2 Ê

Ê ´ k̨ ¨ v̨
“ 1 (1.6)

Assuming a Maxwellian equilibrium distribution:

�0pEpp̨qq “ n0 p2fi
k

B

T
e

m
q

´3{2e´Epp̨q{k

B

T

e (1.7)

We can evaluate B�0
BE “ n0

´1
k

B

T

e

p2fi k

B

T

e

m

q

´3{2e´Epp̨q{k

B

T

e .

We can write the irrotational longitudinal dispersion relation for a Maxwellian.

Ê
pe

⁄
De

“

c
4fine2

m

c
k

B

T
e

4fine2 “

c
k

B

T
e

m
“ v

th

v̨{v
th

“ v‹; k⁄
De

“ k‹; Ê{Ê
pe

“ Ê‹

ª `8

´8
dv‹ v‹

pÊ‹
{k‹

´ v‹
q

e´v

‹ 2{2
“

?

2fi k‹ 2 (1.8)
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By using the Cauchy’s principal value theorem around the pole at Ê‹
{k‹

“ v‹ in the

integral above, we can evaluate the dispersion relation for Maxwellian distribution.

Ê2
“ Ê2

pe

` 3k2Ê2
pe

⁄2
De

Ê2
“ Ê2

pe

` 3k2v2
th

(1.9)

Similarly, using the Maxwellian distribution function

Ê‹2
“ k‹2

`

1
?

2fi

ª 8

´8
dv‹ e´v

‹2{2 1
1 ´

k

‹
Ê

‹
v

th

c

v‹

v‹
“

v

pk
B

T
e

{mq

1{2 , Ê
pe

{k0 “ c

Under, Ê

k
"

k̨ ¨ v̨

|̨k|

Ê‹2
“ k‹2

` 1 `

ˆ
k‹

Ê‹
v

th

c

˙2

v
th

c
! 1 : Ê2

“ c2k2
` Ê2

pe

(1.10)

We note that v

th

c

! 1 and under the condition that k

‹
Ê

‹
v

th

c

! 1, a perturbative expansion

of 1
1´ k

‹
Ê

‹
v

th

c

v

‹ can be done. By writing this in the physical units and using Ê
pe

{k0 “ c, we

have, Ê2
“ c2k2

` Ê2
pe

.

However, it is generally more convenient to analyze various phenomenon in the plasma

using di�erent moments of the linearized Vlasov equation. These moments lead to the

fluid equations. The fluid equations are as follows, where – represents di�erent species in

the plasma, Q is the heat flux, p̂ the thermal pressure (assumed to be isotropic) and other

variables represent the familiar quantities.

B

Bt
n

–

` Ǫ̀
r̨

n
–

xv̨y “ 0 (1.11)
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n
–

B

Bt
xv̨y ` n

–

xv̨yǪ̀
r

xv̨y “

n
–

q
–

m
–

˜
Ę `

xv̨y ˆ B̨

c

¸
´ Ǫ̀

r

p̂
–

m
–

(1.12)

B

Bt
p̂

–

` 3p̂
–

Bxvy

Bx
` xvy

B

Bx
p̂

–

` 2 B

Bx
Q

–

“ 0

p̂

n3
–

“ constant in 1 ´ D

p̂

n�
–

“ constant, adiabatic index :� “ 1 `

2
N

, N “ degrees of freedom (1.13)

1.3 Plasma excitation by energy sources

The laser-plasma interaction is modeled based upon the intensity that can be attained in

the focal spot of the laser. Similarly, beam-plasma interaction is characterized by the peak

beam density of the beam with respect to the background plasma density, n

b

n0
. The laser field

is characterized by the laser strength parameter which is the normalized electromagnetic

vector potential apx, r, tq “

eApx,r,tq
m

e

c

2 where, B̨pr, tq “ Ǫ̀ ˆ Ąpr, tq. The normalization helps

quantify the momentum of an electron p̨
e

, interacting with the laser field in vacuum due to

the conservation of the canonical momentum P̨ . When vorticity �̨ “ ÒˆP̨ has no temporal

variation, then in a plane-wave B

t

P̨
e

“ 0 ñ B

t

´
p̨

e

´

e

˛

A

c

¯
“ 0. Hence, it is desirable to

represent the laser intensity with the normalized vector potential ą “

p̨

e

m

e

c

“

1
m

e

c

e

˛

A

c

. This

defines the laser electric field amplitude in terms of ąpx, r, tq, its monochromatic sinusoidal

evolution in time (with angular frequency Ê0) and a radial focal spatial profile, Ę
laser

pr, tq “

´

1
c

B ˛

Apr,tq
Bt

“ ´

Ê0
c

Ąpr, tq “ Ê0
m

e

c

e

ąpr, tq. It should be noted that the laser pulse is not a

plane wave and thereby the a0 parameter characterizes the peak laser intensity I0 (W {cm2)

and the peak power of the pulse P0 9 I0 9 a2
0. When a0 “ 1 then p

e

“ m
e

c and thereby

such a laser is capable of exciting relativistic-electron momentum such that the irradiated

electron kinetic energy is of the order of the rest-mass energy (I0 ° 2.1 ˆ 1018 W

cm

2 for
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Ti:Sapphire, ⁄0 „ 800nm). A TEM laser mode propagating in vacuum at such intensities

has the following transverse electric field amplitude, where ÷ is the free-space impedance,

E
laser

“

a
2÷I0 “ 2fi

m
e

c2

e⁄0
a0 » 4 TVm´1

pa0 “ 1q.

Thus it can be seen that in the relativistic regime, laser interacting with a free-space

electron can quiver (transverse) it such that the electron kinetic energy is almost half

the rest-mass energy, a0 • 1. The transverse motion of a free-space electron (first order

in ą) in the plane-wave transverse electromagnetic mode cannot impart any longitudinal

momentum to the electrons. In a focussed field such as the laser with radial variation of

the electric field, the Gauss’s law Ǫ̀ ¨ Ę “ 0 implies a small longitudinal field component

due to field’s radial gradients. As the phase velocity of the laser field in the focus is higher

than the speed of light and electrons rapidly slip-o� the accelerating phase of the axial

field, therefore there is a negligible net momentum gain.

The laser packet is not a plane-wave and therefore the plasma electrons experience a

longitudinal force. If the laser-electron interaction is not infinite or there is a time-varying

field amplitude then the part p̨K
m

e

“

e

ˆ B̨ (it should be noted that p̨K is in phase with B̨

and fi{2 out of phase with Ę ) of the Lorentz force causes a small longitudinal force which

is second order in ą. The longitudinal ponderomotive force [13] is F ponde

z

» m
e

dp

Î
e

dt

»

´e p̨K
“

e

ˆ B̨ “ ´

m

e

c

2
2“

e

Ò
z

a2. Therefore in vacuum p
Î
e

9

a

2
“

e

. It should be noted that because

this force is a second order (9a2) force its characteristic frequency is 2Ê0.

In relativistically intense laser propagation, the laser pulse envelope changes due to

many e�ects. E�ect such as self-focussing in the plasma due to the ponderomotively

evacuated lower plasma density region creates an e�ective lensing on the laser. The large

ponderomotive force also leads to front of the laser group velocity reducing and back of the

pulse group velocity increasing, resulting in longitudinal pulse compression. Additionally,

in relativistic intensity regime the phase velocity of the pulse is also a�ected. The front of

the pulse undergoes a red-shift and the back of pulse a blue-shift.
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The most e�cient method of using the laser electric field is by ponderomotively exciting

space-charge structures in the plasma such as plasma-electron waves. This is especially

practical considering that the relativistic intensity lasers ionize any material into a plasma.

Unlike the material breakdown limit of the accelerating fields in conventional accelerators,

plasma cannot be broken (there are parasitic e�ects such as higher ionization of plasma-ions

with higher magnitude fields in the plasma).

There is a limit of the plasma-wave field amplitude beyond which the plasma electrons

are not just forming the density structures and their corresponding fields. In a plasma-wave

with electric fields greater than the wave-breaking limit, the plasma electrons that escape

the plasma-ion electrostatic field can be trapped in the propagating plasma waves and get

accelerated. The plasma electrons trapped in the potential well of the accelerating phase

of the wave are accelerated with the force of the plasma-wave electric field, until they reach

energies high enough to exceed the acceleration structure velocity to this extent that they

escape the well into the opposite phase (de-phasing limit).

The laser-plasma electron accelerators are high-— acceleration structures which use

high-v
„

plasma waves. The high velocity acceleration structures of a laser-plasma electron

accelerator need su�ciently high potentials to be created in the plasma to trap and accel-

erate relativistic electrons. The unavailability of a laser technology to create high enough

ponderomotive potentials to trap and accelerate relativistic electron beams delayed the ex-

perimental demonstration of laser electron accelerators from their first theoretical proposal

in 1979 [5] till 2004 [9]. The propagation of electromagnetic energy in an unmagnetized

plasma is governed by the dispersion relations of the electromagnetic mode and the wave ex-

cited in the plasma. For monochromatic plane-wave electromagnetic field at Ê0 interacting

with a homogeneous unmagnetized plasma of characteristic frequency Ê
pe

, the dispersion is

governed by Ê2
0 “ Ê2

pe

`c2k2. The laser pulse electric field has a radial 2-D spatial variation

and this simple 1-D dispersion characteristic equation does not describe the dispersion ac-

curately. This dispersion relation is for the electromagnetic field exciting electron plasma

wave and ignores the plasma ion dynamics and the corresponding dispersion relation of

19 of 98 Aakash A. Sahai



Phase-mixing self-injection in a rising plasma density gradient 1.3.0

the ions. When Ê0 " Ê
pe

, the group velocity of the laser pulse (and hence the speed of

the laser created acceleration structure) in the plasma is very close to the speed of light in

vacuum, v
g

“ c
b

1 ´ Ê2
pe

{Ê2
0 À c. The phase velocity of the electron plasma wave is equal

to the group velocity of the laser pulse [5](p.267, eq.1),

—„

pe

» vg

laser

{c.

In the beam-driven plasma wave the phase-velocity of the plasma-waves is nearly the beam

velocity [6](p. 694),

—„

pe

» v
beam

{c.

Note that there is a small correction to the phase velocity of the plasma waves, —„

pe

because the head of the driver is in general depleted or unguided in the plasma. Because of

the energy loss at the head or because the head is not transversely confined the driver may

appear to slowly drift behind the initial head position in the frame phase velocity front,

—„

pe

´ —
driver

pheadq ‰ 0. Thus reducing the phase-velocity of the waves. If the head erosion

is rapid then the phase-velocity is not nearly constant.

High plasma wave phase velocity implies that the plasma wave is relativistic with

“
pe

“ Ê0{Ê
pe

. However, if the plasma frequency is nearly equal to the laser frequency

Ê
pe

» Ê0, the group velocity is very low, v
g

! c and depends upon the ratio of the plasma

frequency to the laser frequency Ê

pe

Ê0
. The propagation is possible only if Ê0 ° Ê

pe

. It

should be noted that when the plasma is cold, the dynamics of the plasma is described by

the plasma density (n
e

px, tq) and full description using the distribution function (fpx, p, tq)

is not necessary. The properties of collective coherent particle oscillations in a plasma is

characterized by the density distribution. Plasma waves and other coherent structures in

the plasma do not constitute thermal plasma. When the plasma equilibrates through mode

mixing into randomness with maximum entropy then it is considered thermal.

The space-charge electric fields that is excited in a plasma depend upon the plasma

density, in addition to the magnitude of charge displacement force. It is the charge dis-

placement from equilibrium between the plasma electrons and ions which creates the fields.
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Therefore larger the electron density (assuming high enough force and energy of the per-

turbation) higher the number of electrons that can be displaced from equilibrium. It

should be noted that the electron plasma frequency ignoring the plasma-ion dynamics

(Ê2
pe

px, tq “

4fin

e

px,tqe

2

m

e

) is determined by the plasma density, n
e

px, tq (directly from Gauss’

law and Newton’s second law of motion). It is this plasma field which has a significant

longitudinal component to provide a high acceleration gradient in addition to the trans-

verse focussing fields. We now look at the space charge fields excited in the rest-frame of

the laser. If the force acting on the plasma electrons is below the electrostatic force of the

background plasma-ions, they remain within the electrostatic potential well of the plasma

ions. External energy coupled into the plasma excites motion of the electrons (electron gas

neutralized by ions) to the leading order at the plasma electron frequency Ê
pe

.

The space-charge force equation on a representative laser excited plasma electron oscil-

lating in the space charge Langmuir or plasma-electron wave is dp̨
e

{dt “ ´eĘ
pe

“ eǪ̀„
pm

.

Where „
pm

is the acceleration structure potential created in the electron plasma wave (in

the rest-frame of the wave). This potential is also referred to as ponderomotive poten-

tial because it is excited by the ponderomotive force of a laser pulse envelope. We can

infer the plasma space-charge field, oscillating at Ê
pe

, based upon the electron momen-

tum in the rest-frame of the plasma wave, |Ę
pe

| “

`
m

e

cÊ

pe

e

˘
“

pm

—
pm

. With the relativistic

correction (in the rest-frame of the propagating plasma-wave) to the electron plasma fre-

quency, |Ę
pe

| “

ˆ
m

e

cÊ

“

e

“1
pe

e

˙
“

pm

—

pm?
“

e

. We can further reduce “
pm

—
pm

“

b
“2

pm

´ 1 thereby

|Ę
pe

| “

ˆ
m

e

cÊ

“

e

“1
pe

e

˙ b
“

2
pm

´1
“

e

. The free-space electron in laser field has transverse mo-

mentum at the laser frequency Ê0. Hence, the plasma electron momentum in the direct

irradiation of the laser field is —̨
e

“
e

equal to the laser field ąpx, tq in the plasma (when

Ê0 " Ê
pe

). However, if the interacting laser pulse is short and the plasma electrons creat-

ing the fields are not collocated with the laser field, “
e

» 1 and |Ę
pe

| »

ˆ
m

e

cÊ

“

e

“1
pe

e

˙
“

pm

.

When the laser field is collocated, in addition to quivering the electrons in the plasma
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wave crest, it also ponderomotively accelerates them. The plasma electrons oscillating

longitudinally have momentum corresponding to the ponderomotive force —̨
pm

“
pm

in the

rest-frame of the laser. The maximum amplitude of the electron plasma-wave is therefore

dependent upon the magnitude of the ponderomotive force. The limit of the maximum

longitudinal field while the plasma electrons are still bound to the background ions is

referred to as the wave-breaking limit. As the plasma field approaches the wave-breaking

limit the ponderomotively driven plasma-electron density is bunched into a tighter volume.

At wave-breaking the electrons in the wave-crest are all at the same location leading to the

limit of density steepening.

If some of the plasma electrons can attain velocities on the order of the phase velocity

of the plasma wave, in the rest-frame of the plasma wave they experience the plasma

wave-fields. Generally, it is assumed that the fraction of such fast electrons is very small

compared to the background plasma density. Such considerations are important in terms of

the energy balance, that is, if the plasma electrons extract the field energy then the plasma

wave will collapse. Plasma electrons creating the plasma electron density wave can also be

trapped in the potential „
pm

of the wave and get accelerated if |e„
pm

| ° p“trap

e

´ 1qm
e

c2.

Where |“trap

e

—trap

e

| is the trapped electron momentum in the rest-frame of the laser, relative

to the plasma wave momentum. It should also be noted that the potential „
pm

is in the

rest-frame of the laser or the frame co-moving with the plasma-wave. Making a coordinate

transform from the rest-frame of the driver to the lab-frame, „
lab´frame

“

1
“

„

„
pm

. Thus

the trapping condition for an electron in the lab-frame is ´„
lab´frame

° p

“

trap

e

“

„

´

1
“

„

q

m

e

c

2
e

.

The electrons that are locked with a phase of the potential in a limiting condition have

—trap

e

“ —
„

. Thus at the onset of trapping the Lorentz factors are, “trap

e

“ “
„

. The trapping

condition can be written as,

„
lab´frame

†

ˆ
1
“

„

´ 1
˙

m
e

c2

e
(1.14)

More detailed analysis is provided in the later chapters.
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The plasma electrons are oscillating in the plasma wave and thereby the phase of

the plasma-wave relative to the plasma electrons decides the magnitude of the relative

momentum of the electrons. The laser is at the head of the electron plasma wave (the wave

is in the wake of the laser) of relativistic phase velocity which equals the group velocity

of the laser. The electron density trapped in the plasma wave is subject to the total

energy equation depending on the number density of the ponderomotive electrons. The

trapping of plasma electrons and the transfer of energy from the space-charge plasma fields

leads to e�ective lowering of the fields. This is referred to as beam-loading. Similarly, in

laser-plasma ion accelerators the transfer of energy from the acceleration structure to the

trapped ions is a mechanism of energy loss through beam-loading. However, in the ion

accelerators the ions to be trapped are initially at rest. Therefore only the amplitude of

the snowplow potential and not the relative phase of the ion velocity to the potential is

important. The long term energy dissipation of the plasma fields and deconstruction of

the density structures is through mode mixing, collisions, kinetic e�ects such as Landau

damping etc.

The wave-breaking limit is estimated by the length of the trajectory of the the oscillating

plasma electron (with speed v
pe

) in the frame of reference of the plasma wave. For the

plasma electrons breaking the electrostatic pull of the plasma ions, the trajectory length in

the time duration of 2fi{Ê
pe

exceeds the plasma wavelength ⁄
pe

. It can also be estimated

from the Gauss’s law in a plasma, k̨
p

¨Ę
pe

“ 4fin
e

e. The maximum electric field of a plasma

wave in the non-relativistic excitation of plasma electrons is |Ę
pe

| “ Ê
pe

`
m

e

c

e

˘
. Therefore

in the non-relativistic regime the limit of the plasma electric field is E
pe

9Ê
pe

9

?

n
e

. So the

maximum longitudinal electric field that can be excited by a laser in the plasma is when

Ê
pe

“ Ê0. When Ê
pe

° Ê0 the laser frequency is below the plasma electron characteristic

frequency and driver is detuned. This is opposite to the case when Ê0 " Ê
pe

. More details

of the trajectory crossing is provided below.
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1.4 Acceleration structures in the plasma

In plasma-based electron acceleration mechanisms the acceleration structure is a propagat-

ing plasma electron density wave. The plasma wave is excited by electromagnetic energy

or particle beams in their wake. The energy coupled into the plasma can be used to cre-

ate traveling density structures with longitudinal and transverse space-charge fields in the

frame of the propagating energy. These fields are used to transport and accelerate beams.

In laser-plasma electron accelerators the acceleration structure is created by the pon-

deromotively driven electron density displacement relative to the stationary background

plasma-ions[5]. Higher the ponderomotive force larger the electron density displacement.

The density accretion in the plasma density wave is limited by the displacement of all the

plasma electrons. However, the fields are limited by the amplitude of the spatial charge

separation from the equilibrium. The acceleration structure is sustained until the laser can

propagate in the plasma. This is limited by the depletion of laser to low enough energy

until it is too weak (its ponderomotive force is weak) to excite a large amplitude electron-

plasma wave. Since the laser pulse excites an electron plasma wave, it is guided in the

rarer electron density region (lower refractive index channel) enclosed by the higher elec-

tron densities surrounding it. The laser velocity can be controlled by varying the plasma

density. However, the plasma electrons that are driven ponderomotively gain significant

momentum to get trapped in the plasma electron wave and as a result get accelerated.

In particle beam-plasma interactions the plasma density structures are created by the

beam fields interacting with the plasma [6]. Beam density spatial distribution governs the

beam fields. The electron plasma wave is driven by the force of the self-fields of the particle

beam on the plasma electrons. An intense relativistic beam with density comparable to the

plasma loses significant energy to the plasma, but does not slow down. So, the electron-

plasma waves propagate at an almost constant beam velocity in the plasma. However,

the plasma fields created by the beam fields can a�ect the beam transversely such as by

focussing it or longitudinally by modulating the beam particle velocity. Thereby the beam
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density distribution can be significantly modified inside the plasma. The plasma electron

density accretion driven in the frame of the wave by the beam is of the order of the beam

density ”n » n
b

. Hence if the beam fields can drive a high enough density accretion

then the plasma fields are limited by the plasma density. For beam density exceeding

the plasma density plasma electron waves in the wake of the beam can have large enough

electron accretion to lead to bared ion regions where electrons are evacuated. However,

it is possible to create spatial beam profiles that have higher self-fields and can thereby

create higher magnitude space charge wave in the plasma.

Also, it is noted that relativistic beam is desirable for beam-excited plasma electron

wave. It is well-known that it is easier to focus a relativistic beam because the beam’s elec-

trostatic self-fields are compensated by the magnetic pinch force which grows with velocity.

Additionally a highly relativistic beam has a large beta-function and can be transported

over a larger length without expanding transversely, — “ ‡
r

{‡
◊

and can propagate for

longer distances.

1.5 Plasma-electron momentum equations - Fluid model

We start with the Maxwell’s equations (in microscopic form in Gaussian units) governing an

electromagnetic wave propagating in a plasma, Ǫ̀ˆĘ “ ´

1
c

B ˛

B

Bt

, Ǫ̀ˆB̨ “

4fi

˛

J

c

`

1
c

B ˛

E

Bt

, Ǫ̀.Ę “

4fifl “ 0, Ǫ̀.B̨ “ 0, with the electric field of light evolving in time-space as, Ę “ E0cospkz ´

Êtqẑ. The sources in these equations are J̨ “ �
j

q
j

n
j

v̨
j

, fl “ �
j

q
j

n
j

. We use the fluid

equations to describe the plasma. The zeroth-order moment - continuity equation is Bn

j

Bt

´

Ǫ̀.p ˛n
j

v
j

q “ 0. The first-order moment - the equation of motion is, dp̨

dt

“

´
B
Bt

` v̨
j

Ǫ̀
¯

p̨
j

“

q
j

´
Ę `

1
c

v̨
j

ˆ B̨
¯

´⇢
⇢⇢>

cold

Ǫ̀P
j

, where, p̨
j

“ “—m
j

v
j

and P
j

is the thermal pressure.

Now taking curl on both the sides of the force balance equation for electron, B
Bt

Ǫ̀ ˆ p̨ ´

Ǫ̀ˆ v̨ˆǪ̀ˆ p̨ “ q
´

Ǫ̀ ˆ Ę `

1
c

Ǫ̀ ˆ v̨ ˆ B̨
¯

ñ

B
Bt

Ǫ̀ˆ

´
p̨ `

q

c

Ą
¯

“

q

c

Ǫ̀ˆ v̨ˆB̨ `Ǫ̀ˆ v̨ˆǪ̀ˆ p̨.

Simplifying we obtain the equation of the canonical momentum, P̨ “ p̨ `

q

c

Ą,
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B

Bt
Ǫ̀ ˆ

´
p̨ `

q

c
Ą

¯
“ Ǫ̀ ˆ v̨ ˆ

´
Ǫ̀ ˆ

´q

c
Ą ` p̨

¯¯
(1.15)

Defining relativistic vorticity, as �̨ “ ÒˆP̨, where, Ǫ̀ˆP̨ “ Ǫ̀ˆp̨`

q

c

B̨ “ Ǫ̀ˆ

´
q

c

Ą ` p̨
¯

.

We know that, for relativistic vorticity B
Bt

�̨ ´ Ǫ̀ ˆ v̨ ˆ �̨=0. If, �pr̨q “ 0 at any point space

then it is zero always, B

t

�pr̨q “ 0. In 1-D considerations, this leads to the conservation of

canonical momentum,

B

t

PK “ 0 ñ B

t

ˆ
pK ´

eAK
c

˙
“ 0 (1.16)

p̨K “

eĄK
c

Ñ

p̨K
m

e

c
“ ą (1.17)

In higher dimensions it can be shown that the canonical momentum is conserved in

lower orders.

We also get the equation for ponderomotive force of the laser from this using the vector

calculus identity, mc2Ǫ̀“ “ ´v̨ ˆ Ǫ̀ ˆ p̨ ´ v̨.Ǫ̀p̨, which gives us the force balance as,

B

t

p̨ “ ´eĘ ´ m
e

c2Ǫ̀“

“ eǪ̀� ´ m
e

c2Ǫ̀“

B

t

p̨

m
e

c
“ cǪ̀p„ ´ “q (1.18)

This equation is di�erentiated in time, we have, B

2
t

p̨ “ ´eB

t

Ę ´ mc2
B

t

Ǫ̀“. Taking the

vorticity, � “ 0 ñ Ǫ̀ ˆ p̨ “

e

c

B̨, and using the Ampere’s law with Maxwell’s corrections,

cǪ̀ ˆ Ǫ̀ ˆ p̨ “ B

t

Ę ` 4cfiJ̨ , J̨ “ ´env̨ “ ´en p̨

“

.

B

2
t

p̨ ` c2Ǫ̀ ˆ Ǫ̀ ˆ p̨ “ ´

4fie2n

m
e

p̨

“
´ mc2

B

t

Ǫ̀“ (1.19)

Using the Gauss’ law, Ǫ̀.Ę “ ´4fien, we obtain the density perturbation,
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n “ n0 `

1
4fie2 Ǫ̀.

´
B

t

p̨ ` mc2Ǫ̀“
¯

(1.20)

Using the density perturbation in the equation we get the Master equation for the

plasma waves in a cold-collision-less plasma,

B

2
t

p̨ ` c2Ǫ̀ ˆ Ǫ̀ ˆ p̨ “ ´

„
Ê2

p0 `

1
m

´
B

t

p̨ ` mc2Ǫ̀“
¯⇢

p̨

“
´ mc2

B

t

Ǫ̀“ (1.21)

From this we get the longitudinal waves,

Ǫ̀ ˆ p̨ “ 0 ñ pB

2
t

` Ê2
p0qp̨ “ 0

and transverse waves,

Ǫ̀.p̨ “ 0 ñ

˜
B

2
t

´ Ò2
`

Ê2
p0
“

¸
p̨ “ 0.

Using Ampere-Maxwell’s equation, Ǫ̀ˆB̨ “

1
c

B

t

Ę`

4fi

c

J̨ ñ Ǫ̀ˆǪ̀ˆĄ “

1
c

B

t

´
´1
c

B

t

Ą ´ Ǫ̀„
¯

`

4fi

c

J̨ ñ

1
c

2 B

2
t

Ą ` Ǫ̀ ˆ Ǫ̀ ˆ Ą “

4fi

c

J̨ ´

1
c

B

t

Ǫ̀„. This gives us, 1
c

2 B

2
t

AK ´ B

2
ÎAK “

4fi

c

JK “

´

4fi

c

enpK
“

“ ´

4fi

c

en
eAK
mc

“

“ ´

4fie

2

mc

2
“

pn0 ` ”nqAK. Replacing for the plasma frequency,

1
c

2 B

2
t

AK ´ B

2
ÎAK “ ´

4fie

2

mc

2
“

pn0 ` ”nqAK “ ´

Ê

2
p0

c

2

´
1 `

”n

n0

¯
1
“

AK. The Lorentz factor is,

“ “

c
1 `

p

2
Î

m

2
c

2 `

e

2
A

2
K

m

2
c

4 . The vector potential evolution follows,

ˆ
1
c2 B

2
t

´ B

2
Î

˙
AK » ´

Ê2
p0

c2

ˆ
1 `

”n

n0
´

e2A2
K

2m2c4

˙
AK (1.22)

From the continuity eq., B

t

”n ` n0Ǫ̀”v̨ “ 0, we have, B

2
t

”n

n0
` Ǫ̀”B

t

v̨ “ 0. The change

in velocity is, B

t

v̨ “ ´

e

m

”Ę ´ c2Ò
´

1 `

e

2
A

2
K

2m

2
c

4

¯
. The equation of motion of the density

perturbation is thus,

B

2
t

”n

n0
`

4fie2n0
m

e

”n

n0
“ c2Ò2 e2A2

K
2m2c4 (1.23)
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When the electric fields of the wake are less than the cold-plasma wave-breaking limit,

E0 “

m

e

cÊ

p

e

, the waves are linear sinusoidal oscillations with frequency Ê
p

and a phase

velocity v
p

(» c). This non-relativistic wave-breaking limit can be derived by assuming that

this linear sinusoidal field has the form Ę “ E0sinpÊ
p

pz{v
p

´ tqqẑ. Then from Gauss’s law,

Ǫ̀.Ę “ ´4efipn
e

´ n0q. But, the spatial variation of the electric field is at k̨
p

“

Ê

p

c

ẑ, hence,

k
p

E0 “

Ê

p

c

E0 “ ´4efipn
e

´ n0q ñ E0 “

m

e

cÊ

p

e

. Similarly, relativisitic cold-plasma wave-

breaking limit can be derived as, E
wb

“

a
2p“

p

´ 1qE0. Cold-plasma theory holds good in

the limit, “
p

—
th

! —
p

, where c—
th

“

b
k

B

T0
m

. For relativistic warm plasma, “
p

—
th

" 1, we

have, E
W B

“

E0
—

p

.

The wave-breaking limit in cold plasma for electron plasma waves of relativistic phase-

velocity can be derived by starting with the equations for purely longitudinal oscillations

in the z-direction [3],

d2“e

z

p1 ´ —
„

—e

z

q

d·2 “ Ê2
pe

—2
„

ˆ
—e

z

—
„

´ —e

z

˙
(1.24)

Upon integrating this equation with d · we obtain,

1
2

ˆ
d“e

z

p1 ´ —
„

—e

z

q

d·

˙2
“ Ê2

pe

—2
„

´
´p1 ´ —2

ez

q

´1{2
` C

¯
(1.25)

The constant of integration can be found using the fact that at the velocity amplitude

of longitudinal oscillation, maxp—
ez

q the left hand side is zero, so C “ p1 ´ —2
m

q

´1{2. We

obtain the integrated equation as,

1
2

ˆ
d“e

z

p1 ´ —
„

—e

z

q

d·

˙2
“ Ê2

pe

—2
„

´
´p1 ´ —2

ez

q

´1{2
` p1 ´ —2

m

q

´1{2
¯

(1.26)

The electric field can be obtained in the plasma-wave frame r̂ ¨ r̨ ´V
„

t using the Lorentz

equation, m
e

cp

—

e

z

—

„

´ 1q

d“

e

z

—

e

z

d·

“ ´eE
z

. We use the relation in eq.1.26, 1
—

„

d“

e

z

d·

´

“

e

z

—

e

z

d·

“

˘

?

2Ê
pe

`
p1 ´ —2

m

q

´1{2
´ p1 ´ —2

ez

q

´1{2˘1{2. We have used d· “ ´

1
V

„

dpr̂ ¨ r̨ ´ V
„

tq.
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—e

z

d“e

z

—e

z

d·
“

1
2“e

z

d p“e

z

—e

z

q

2

d·
“

1
2“e

z

d
`
“e 2

z

´ 1
˘

d·
“

d“
e

d·
(1.27)

We use the identity in eq.1.27 to obtain the longitudinal electric field, E
z

.

eE
z

“ m
e

c

ˆ
—e

z

—
„

d“e

z

—e

z

d·
´

d“e

z

—e

z

d·

˙

“ m
e

c

ˆ
1

—
„

d“e

z

d·
´

d“e

z

—e

z

d·

˙

E
z

“ ˘

m
e

cÊ
pe

e

?

2
´

p1 ´ —2
m

q

´1{2
´ p1 ´ —2

ez

q

´1{2
¯1{2

E
z

“ ˘

m
e

cÊ
pe

e

?

2 p“
m

´ “
ez

q

1{2 (1.28)

The maximum of the longitudinal electric field in purely longitudinal oscillations would

occur when the oscillating electron trajectory is at its extremum. During the extremum

the oscillating electron velocity is zero, —
ez

“ 0.

Emax

z

“

m
e

cÊ
pe

e

a
2p“

m

´ 1q (1.29)

In the low amplitude longitudinal momentum regime, “
m

» 1, and therefore “
m

“

p1´—2
m

q

´1{2
“ 1`

1
2—2

m

. Using this is in eq.1.29, we have Emax

z

“

m

e

cÊ

pe

e

b
2p1 `

1
2—2

m

´ 1q.

So, Emax

z

p“
m

„ 1q “

m

e

cÊ

pe

e

—
m

.

1.6 Plasma Instabilities driven by Laser

The main scattering processes in laser-plasma interaction are as follows and are also shown

in Fig.1.1 corresponding to the plasma density at which they have a significant growth rate

[8]:

• Ion Acoustic decay instability Ê0 Ñ Ê
p

` Ê
i

at n » n
cr

• Raman instability Ê0 Ñ Ê
p

` Ê
sc

at n §

n

cr

4
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Figure 1.1: Competing laser plasma coupling processes

• Brillouin instability Ê0 Ñ Ê
p

` Ê
sc

at n § n
cr

• Two plasmon decay instability Ê0 Ñ Ê
p

` Ê
sc

at n »

n

cr

4

There are also kinetic version of all these processes such as Stimulated Compton scat-

tering. Also other instabilities play a role in coupling energy from laser to plasma, these

instabilities are such as filamentation instabilities which occur at n § n
cr

.

A feedback process is established during the laser-plasma interactions such that it

couples the energy of the plasma modes in density fluctuations back into the laser as a

modulation. This further reinforces laser to couple into the modes that dominate the

density fluctuations. This feedback loop can be visualized as follows:

• initial fluctuations - The laser radiation pressure or ponderomotive forces generate a

current by imparting oscillating momentum to the electrons, ”J “ ´e ”n
e

v
osc

9 ”n E
laser

.

• plasma wave excitation - The current ”J which is a source term in the wave-equation

generates a wave whose amplitude is ”E.

• laser field modulation - This electric field of the plasma can modulate the laser field

30 of 98 Aakash A. Sahai



Phase-mixing self-injection in a rising plasma density gradient 1.6.0

E
laser

Ñ ”E. E
laser

.

• Feedback - The modulated laser field then modulates the radiation pressure or the

ponderomotive force at the same spatial scale as the ”E, leading to a mode further

reinforcing its own density fluctuations at ”n .

Considering the light waves in a plasma and starting with the Ampere’s law, Ǫ̀ ˆ

B̨ “

4fi

˛

J

c

`

1
c

B ˛

E

Bt

and working in terms of the magnetic vector potential, B̨ “ Ǫ̀ ˆ Ąwith

Coulomb gauge Ǫ̀.Ą “ 0, we have, the Faraday’s law in the presence of a potential „

as, Ę “ ´Ǫ̀„ ´

1
c

B ˛

A

Bt

. Substituting, Ǫ̀ ˆ Ǫ̀ ˆ Ą “

4fi

˛

J

c

`

1
c

B
´

´˛Ò„´ 1
c

B ˛

A

Bt

¯

Bt

ñ Ǫ̀p���*
gauge

Ǫ̀.Ąq `

´
´Ò2

`

1
c

2
B2

Bt

2

¯
Ą “

4fi

˛

J

c

´

B˛Ò„

Bt

. Considering, the Poisson equation, Ò2„ “ ´4efin
e

and

the Continuity equation, Ǫ̀.J̨ “ ´eBn

e

Bt

.

Combining these two we have, ◆◆̨Ò J̨
longitudinal

“

B
Bt

Ò⇤2„

4fi

. And, transverse component of

the current drives the wave, thereby,
´

´Ò2
`

1
c

2
B2

Bt

2

¯
Ą “

4fi

c

J̨
transverse

`⇠⇠⇠⇠⇠⇠⇠4fi

c

J̨
longitudinal

´

�
��B˛Ò„

Bt

. If it is assumed that Ą.Ǫ̀n
e

“ 0, then the transverse current simplifies as J̨
transverse

“

en
e

v̨K
e

. When vK
e

! c, m
e

Bv̨

K
e

Bt

“ ´eĘK “ ´

e

cm

e

´
´

B ˛

A

Bt

¯
ñ v̨K

e

“

e

cm

e

Ą. Thereby,

J
transverse

“ en
e

´
e

cm

e

Ą
¯

and when replaced into the transverse wave equation,
´

´Ò2
`

1
c

2
B2

Bt

2

¯
Ą “

4fie

2
n

e

c

2
m

e

Ą.

Since, the magnetic vector potential has two contributing terms, one from the Laser

field itself and the other scattered component from the plasma density fluctuations being

excited by the interaction with the laser, Ą “ Ą
laser

` Ą
scattered

. We have the wave

equation where there is interaction of laser field and the density fluctuations (modeled as a

current),
´

´c2Ò2
`

B2

Bt

2 ´ Ê2
pe

¯
Ą

scattered

“

4fie

2
n

e

m

e

Ą
laser

. The left hand side of the equation

has only the scattered component because we know the dispersion relation of the transverse

component of the laser field,
´

´c2Ò2
`

B2

Bt

2 ´ Ê2
pe

¯
Ą

laser

“ 0.

Raman instability is due to an electron plasma wave coupling with the incident laser
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field and modulating it. Hence, considering a warm electron fluid (n
e

, u
e

, p
e

) with fixed

background ions, we have, the Continuity equation, Ǫ̀.J̨ “ ´eBn

e

Bt

ñ Ǫ̀. ˛n
e

u
e

“

Bn

e

Bt

.

And, the Vlasov equation is, Bų

e

Bt

` ų
e

Ǫ̀.ų
e

`

e

m

e

´
Ę `

ų

e

ˆ ˛

B

c

¯
“ ´

˛Òp̨

e

n

e

m

e

ñ

Bų

e

Bt

`

1
2Ǫ̀.ų2

e

`

e

m

e

´
Ę `

ų

e

ˆ ˛

B

c

¯
“ ´

˛Òp̨

e

n

e

m

e

. Now, the hot electron velocity can be expressed as, ų
e

“ ų
L

`

ą
´

“

e

˛

A

m

e

c

¯
. The Vlasov equation then gives us the dispersion relation for the warm plasma,

Bų

L

Bt

`

⇢
⇢
⇢B

Bt
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˛

A
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e
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1
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Ą

”
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ų
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`
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˛

A

m

e

c

¯ı˙
´

˛Òp̨

e

n

e
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ñ

Bų

L

Bt

“

e

m

e
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1
2Ǫ̀.

´
ų

L

`

e

˛

A

m

e

c

¯2
´

˛Òp̨

e

n

e

m

e

. Linearizing the equations, we have, n
e

“ n
i

`

ñ
e

, Ą “ Ą
laser

` Ą
scattered

, „ “ „̃. We obtain, n0Ǫ̀.˛̃u
e

`

Bñ

e

Bt

“ 0, B˛

ũ

L

Bt

“

e

m

e

Ǫ̀„̃ ´

e

2

m

2
e

c

2 Ǫ̀.Ą
L

.Ą
scattered

´

3v

2
e

˛Ò˛

ñ

e

n0
and, Ò2„ “ 4fieñ

e

. Taking time derivative of the linearized

Continuity equation, n0Ǫ̀.B˛

ũ

e

Bt

`

B2
ñ

e

Bt

2 “ 0, and taking the divergence of the dispersion

relation for the warm plasma, B˛Ò˛

ũ

L

Bt

“

e

m

e

Ǫ̀2„̃ ´

e

2

m

2
e

c

2 Ò2Ą
L

.Ą
scattered

´

3v

2
e

Ò2
˛

ñ

e

n0
. Using the

Poisson equation, we get, the dispersion relation due to the density fluctuations modulating

the laser field,
´

B2

Bt

2 ` Ê2
pe

´ 3v2
e

Ò2
¯

ñ
e

´

n0e

2

m

2
e

c

2 Ò2Ą
L

.Ą
scattered

.

Fourier analyzing the dispersion relation by taking the harmonic excitation of the laser

field, Ą
L

“ Ą0cospk0z ´ Ê0tq, we get, fourier domain dispersion of the scattered light,
`
Ê2

´ k2c2
´ Ê2

pe

˘
Ą

scattered

pk̨, Êq “

4fie

2
2m

e

Ą0 rñ
e

pk ´ k0, Ê ´ Ê0q ´ ñ
e

pk ` k0, Ê ` Ê0qs and,

the fourier domain dispersion relation of the density fluctuations,
`
Ê2

´ Ê2
ek

˘
ñ

e

pk̨, Êq “

k

2
e

2

2m

2
e

c

2 A0
”
Ą

scat

pk ´ k0, Ê ´ Ê0q ´ Ą
scat

pk ` k0, Ê ` Ê0q

ı
, where Ê

ek

“

`
Ê2

` 3v2
e

k2˘ 1
2 . Elim-

inating A0 from the equation, with Ê0 “ Ê
pe

and neglecting the higher frequency di�erence

non-resonant terms ñ
e

pk ´ 2k0, Ê ´ 2Ê0q, ñ
e

pk ` 2k0, Ê ` 2Ê0q, we get the Fourier do-

main dispersion,
`
Ê2

´ Ê2
ek

˘
“

Ê

2
pe

k

2
v

2
osc

4

”
1

Dpk´k0,Ê´Ê0q `

1
Dpk`k0,Ê`2Ê0q

ı
, where, Dpk, Êq “

Ê2
´ c2k2

´ Ê2
pe

.
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For back or side scattered light, we can neglect the upshifted, Dpk ` k0, Ê ` 2Ê0q ñ

D`wave,
`
Ê2

´ Ê2
ek

˘
D´

“

Ê

2
pe

k

2
v

2
osc

4 , and take Ê “ Ê
ek

` ”Ê & ”Ê ! Ê
ek

. The maximum

side or back-scatter growth occurs when the frequency of these waves is resonant with the

frequency of the exciting laser, pÊ
ek

´ Ê0q

2
´ c2

pk ´ k0q

2
´ Ê2

pe

“ 0. Then ”Ê “ i“, the

instability growth rate is, “ “

kv

osc

4

”
Ê

2
pe

Ê

ek

pÊ0´Ê

ek

q
ı
, for k “ k0 `

Ê

c

´
1 ´

2Ê

pe

Ê0

¯ 1
2 .

The Raman instability on a linear density profile with scale length –, has the threshold

condition of v

osc

c

•

2
k0–

`
v

gs

c

˘
, where, v

gs

is the group velocity of the scattered light. Raman

scattering can change the light absorption (e�ciency) into the medium due to backscatter

or changing the location (symmetry) of the maximum absorption. The electron plasma

wave generated can result in hot electrons that change the plasma characteristics.

The Brillouin instability has both the electron and the ion thermal velocity. The dis-

persion relation, Ê2
´ k2c2

s

“

k

2
v

2
osc

Ê

2
pi

4

”
1

Dpk´k0,Ê´Ê0q `

1
Dpk`k0,Ê`2Ê0q

ı
, where, c

s

“

b
ZT

e

M

and Ê
pi

“ Ê
pe

b
Zm

e

M

i

.

The Filamentation instability can also be obtained from the same dispersion relation as

the Brillouin instability. In this instability the modulation in the density fluctuations are

amplified. In Ponderomotive filamentation, there is high enough density fluctuations and

depletion due to the light pressure. In Thermal filamentation, there is density fluctuations

due to collisional heating and plasma expansion.

From experiments and computer simulations it has been found that the collective

plasma e�ects due to the plasma waves have the following scaling laws:

• e�ects are more potent in long scale-length plasmas

• reduce with shorter laser wavelength light

• reduce with laser beam incoherence

There is also observation of supra-thermal electrons being generated.

33 of 98 Aakash A. Sahai



Phase-mixing self-injection in a rising plasma density gradient 1.7.0

1.7 Particle-In-Cell simulations: short introduction

For a deeper understanding of the structure and magnitude of the linear and non-linear

plasma wake, visualization with Particle-in-Cell (PIC) simulations results is very useful. It

is also quite useful to verify analytical models developed using fluid and kinetic equations,

as we will show later in this thesis.

We briefly introduce PIC particle tracking simulation in this section. For further ex-

ploration into this subject, extensive literature is available, most significantly the textbook

titled “Plasma Physics via Computer Simulation” by CK Birdsall and AB Langdon [22].

Particle-in-Cell computational method

Analytically solving for the exact motion of all the plasma electrons using the governing

equations - the Maxwell equations for fields and the equations of motion for electrons,

is not possible when describing wakes in higher dimensions or under non-linear density

perturbation. The Maxwell’s equations describe the electric and magnetic fields generated

by spatial configuration and velocities of the individual particles and the equations of

motion of plasma electron use these fields to provide a description of the motion of particles.

Under approximations regarding the “time-scales” and “spatial-scales” of the problem

under consideration - certain terms in the plasma physics equations are negligible. These

terms in plasma physics equation represent di�erent physical e�ects that become relevant

or irrelevant in accordance to the scales of the problem. There are two important classi-

fications of the plasma physics e�ects - (i) time-scales: collisional and collision-less e�ects

and (ii) spatial-scales: averaged (fluid) and individual particles (Kinetic).

Fortunately, computers can be used to solve the set of equations for field and particle

motion for individual electrons while also taking into account the e�ect spatial configuration

and velocities of other electrons having an e�ect on the electron under consideration. It

is well known that time-domain methods for solving Maxwell’s equation use a spatial grid

to discretize the space that has to be modeled and step in time to advance the fields

in time over the entire space. The most common method to implement this scheme is
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Foreword 

The complex nature of the problems encountered in plasma physics has 
motivated considerable interest in computer simulation, which has played an 
essential role in the development of plasma theory. In addition, computer 
simulation is also becoming an efficient design tool to provide accurate per-
formance predictions in plasma physics applications to fusion reactors and 
other devices, which are now entering the engineering phase. 

Computer simulation of plasmas comprises two general areas based on 
kinetic and fluid descriptions, as shown in Figure a. While fluid simulation 
proceeds by solving numerically the magnetohydrodynamic (MHD) equa-
tions of a plasma, assuming approximate transport coefficients, kinetic simu-
lation considers more detailed models of the plasma invol ving particle 
interactions through the electromagnetic field. This is achieved either by 
solving numerically the plasma kinetic equations (e.g. Vlasov or Fokker-
Planck equations) or by "particle" simulation, which simply computes the 
motions of a collection of charged particles, interacting with each other and 
with externally applied fields. The pioneering work of Dawson and others in 

KINETIC 
DESCRIPTION 

FLUID 
DESCRI PTION 

VLASOV, 
FOKKER-PLANCK 

CODES 

PARTICLE HYBRID MHO 
CODES --- CODES CODES 

Fteure a Classification of computer simulation models of plasmas. 

xiii 
Figure 1.2: Classification of plasma physics codes based upon di�erent time and spatial
scales. Di�erent spatial and time-scales of the problem leading to di�erent codes (repro-
duced from [22]).

Finite-Di�erence Time-Domain (FDTD) method [17]. This method uses a staggered grid

for electric and magnetic fields to allow the curls to align in space. It also uses the time

leapfrog method to advance the time-step.

Particle-In-Cell (PIC) is a time-domain method and it ignores full calculations of col-

lision terms. It inherently provides the kinetic description. The algorithm uses a time-

domain electromagnetic solver in conjunction with particle pushers to implement the

Lorentz force equation. However, when particles are involved - it is important to conserve

total particle number and several other constraints are imposed on the computational for-

mulations. One may imagine that using this solver all the particles in a problem could be

simulated using the computer. However, this is not possible as it would lead to currently

unreachable memory demands or equivalently require unattainable computational power.

Even if the problem is parallelized several million individual processors may be required to

work in conjunction to track all the particles over the simulation volume of the problem.

As an example a plasma of dimensions ten times the Ti:Sapphire laser wavelength - 100

µm ˆ 100 µm ˆ 100 µm with a plasma of density n0 “ 1018cm´3 about 1012-Trillion par-

ticles have to be tracked. To overcome this particle number requirement a macro-particle

is chosen out of a set of particle that are together in the phase-space.

The Lorentz force equation is applied onto the macro-particle at every half-time step.

Once the particles have been pushed fields are recalculated using the Maxwell’s equation.

To model reasonable interaction between the particles in real-space and grid at discretized

space, the particle density is deposited onto the grid using a charge distribution method,
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where the grid points that are nearest neighbors get deposited with charge weighted by its

distance from the point.

Figure 3.1: The basic loop for PIC simulations. Time is increased in steps of �t so
that t = to + n � �t

figuration of particles with certain positions and momenta, and electromagnetic field

values known on a staggered grid that is defined throughout the simulation space, a

PIC-code first calculates the fields at the particle positions by interpolating the fields

on the grid to the particle positions. The dimensions of the grid cells are chosen to

resolve the minimum wavelength of interest for the simulated problem. The code then

uses these fields and the particle information to calculate the new positions and new

momenta of the particles after a suitably chosen timestep, dt. The updated position

and momentum data are then used to find the sources of the electromagnetic field,

i.e., the current and the charge density are deposited onto the grid. In the final step

of the loop, the sources are used to advance the electromagnetic fields in time by a

timestep, dt, via Maxwell’s equations.

In the following sections of this chapter we will review some of the details for

the numerical algorithms of this loop for the 2D cartesian, 3D cartesian, and 2D

27

Figure 1.3: Time advance loop for the Particle in Cell codes. Time-advance of PIC
simulations used for computationally solving the set of Maxwell, Lorentz and fluid equations
in the time-domain for a set of particles used to represent the plasma. (reproduced from
[15]). This shows the sequence in which the Maxwell’s equations are solved on a grid to
obtain the fields. Subsequently, these fields are used to calculate the force on each of the
particle from the fields. The particle position and momentum are updated in accordance
with the Lorentz equation. The updated source terms in the Maxwell’s equations namely,
particle density and particle current, are now used to calculate the fields.

1.8 Linear vs. Non-linear plasma-waves

Linear wake with small density perturbation are shown in Fig.1.6 for a laser driver and

Fig.1.7 for an electron beam driven wake.

When the density perturbation ”n “ n ´ n0 where n is the electron density in a

perturbation is such that ”n ! 1 then the fluid equations can be linearized in the first-

order of perturbation ”. However, as the energy sources coupling into the plasma becomes

more intense (power density) they can drive larger density perturbations. Under the strong

perturbation condition Op”2
q terms are not negligible and the equations have to retain all

the higher-order terms. In the quasi-non-linear and the non-linear regime generally full

analytical solutions are not possible and numerical solutions are used to characterize them.
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1.8.1 Linear plasma electron waves

ions!

Laser-driven wake - Linear plasma wave 
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Figure 1.4: The spatial profile and on-axis line-out of normalized plasma electron density
in 2D cartesian space for a linear laser wake from Particle-in-Cell (PIC) simulations. The
laser pulse has Gaussian radial profile of full-width at half maximum (FWHM) radius of
4 c

Ê

pe

launched at the transverse dimension of 15 c

Ê

pe

. The peak normalized laser vector
potential is a0 “ 0.1 and the FWHM pulse length is about 2 c

Ê

pe

. The laser frequency to
plasma frequency ratio of Ê0

Ê

pe

“ 10. The density perturbation in this case is ”n “ 0.01.
Importantly note that ”n 9 a2

0 “ 0.01.

Upon expanding the perturbed density in terms of ” or the wave potential �,

n “ np0q
` np1q

` np2q
` Opnp3q

q

and noting that np1q
9

B
Br̨

n “ 0. The Poisson equation up to the second-order under this

perturbative expansion is

Ò2„ “ k2
pe

˜
1 `

np2q

n0
´ 1

¸
“ k2

pe

np2q

n0
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under the fact that np0q
“ n0.

The second-order continuity equation is 1
c

B
Bt

n

p2q
n0

` Ǫ̀
r

—̨ p2q
“ 0.

Upon taking the divergence of the longitudinal momentum eq.1.18, Ǫ̀¨Ǫ̀„ “

1
c

B
Bt

´
Ǫ̀ ¨ Î̂

¯
“—Î`

Ǫ̀ ¨ Ǫ̀“.

For linear density perturbation and linear plasma-waves we make some important

approximations. The first approximation is the intensity is small, xay

2
! 1 then “ “

b
1 ` r“—Ks

2
` r“—Îs

2
“

c
1 ` a2

K `

´
1

2“

Òa2
K

¯2
» 1. Using this we can write Ǫ̀“—ÎÎ̂ “

“Ò—Î ` —ÎÒ“ “ “Ò—Î.

The second approximation we make is the 1-D approximation assuming that the linear

plasma waves have no transverse gradient and are perfectly planar. Under this approxima-

tion ÒKp„´“q “ 0 and —̨ p2q
“ —ÎÎ̂. Also, the ponderomotive force Ò“ “

1
2“

Òa2
K »

1
2Òa2

K.

Under these approximations we obtain the linear plasma-wave equations as follows,

ˆ
1
c2

B

2

Bt2 ` k2
pe

˙
np2q

n0
“ Ò2 a2

K
2

ˆ
1
c2

B

2

Bt2 ` k2
pe

˙
„ “ k2

pe

a2
K
2

ˆ
1
c2

B

2

Bt2 ` k2
pe

˙
r“—Îs “ ´

1
c

B

Bt
Òa2

K
2 (1.30)

In the case of linear plasma-waves driven by an electron beam of density n
b

the equations

are as follows,

ˆ
1
c2

B

2

Bt2 ` k2
pe

˙
np2q

n0
“ ´k2

pe

n
b

n0

ˆ
1
c2

B

2

Bt2 ` k2
pe

˙
„ “ 0

ˆ
1
c2

B

2

Bt2 ` k2
pe

˙
r“—Îs “ k2

pe

ª 8

´8

1
c

B

Bt

n
b

pzq

n0
dz (1.31)
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Using the Green’s function method of solving in-homogenous equations, we can obtain

analytical solutions to equations eq.1.30. The solution to the longitudinal momentum

equation in the frequency form using the well known Green’s function solution is,

r“ptq—Îptqs “ ´

c

Ê
pe

ª 8

0
d s sinpÊ

pe

rt ´ ssqÒ B

Bs

a2
K
2 (1.32)

Similarly the solution for the linear plasma-wave equation for the potential in the

frequency form using the Green’s function method is

„ptq “ Ê
pe

ª 8

0
d s sinpÊ

pe

rt ´ ssq

a2
Kpsq

2 .

The electric field can thus be obtained by taking the gradient of the scalar potential,

E “ ´Ò� “ ´

m

e

c

2
e

Ò„ and using the definition of the wave-breaking electric field limit for

a non-relativistic plasma-wave in cold-plasma, E
wb

“

m

e

cÊ

pe

e

. Therefore,

E “ ´cE
wb

ª 8

0
d s sinpÊ

pe

rt ´ ssqÒa2
Kpsq

2 .

1.8.2 Non-linear plasma electron waves

Non-linear waves cannot be analyzed using the perturbation theory. They are thus analyzed

just behind the drive and the coordinate used is the distance behind the plasma-wave

phase-velocity front, vp

„

t.

An important assumption is made for the energy-source driving the wake - the shape

of the driver does not vary at short-distances behind the driver. For instance, it is known

that the laser pulse undergoes longitudinal compression and frequency shifts while also

undergoing transverse self-focussing over scale-lengths much longer than the plasma wave-

length. Similarly an electron-beam is known to lose particles at its head from energy loss

and due to lack of transverse forces just at the head. A beam may also undergo transverse

oscillations of its tail while the head is stable. However, it is assumed that such process
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Figure 1.5: The spatial profile of normalized plasma electron density in 2D cylindrical
space for a linear electron-beam driven wake from Particle-in-Cell (PIC) simulations. The
electron beam has Gaussian radial and longitudinal profile of ‡

r

“ 2.0 c

Ê

pe

and ‡
z

“ 1.5 c

Ê

pe

.
The peak beam density is n

b

n0
“ 0.1The density perturbation in this case is ”n “ 0.1.

Importantly note that ”n 9 n
b

“ 0.1.

occur over several plasma wavelengths. Thus, the dynamics of the driving energy-sources is

of time-scales about an order of magnitude longer than the plasma wavelength. So, under

time-scale considerations the driver shape is assumed to be constant. This approximation

is referred to as quasi-static approximation.

z ´ vp

„

t “ ›

B

Bz
“

B

B›

B

Bt
“ ´vp

„

B

B›
(1.33)

Using this coordinate transform the fluid equations can be transformed as,
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Figure 1.6: Non-linear laser wake spatial profile of plasma electron density in 2D carte-
sian space from Particle-in-Cell (PIC) simulations. The laser-pulse has Gaussian radial
profile of FWHM radius of 2 c

Ê

pe

launched at the transverse dimension of 20 c

Ê

pe

. The peak
normalized laser vector potential is a0 “ 1.0 and the FWHM pulse length is about 14 c

Ê

pe

.
The laser frequency to plasma frequency ratio of Ê0

Ê

pe

“ 10.

n “

—p

„

n0

p—p

„

´ —Îq

“ “

b
1 ` r“—Ks

2
` r“—Îs

2

“

b
1 ` a2

K ` r“—Îs

2

“ “ 1 ` „ ` —p

„

r“—Îs

“ “

1 ` „

p1 ´ —p

„

—Îq

(1.34)

We can determine the longitudinal momentum in terms of the scalar, „ and vector

potential, aK using the Lorentz factor and its dependence on „ and aK in eq.1.34.
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r“—Îs “

pÎ
m

e

c

“ “2
„

„
—p

„

p1 ` „q ´

b
p1 ` „q

2
´ “p ´2

„

p1 ` a2
Kq

⇢
(1.35)

Using the longitudinal momentum to determine the density perturbation in eq.1.34,

n{n0 as,

“ “ “p 2
„

p1 ` „q

¨

˝1 ´ —p

„

d

1 ´

“p ´2
„

p1 ` a2
Kq

p1 ` „q

2

˛

‚

n

n0
“ —p

„

“p 2
„

¨

˝
#

1 ´

p1 ` a2
Kq

“p 2
„

p1 ` „q

2

+´1{2

´ —p

„

˛

‚ (1.36)

Substituting the density perturbation into the transformed 1-D Poisson equation we

obtain,

B

2

B›2 „ “ k2
pe

ˆ
n

n0
´ 1

˙

“ k2
pe

“p 2
„

»

–—p

„

#
1 ´

p1 ` a2
Kq

“p 2
„

p1 ` „q

2

+´1{2

´ 1

fi

fl (1.37)

Under the plasma density driven by an electron beam we include the beam density, n
b

in the perturbed density equation,

B

2

B›2 „ “ k2
pe

ˆ
n

n0
`

n
b

n0
´ 1

˙

“ k2
pe

n
b

n0
` k2

pe

“p 2
„

»

–—p

„

#
1 ´

p1 ` a2
Kq

“p 2
„

p1 ` „q

2

+´1{2

´ 1

fi

fl (1.38)

Numerical solutions and special-case analytical solutions to eq.1.38 show that as the

non-linearity of the excitation of plasma electron density increases (and the amplitude of
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Figure 1.7: The spatial profile and on-axis line-out of normalized plasma electron density
in 2D cylindrical space for a linear electron-beam driven wake from Particle-in-Cell (PIC)
simulations. The electron beam has Gaussian radial and longitudinal profile of ‡

r

“ 2.0 c

Ê

pe

and ‡
z

“ 1.5 c

Ê

pe

. The peak beam density is n

b

n0
“ 10.

plasma-wave) with aK ° 1 the plasma-wave steepens and its period increases. Under the

non-linear plasma wave density condition the electric-field and potential wave-forms are

not sinusoidal but exhibit “wave-steepening” and take the form of asymmetric spikes. The

non-linear plasma wavelength is longer than the sinusoidal plasma wavelength, ⁄
Np

° ⁄
pe

.
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Phase-mixing, Trajectory-crossing and
Trapping of Plasma Electrons

As outlined in the introduction section there are non-linear wave phenomenon which cause

a fraction of electrons oscillating in the plasma electron wave to lose coherence with the

wave. Such electrons are then subject to fields excited by the electrons oscillating within

the plasma wave. It is also importantly noted that any equations or inferences based

upon the fluid equations are inaccurate once there is onset of e�ects associated with the

non-linearities.

The non-linear phenomenon can be classified broadly into two types: (a) non-linearity

of the excited plasma wave (b) non-linear e�ects induced by the driver. Non-linearity of

the first-type are - trajectory crossing which could be due to the wave geometry, density

inhomogeneity or amplitude, wave steepening due to the modulation of particle velocities

by the potential, su�ciently high potential of the wave trapping the background electrons

etc. The second-type e�ects are - driver induced spatial profile of the potential and particle

velocities, driven electrons overshooting, the wave phase velocities etc.

In this section we study the non-linear phenomenon associated with electron oscillations

and try to understand the time duration it takes for these e�ects to manifest their e�ect

on the wave.

However, when some of the electrons get out-of-phase with the electron-plasma-wave
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and experience the potential of the wave they can be trapped to a phase-node of the wave.

And the electrons that are trapped within the potential well of the wave can continuously

experience the electric field and gain energy.

2.1 Non-linear plasma electron oscillations

2.1.1 Non-linear 1D plasma oscillations - Amplitude dependent

It is interesting to better understand the non-linearity of planar 1-D electron oscillations in a

cold plasma. Considering the displacement ›px0, tq of the electron sheet from its equilibrium

position, x0 then the position of the displaced electron sheet is x “ x0`›. The displacement

of electron sheet leaves behind a net positive charge of n` “ en0›. Ahead of the displaced

electron sheet there is a net negative electron charge, n´ “ ´en0›. Thus from the Gauss’s

law we can determine the electric field on the electron sheet due to the unshielded positive

charge, Ǫ̀E “ en0›. Since the problem is purely planar and 1-D the electric field at the

location of the electron sheet is E “ 4fien0›. The equation of motion of the electron

sheet is d2
›

d t

2 “ ´

e

m

e

E “ ´

4fie

2
n0

m

e

› “ ´Ê2
pe

›. In a familiar form the equation of motion is,
´

d2

d t

2 ` Ê2
pe

¯
› “ 0. The general solutions are ›px0, tq “ �1px0q cospÊ

pe

tq ` �2px0q sinpÊ
pe

tq

where �1, �2 depend upon the initial or boundary conditions and are arbitrary functions

of x0.

So, under the linear approximation where the displaced electron sheets maintain their

initial ordering, each of the electron sheets executes independent simple harmonic oscilla-

tions. In other words the oscillations do not depend upon the amplitude and are indepen-

dent of the motion of other electron sheets. With this simple behavior under the linear

approximation we can build a physical picture of the break-down of the approximation and

onset of non-linearity. We consider another electron sheet whose equilibrium position is at a

distance �x0 ° 0 away from x0. Its amplitude of oscillation is x2 “ x0 `�x0 `›2. If ›2 “ ›

then the sheets are perfectly ordered. However, if its amplitude is such ›2 † › ´ �x0 then

the second sheet would be out of order. This is because the second displaced sheet would
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be ahead of the first one which is reverse order of their initial positions. Using this very

simple picture originally presented in [4] we can write a very simple condition under which

the linear approximation holds, lim�Ñ0
�›

�x0
“

›2´›

px0`�x0q´x0
°

›´�x0`›

px0`�x0q´x0
“

´�x0
�x0

“ ´1

giving,

B›

Bx0
° ´1 (2.1)

Figure 2.1: The spatial profile of 1D normalized electric field in a plasma of planar
electron sheets with respect to instantaneous displacement of a sheet x from its equilibrium
position x0. The amplitude of the displacement of an electron sheet is ›px0q “ A is plotted
in units of 1

k

. The instantaneous displacement of a sheet x “ x0 ` › is assumed to be
periodic and plotted in units of spatial frequency 1

k

. It can been that when A •

1
k

the
electric field is multi-valued in space and thereby unphysical. This breaks down the linear
picture of an oscillator.

This condition can be expressed interestingly in terms of the total energy of the oscil-

lations. We first partially di�erentiate the equation of motion of an electron sheet with
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respect to the initial equilibrium position and obtain,
´

d2

d t

2 ` Ê2
pe

¯
B›

Bx0
“ 0. We inte-

grate the equation of motion with respect to the displacement to obtain the total energy

or the Hamiltonian,
≥

d › d
d t

d ›

d t

` Ê2
pe

≥
d › › “ E . Simplifying,

≥
d td ›

d t

d
d t

d ›

d t

`

1
2Ê2

pe

›2
“

≥
d t1

2
d

d t

´
d ›

d t

¯2
`

1
2Ê2

pe

›2
“ E . Thus the total energy is 1

2

´
d ›

d t

¯2
`

1
2Ê2

pe

›2
“ E . Since the

quantity B›

Bx0
satisfies the same equation of motion, it also leads to

1
2

ˆ
B

Bx0

d ›

d t

˙2
`

1
2Ê2

pe

ˆ
B›

Bx0

˙2
“ E .

Initially when the velocity of the displacement, d ›

d t

|
t“0 “ 0, then the whole energy is in

1
2Ê2

pe

´
B›

Bx0

¯2
|
t“0 “ E . Using the condition B›

Bx0
° ´1 above, we simplify 1

2Ê2
pe

´
B›

Bx0

¯2
|
t“0 “ E

to
b

2E
Ê

2
pe

“

B›

Bx0
° ´1. This relation can be expressed as

?

2E ° ´Ê
pe

Ñ

?

2E † Ê
pe

which

implies E|
t“0 †

Ê

2
pe

2 . So, if the initial energy is less than Ê

2
pe

2 then the ordering of the sheets

is maintained for all time.

To further understand the non-linear solutions to the equation of motion we study a

solution under the special condition, �1px0q “ A sinpkx0q and �2px0q “ 0; then the solution

is, ›px0, tq “ A sinpkx0q cospÊ
pe

tq. Using the solution, E “ 4fien0A sinpkx0q cospÊ
pe

tq and

the instantaneous position of the sheet is x “ x0`A sinpkx0q cospÊ
pe

tq. At time t “ 0 or an

integer multiple of 2fi, t “ 2mfi the expression for the electric field, E “ 4fien0A sinpkx0q

and the trajectory x “ x0 `A sinpkx0q. We numerically solve and obtain Epxq, it is plotted

for di�erent values of A in Fig.2.1. It is shown that when

A •

1
k

, the electric field solution is not physical. Substituting this condition into the leectric field

expression, E “ 4fien0
1
k

sinpkx0q cospÊ
pe

tq and using k “

c

Ê

pe

, the electric field expression

simplifies to, E “

4fie

2
n0

m

e

m

e

e

c

Ê

pe

sinpkx0q cospÊ
pe

tq “

m

e

cÊ

pe

e

sinpkx0q cospÊ
pe

tq. Thus,

the amplitude of electric field for the onset of trajectory crossing in planar electron sheet
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oscillations is,

E “

m
e

cÊ
pe

e
.

So, after the amplitude exceeds this critical amplitude there is an onset of trajectory

crossing. As a result of trajectory crossing there is fine-scale phase-mixing of various regions

of the oscillations which destroy the oscillations. After trajectory crossing starts B›

Bx0
° ´1

is not satisfied.

2.1.2 Non-linear Cylindrical and Spherical plasma oscillations

In cylindrical and spherical geometry the plasma electrons oscillate inwards and outwards

along the radial dimension of wither a cylinder or a sphere. The equation of motion of the

displacement in these geometry under the condition that the ordering of the electron rings

along the radii is maintained.

Cylindrical Oscillations - Considering plasma oscillations in a cylindrical geometry with a

cylindrical shell of electrons (can be visualized as a ring of electrons due to the symmetry

along the length) displaced from its equilibrium radius, r0 by a displacement radius Rpr0q,

so that the instantaneous radius of the displaced ring is rpr0, tq “ r0`Rpr0, tq. The positive

charge left behind by the displacement of an electron ring is en0fi
“
pr0 ` Rpr0qq

2
´ r2

0
‰
.

The negative charge in the ring of electrons is ´en0 2fir d r where the ring of electrons

is infinitesimally thin with thickness d r. The net negative charge still left within the

cylinder is ´en0fir2
0. The electric field at the displaced cylindrical shell of electrons using

the Gauss’s law in its Integral form is
≥

dS̨ ¨ Ęprq “ 4fi
≥
V

dV nprq. We can simplify this

integral under the consideration that the cylinder has perfect uniformity along its length, so

the surface integral becomes a line integral over the circumference and the volume integral

is simply the geometric formulation of the net positive just inside the cylindrical shell. So,

2firEprq “ 4fien0fi
“
pr0 ` Rpr0qq

2
´ r2

0
‰
. Therefore,

Eprq “

2fien0
pr0 ` Rpr0qq

“
pr0 ` Rpr0qq

2
´ r2

0
‰

.
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Using this the cylindrical shell equation of motion of the displacement along the radial

dimensions is,

m
d2 R

d t2 “ ´eEprq “ ´

2fie2n0
pr0 ` Rpr0qq

“
pr0 ` Rpr0qq

2
´ r2

0
‰

.

Spherical Oscillations - Spherical plasma oscillations occur with the expansion and collapse

of the spherical electron shells of infinitesimal thickness. So, the radius of a shell with

equilibrium radius r0 is undergoing a displacement Rpr0, tq resulting in an instantaneous

radius of the spherical shell of rpr0, tq “ r0 ` Rpr0, tq. When the displacement is outwards

and the spherical shell moves outwards a net positive charge is left behind in the plasma.

This net positive charge is en0
4fi

3
“
pr0 ` Rpr0qq

3
´ r3

0
‰
. The negative charge of the spherical

shell of electrons that is displaced is ´en04fir2 d r. The negative charge that is left-over

inside the sphere is ´en0
4fi

3 r3
0. The electric field at a location just inside the spherical shell

is given by the Gauss’s law in its integral form
≥

dS̨ ¨ Ęprq “ 4fi
≥
V

dV nprq. Performing

the simple integrals 4fir2Eprq “ 4fien0
4fi

3
“
pr0 ` Rpr0qq

3
´ r3

0
‰
. So, the electric field is

Eprq “

en0
pr0 ` Rpr0qq

2
4fi

3
“
pr0 ` Rpr0qq

3
´ r3

0
‰

.

Using this we can write the spherical shell equation of motion of the radial displacement

as,

m
d2 R

d t2 “ ´eEprq “ ´

4fie2n0
3pr0 ` Rpr0qq

2
“
pr0 ` Rpr0qq

3
´ r3

0
‰

.

By normalizing the radial displacement R to its initial radial position r0 the equations

can be written in a single radial variable,

fl “

R

r0
.

The equation of motion in the cylindrical geometry is,

d2 fl

d t2 “ ´

1
2Ê2

pe

p1 ` flq

2
´ 1

p1 ` flq

(2.2)

49 of 98 Aakash A. Sahai



Phase-mixing self-injection in a rising plasma density gradient 2.1.2

The equation of motion in spherical coordinates is,

d2 fl

d t2 “ ´

1
3Ê2

pe

p1 ` flq

3
´ 1

p1 ` flq

2 (2.3)

These are equations of motion of anharmonic oscillators. As it is seen from the equation

of motion, the period of the oscillation of such radially symmetric oscillators depends upon

the amplitude of oscillations, fl
max

“

R

max

r0
. In a case where R

max

is a constant for all

the cylindrical or spherical shells, the oscillators at di�erent equilibrium radial positions

r0 have a di�erent fl and hence a di�erent period of oscillation. The only condition under

which the periods of oscillations of each radial oscillator is same is when fl is a constant.

Now we can understand the physical picture of trajectory crossing of con-centric cylin-

drical shells or spherical shells of electrons. The trajectory crossing in these geometries

is shown to be independent of the amplitude of displacement. This is unlike the physical

picture in a 1D planar electron sheet where the onset of trajectory crossing occurs only

when the amplitude A of the displacement › is higher than a critical amplitude. At equilib-

rium the two concentric shells under consideration are located at a distance between radial

positions, r
p2q
0 ´ r

p1q
0 † R

max

with r
p2q
0 ° r

p1q
0 , that is less than the oscillation amplitude,

R
max

. Then since flp2q
† flp1q the period of oscillation of the two shells is di�erent. Hence,

after a certain period of time of oscillations the slower outer ring would be collapsing radi-

ally inwards while the inner ring being faster would be moving outwards. This will result

in spatial overlap of the two shells with the two shells being momentarily located at the

same radius. This crossing of the trajectories of the shells would lead to reversing of the

initial ordering. As a result of this there would be fine-scale phase-mixing and the radial

oscillations would destroy themselves.

Since the anharmonic oscillator equation is a non-linear second-order di�erential equa-

tion of the special form (Autonomous ODE), fl2
ptq “ fpfl, fl1

q it can be solved analytically.

Substituting, v “

d fl

d t

. Then d2
fl

d t

2 “

d v

d t

“

d v

d fl

d fl

d t

“ v d v

d fl

.

The cylindrical equation transforms as v d v

d fl

“ ´

1
2Ê2

pe

p1`flq2´1
p1`flq . Integrating the equa-
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tion, v2
“ ´Ê2

pe

≥
d fl p1`flq2´1

p1`flq “ ´Ê2
pe

”
fl

2

2 ` fl ´ lnp1 ` flq

ı
` C. At the amplitude of the

oscillation the velocity is momentarily 0 when the trajectory is undergoing reversal that

is v “

d fl

d t

“ 0 when fl “ fl
max

. Therefore, C “ Ê2
pe

”
fl

2
max

2 ` fl
max

´ lnp1 ` fl
max

q

ı
. So, the

integrated equation is, v2
“ ´Ê2

pe

”
fl

2

2 ` fl ´ lnp1 ` flq

ı
`Ê2

pe

”
fl

2
max

2 ` fl
max

´ lnp1 ` fl
max

q

ı
.

Taking the square-root on both the sides, v “

d fl

d t

“ Ê
pe

c
fl

2
max

´fl

2

2 ` pfl
max

´ flq ` ln
´

1`fl

1`fl

max

¯
.

We can integrate and obtain a solution for the period of oscillations as a function of ampli-

tude,
≥

fl

max

0
d flc

fl

2
max

´fl

2
2 `pfl

max

´flq`ln
´

1`fl

1`fl

max

¯ “

≥
fi{2
0 d Ê

pe

t. The amplitude dependent period

of oscillations of cylindrical shell of electrons is,

T
cyl

“

2fi

Ê
pe

ˆ
1 ´

fl2
max

12 ` Opfl3
max

q

˙
(2.4)

The spherical equation transforms as v d v

d fl

“ ´

1
3Ê2

pe

p1`flq3´1
p1`flq2 . Integrating the equation,

v2
“ ´

2
3Ê2

pe

≥
d fl p1`flq3´1

p1`flq2 “ ´

2
3Ê2

pe

”
fl

2

2 ` fl `

1
p1`flq

ı
` C. At the amplitude of the oscil-

lation the velocity is momentarily 0 when the trajectory is undergoing reversal that is

v “

d fl

d t

“ 0 when fl “ fl
max

. Therefore, C “ Ê2
pe

”
fl

2
max

2 ` fl
max

`

1
p1`fl

max

q
ı
. So, the inte-

grated equation is, v2
“ ´Ê2

pe

”
fl

2

2 ` fl `

1
p1`flq

ı
` Ê2

pe

”
fl

2
max

2 ` fl
max

`

1
p1`fl

max

q
ı
. Taking the

square-root on both the sides, v “

d fl

d t

“ Ê
pe

b
fl

2
max

´fl

2

2 ` pfl
max

´ flq `

1
p1`fl

max

q ´

1
p1`flq .

We can integrate and obtain a solution for the period of oscillations as a function of am-

plitude,
≥

fl

max

0
d flc

fl

2
max

´fl

2
2 `pfl

max

´flq` 1
p1`fl

max

q ´ 1
p1`flq

“

≥
fi{2
0 d Ê

pe

t. The amplitude dependent

period of oscillations of spherical shell of electrons is,

T
sph

“

2fi

Ê
pe

ˆ
1 ´

7fl2

48 ` Opfl3
max

q

˙
(2.5)

The time duration for fine-scale mixing and trajectory crossing is the time required for

two shells separated by twice the amplitude r
p2q
0 ´ r

p1q
0 “ 2R

max

to be out-of-phase by fi or
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half-of-the-period. Under this condition the two shells cross at the instant when the shell

at the lower radius or the inner shell is at rp1q
“ r

p1q
0 ` R

max

and the shell at the larger

radius or the outer shell is at rp2q
“ r

p2q
0 ´R

max

. This condition can also be stated in terms

of the periods of oscillations of the individual shells. The two shells start their oscillations

at the same instant. Then the trajectory crossing starts at a time t
mix

when

n1 “ n2 ˘

1
2 .

Where the number of oscillations of the individual oscillators during the t
mix

period is

n1 “

t

mix

T1
and n2 “

t

mix

T2
. Thus in terms of the periods of oscillations,

t
mix

“ ˘

T1T2
2pT1 ´ T2q

.

A relation between T1 and T2 can be determined assuming R
max

is constant. Assume

that the concentric shells are close to each other along the radial dimension and it is given

that rp1q
† rp2q. Then the relation is of the form T1 † T2 and we write, T2 “ T1 ` �T .

Since for fixed R
max

the amplitude of oscillations fl
max

“

1
fl

R
max

and T “ fpfl
max

q “

fpr0q. Thus �T “

d T
d r0

�r0 and using �r0 “ 2R
max

from the problem statement above,

�T “

d T
d r0

2R
max

. So, the period of oscillation of the sheets are related as,

T2 “ T1 `

d T
d r0

2R
max

.

Using the above equation for the mixing time t
mix

and the relation between T2 and T1

we can simplify the expression for the mixing time. t
mix

“ ˘

T1
´

T1` d T
d r0

2R

max

¯

2 d T
d r0

2R

max

. Simplifying,

t
mix

“ ˘

ˆ
T 2

1
2 d T

d r0
2R

max

`

T1
2

˙
.

Therefore the mixing time duration is,

�t
mix

“ ˘

˜
T 2

4 d T
d r0

R
max

¸
(2.6)
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The mixing time can be determined for cylindrical and spherical oscillations using

the above expression for the period of oscillations. In the cylindrical case up to the

second-order in amplitude, T
cyl

“

2fi

Ê

pe

´
1 ´

R

2
max

12r

2
0

¯
. Evaluating, d T

d r0
“

d T
d R

max

d R

max

d r0
“

´

´
fi

Ê

pe

R

max

3r

2
0

¯
d R

max

d r0
. Substituting this in the mixing time expression, �t

mix

“

´
2fi

Ê

pe

¯2 ´
1 ´

fl

2
max

12

¯2

´
4 fi

Ê

pe

R

2
max

3r

2
0

d R

max

d r0

¯´1
. Simplifying and neglecting fl

2
max

6 and Opfl3
max

q term in the numerator,

Cyl : �t
mix

“

fi

Ê
pe

3r2
0

R2
max

d R

max

d r0

.

In the spherical case up to the second-order in amplitude, T
sph

“

2fi

Ê

pe

´
1 ´

7fl

2

48

¯
. Eval-

uating, d T
d r0

“

d T
d R

max

d R

max

d r0
“ ´

´
fi

Ê

pe

7R

max

12r

2
0

¯
d R

max

d r0
. Substituting this in the mixing time

expression, �t
mix

“

´
2fi

Ê

pe

¯2 ´
1 ´

7fl

2

48

¯2 ´
4 fi

Ê

pe

7R

2
max

12r

2
0

d R

max

d r0

¯´1
. Simplifying and neglecting

7fl

2
max

24 and Opfl3
max

q term in the numerator,

Sph : �t
mix

“

fi

Ê
pe

12r2
0

7R2
max

d R

max

d r0

.

2.1.3 Inhomogeneous plasma - Planar oscillations

Phase-mixing and trajectory crossing of planar oscillations is not limited to the condition

of amplitude exceeding a critical amplitude. Phase-mixing and trajectory crossing also

occurs in an inhomogeneous density such as a density gradient. Considering planar plasma

electron sheets oscillating along the x-direction with the equilibrium position at x0 and

the displacement being ›px0, tq. The plasma density over which the sheet is displaced is

n0pxq. The total ion density which is left behind by the electron sheet at x0 displaced

to x0 ` ›px0, tq is e
≥

x0`›

x0
d x n0pxq. Thus the electric field at the electron sheet due to

the ions is E “ 4fie
≥

x0`›

x0
d x n0pxq. The equation of motion of the electron-sheet in this

inhomogeneous plasma is

m
d2 ›

d t2 “ ´eE “ ´4fie2
ª

x0`›

x0
d x n0pxq.
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Homogeneous coupled oscillators  
– No Phase mixing 

– No trajectory crossing  

Inhomogeneous coupled oscillators  
– Phase mixing ! 

– Trajectory crossing  

Figure 2.2: Phase mixing of coupled oscillators with spatially increasing frequencies.
Individual plasmons excited in the wake of a driver in a homogeneous plasma are cou-
pled together and undergo in-phase or synchronous-phase oscillations. However, in an
inhomogeneous rising density plasma (common at the vacuum-plasma interface of plasma
sources), the individual plasmons have increasing characteristic frequency. Hence there is
phase-mixing and trajectory crossing.

This equation shows that in a plasma with inhomogeneous density the frequency of

the oscillations of an electron sheet depends upon the amplitude of oscillations. This is

because as the integral over the density suggests the net charge exciting the restoring force

is a function of the displacement, ›. And the net charge also depends upon the initial

position, x0. Phase-mixing will always occur under these conditions.

The regions of plasma that are separated by distances over which the plasma density

significantly varies have plasma frequencies which are significantly di�erent. As a result

of this coherent oscillations are not supported over this region with significantly di�erent

plasma frequency.

We can write a general solution to the equation for planar plasma oscillations in an inho-

mogeneous plasma as a Fourier series of di�erent frequencies excited at di�erent densities,
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n0pxq. Thus the general solution is,

›px0, tq “ Re t�8
m“1›

m

px0q exppimÊ
pe

px0qtqu .

Taking the partial derivative of the general solution with time,

B›px0, tq

Bt
“ Re tiÊ

pe

px0q �8
m“1m›

m

px0q exppimÊ
pe

px0qtqu .

Taking the partial derivative of the general solution with spatial variable for equilibrium

position,

B›px0, tq

Bx0
“ Re

"
�8

m“1
B›

m

px0q

Bx0
exppimÊ

pe

px0qtq ` i t
BÊ

pe

px0q

Bx0
�8

m“1m›
m

px0q exppimÊ
pe

px0qtq

*
.

We can find the ratio of the spatial derivative with the time derivative, B›px0,tq
Bx0

´
B›px0,tq

Bt

¯´1
.

B›px0, tq

Bx0

ˆ
B›px0, tq

Bt

˙´1

“

Re
!

�8
m“1

B›

m

px0q
Bx0

exppimÊ
pe

px0qtq ` i t
BÊ

pe

px0q
Bx0

�8
m“1m›

m

px0q exppimÊ
pe

px0qtq
)

Re tiÊ
pe

px0q �8
m“1m›

m

px0q exppimÊ
pe

px0qtqu

“ Re
#

´i
�8

m“1
B›

m

px0q
Bx0

exppimÊ
pe

px0qtq

Ê
pe

px0q �8
m“1m›

m

px0q exppimÊ
pe

px0qtq

+
`

t

Ê
pe

px0q

BÊ
pe

px0q

Bx0

“

t

Ê
pe

px0q

BÊ
pe

px0q

Bx0
(2.7)

We can use the condition in eq.2.1, B›

Bx0
° ´1 to determine an expression for the mixing

time in an inhomogeneous plasma. We also use the fact that the trajectory traverse a

path to the maximum and back to equilibrium in half the period, B›px0,tq
Bt

»

2›

m

T0{2 “ 4 ›

m

T .

Therefore, the expression is t

Ê

pe

px0q
BÊ

pe

px0q
Bx0

B›px0,tq
Bt

° ´1. Therefore, �t
mix

“

Ê

pe

px0q
BÊ

pe

px0q
Bx0

4 ›

m

T0

.

Further simplifying using Ê
pe

px0q “

2fi

T0
,

�t
mix

“

fi

2BÊ

pe

px0q
Bx0

›
m

(2.8)
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From this expression for the 1D mixing time of planar electron sheets we can determine

the scaling laws. Firstly, the mixing time depends inversely on the spatial gradient of the

plasma frequency varying in the density inhomogeneity. Secondly, the mixing time depends

upon the amplitude of the planar oscillation. The dependence on the planar oscillation

amplitude is similar to the homogenous density sheet crossing.

2.2 Warm-plasma - wave-breaking

Since the cold-plasma approximation is quite a valid one, the wave-breaking limits assuming

no thermal velocities of plasma electrons is su�cient to describe trajectory-crossing or

phase-mixing between individual oscillator trajectories. However, when non-linear density

perturbations are excited in a large amplitude plasma wave, thermal e�ects may become

important as the electron thermal pressure may not allow the density compression to build

up as predicted by the simple fluid model where thermal e�ects are ignored.

In the warm-plasma limit fluid description may still be used because the leading order

motion is still due to oscillations with minor correction from the thermal motion through

the pressure term in the second-order and third-order fluid equations. Thus to include

the e�ect of thermal motion of electrons it is important to choose the correct equation

of state which links the pressure and temperature, P 9 fpn
e

, T
e

q. The only constraint

on the equation of state is that the wave phase-velocity be much higher than the average

thermal velocity. If this constraint is not met then the thermal motion of electrons in the

wave-frame become important and a non-linear wave model such as the BGK (Bernstein-

Greene-Kruskal) model has to be used to complete the physical picture. A non-linear wave

model is important because due to thermal motion of electrons some of the electrons are

trapped in the wave potential. Therefore, it is important to assume ve

th

! v
„

.

Under a warm plasma assumption wave breaking in large amplitude plasma density

waves can be shown to originate earlier than in the case of cold-plasma. Importantly unlike

in the cold-plasma case where the wave-breaking limit is defined by trajectory crossing in
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the case of warm plasma it is defined by trapping of plasma electron in the wave potential.

As a result of trapping of the electrons in the tail of the thermal distribution the plasma

wave cannot be described by averaged behavior as expected for the application of the fluid

model.

In essence as the wave amplitude gets larger a higher number of plasma electrons are

trapped in the wave. The trapping of electron leads to the transfer of the wave field energy

to trapped particle energy. The loss of field energy implies that the wave is damped behind

the trapped particles. The transition from a high amplitude wave to a weak wave is abrupt

and this distortion leads to wave-breaking. The physical phenomenon described above has

been modeled using the water-bag velocity distribution function [12].

2.3 Wave-breaking - multi-dimensional wake

Most of the above analysis for trajectory crossing is for 1-D oscillations except for the

cylindrical and spherical geometry. The amplitude dependence of the trajectory crossing

in the 1-D oscillations allows us to establish a critical value of the electric field where

trapping may begin.

The phenomenon of trajectory crossing in cylindrical oscillations is relevant as such

oscillations occur in ultra-short l
energy

† ⁄
pe

, laser and beam-plasma interactions. But,

the phenomenon of trajectory crossing in such oscillations is not dependent upon the am-

plitude ›
m

of oscillations unlike in planar oscillations but depends upon the gradient of the

oscillation amplitude, dR

max

r0
.

The 1-D model does not model the trapping of particles in wakes whose transverse

shape depends upon the shape of the driver. In the case of a plasma wave that is driven

in the wake of an energy source the exact definition of trajectory crossing and particle

trapping is not easy to obtain analytically. To determine the multi-dimensional expression

for the potential of the plasma wave is not trivial. The multi-dimensional waves also have

to trap the particles in other dimensions and hence the relation between the particle energy
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in the wave-frame and wave-potential in the transverse dimensions have to be determined.

To further analyze the trapping of particles we turn to the Hamiltonian formalism for

the plasma electron dynamics in a wake. Below, we follow the analysis given in [14].

The canonical momentum is P̨ “ p̨
e

´

e

c

Ą and the conjugate canonical coordinate is

the space variable, r̨. We note that the mechanical momentum is p̨
e

“ P̨ `

e

c

Ą. Therefore

writing the Hamiltonian,

H “ “
e

m
e

c2
´ e� “

´a
1 ` p̨

e

¨ p̨
e

{pm
e

cq

2
¯

m
e

c2
´ e�.

Thus, the Hamiltonian equations are

d r̨

d t
“

BH
BP̨

and

d P̨
d t

“ ´

BH
Br̨

.

We can use Bp̨

e

B ˛P “

B ˛P` e

c

˛

A

B ˛P “

B ˛P
B ˛P `

e

c

B ˛

A

B ˛P “ 1.

Considering the first equation,

d r̨

d t
“

BH
BP̨

“

BH
Bp̨

e

Bp̨
e

BP̨
“

m
e

c2

2“
e

2 p̨
e

m2
e

c2 “ v̨
e

.

Considering the second equation, d ˛P
d t

“ ´

BH
Br̨

“ ´m
e

c2 B
´
?

1`p̨

e

¨p̨
e

{pm

e

cq2
¯

Br̨

` eB�
Br̨

“

´

Bp̨

e

Br̨

¨ 2m

e

c

2
2“

e

p̨

e

m

2
e

c

2 ` eǪ̀� “ ´

Bp̨

e

Br̨

¨

p̨

e

m

e

“

e

` eǪ̀�. The gradient of the mechanical momentum

is B
Br̨

´
P̨ `

e

c

Ą
¯

“

e

c

B
Br̨

Ą “

e

c

Ǫ̀Ą. Substituting, d ˛P
d t

“

e

c

Ǫ̀Ą ¨ v̨
e

´ eǪ̀�.

d P̨
d t

“

e

c
Ǫ̀Ą ¨ v̨

e

´ eǪ̀� (2.9)

Using the vector calculus identity, Ǫ̀Ą ¨ v̨
e

“ pv̨
e

¨ Ǫ̀qĄ ´ v̨
e

ˆ Ǫ̀ ˆ Ą. Substituting it

in the second equation, d p̨

e

d t

´

e

c

d ˛

A

d t

“ ´

e

c

pv̨
e

¨ Ǫ̀qĄ ´

e

c

v̨
e

ˆ Ǫ̀ ˆ Ą ` eǪ̀�. Simplifying,
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d p̨

e

d t

“

e

c

´
d ˛

A

d t

´ pv̨
e

¨ Ǫ̀qĄ
¯

´

e

c

v̨
e

ˆǪ̀ˆĄ`eǪ̀�. Also, using the convective derivative, d ˛

A

d t

“

B ˛

A

Bt

` pv̨
e

¨ Ǫ̀qĄ which implies that B ˛

A

Bt

“

d ˛

A

d t

´ pv̨
e

¨ Ǫ̀qĄ. Using this, d p̨

e

d t

“

´
eǪ̀� `

e

c

B ˛

A

Bt

¯
´

e

c

v̨
e

ˆ Ǫ̀ ˆ Ą. From the definition of the electric field above,

d p̨
e

d t
“ ´eĘ ´

e

c
v̨

e

ˆ Ǫ̀ ˆ Ą “ ´eǪ̀� ´

e

c
v̨

e

ˆ Ǫ̀ ˆ Ą.

So, we recover the equation of motion, d p̨

e

d t

“ ´eĘ ´

e

c

v̨
e

ˆ B̨. Thus we have shown a

self-consistent Hamiltonian formulation.

Poisson bracket - Poisson bracket is defined in canonical coordinates pr̨, P̨q on the phase

space. Let us say we are given two functions g1pr̨, P̨, tq and g2pr̨, P̨, tq. Note fpr̨, P̨, tq means

f is a function of the 2N ` 1 independent variables 2N from the degrees of freedom of

the canonical variable space and time, t. The Poisson bracket between the two function is

defined as,

tg1, g2u “

Nÿ

i“1

ˆ
Bg1
Br̨

i

Bg2

BP̨
i

´

Bg1

BP̨
i

Bg2
Br̨

i

˙
.

Noting that by definition the conjugate coordinate variables follow B ˛P
Br̨

“ 0 and Br̨

B ˛P “ 0.

The Hamilton equations of motion can be expressed in terms of the Poisson bracket as

follows, 9̨P “ ´

BH
Br̨

“ tP̨, Hu “

B ˛P
Br̨

BH
B ˛P ´

B ˛P
B ˛P

BH
Br̨

“ ´

BH
Br̨

“

d ˛P
d t

. Similarly the second

equation, 9̨r “ ´

BH
B ˛P “ tr̨, Hu. Suppose that fpr̨, P̨, tq is a function on the manifold.

Then from the multivariable chain rule, we obtain d
dt

fpr̨, P̨, tq “

Bf

B ˛P
d ˛P
d t

`

Bf

Br̨

d r̨

d t

`

Bf

Bt

.

Using the Hamiltonian equation of motion, d r̨

d t

“

BH
B ˛P and d ˛P

d t

“ ´

BH
Br̨

. We thus write,

d
dt

fpr̨, P̨, tq “ ´

Bf

B ˛P
BH
Br̨

`

Bf

Br̨

BH
B ˛P `

Bf

Bt

“ tf, Hu `

Bf

Bt

.

d
dt

fpr̨, P̨, tq “ tf, Hu `

Bf

Bt
(2.10)

Using the Poisson bracket formulation to represent the evolution of a function f in the

conjugate coordinate phase-space we can study the time dependence of any quantity.
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We start with letting f “ H. In this case, d
dt

Hpr̨, P̨, tq “ tH, Hu `

BH
Bt

. Thus,

d
dt

Hpr̨, P̨, tq “

BH
Bt

. Taking the partial time derivative of the Hamiltonian, d
dt

Hpr̨, P̨, tq “

BH
Bt

“ m
e

c2 B
Bt

“
e

´ e B
Bt

�.

We known from above that the mechanical momentum, p̨
e

“ P̨ `

e

c

Ą thus in case the

canonical momentum is conserved quantity (a 1-D planar assumption) then the time evolu-

tion of the Hamiltonian does not depend upon the canonical momentum. So, Hamiltonian

evolves in time as,

d
dt

Hpr̨, P̨, tq “ m
e

c2 B

Bt
“

e

´ e
B

Bt
� (2.11)

For the ease of analysis of trapping of plasma electrons in the wake we can transform

its motion to the frame of reference of the wave. The plasma wave has the phase velocity of

vp

„

. Plasma quantities in the wave-frame can be represented in the coordinate representing

distance just behind the phase-front prK, › “ z ´ vp

„

tq. Transforming the energy of the

electron to the wave frame, Hp

„

“ “
„

´
H ´ vp

„

p
z

¯
. In the transformed coordinate system,

B
Bt

“ ´v
„

B
B›

. Thus the evolution of Hamiltonian in the transformed coordinates is,

d
dt

Hpr̨, P̨, tq “ vp

„

ˆ
´m

e

c2 B

B›
“

e

` e
B

B›
�

˙
(2.12)

Using the eq.1.18 in its 1-D limit, B

t

pÎ
m

e

c

“ cǪ̀Îp„ ´ “q. The conservation of transverse

momentum always holds in 1-D as shown in eq.1.17. Using the longitudinal component of

the eq.2.9, d PÎ
d t

“

e

c

ÒAÎv
e´Î´eÒÎ�. in the right-hand side of eq.2.12, vp

„

´
´m

e

c2 B
B›

“
e

` e B
B›

�
¯

“

vp

„

´
´

e

c

B
B›

v̨
e

¨ Ą ` e B
B›

�
¯

“ vp

„

d PÎ
d t

. Thus, d
dt

´
Hpr̨, P̨, tq ´ vp

„

PÎ
¯

“ 0. So, the conserved

quantity is,

d
dt

´
Hpr̨, P̨, tq ´ vp

„

PÎ
¯

“ 0

Hpr̨, P̨, tq ´ vp

„

PÎ “ constant (2.13)
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Expanding the terms of the conserved quantity, Hpr̨, P̨, tq ´ vp

„

PÎ “ “
e

m
e

c2
´ e� ´

vp

„

`
p

e´Î ´

e

c

AÎ
˘
. Normalizing the conserved quantity with the rest-mass energy, “

e

´ „ `

—p

„

aÎ ´ —p

„

p̂
e´Î “ constant. Where we have used, a “

eA

m

e

c

2 , „ “

e�
m

e

c

2 and p̂ “

p

m

e

c

. So,

normalized expression for the conserved quantity is,

“
e

´ „ ` —p

„

aÎ ´ —p

„

p̂
e´Î “ constant (2.14)

Defining, „ ´ —p

„

aÎ “ Â. The constant of motion can be determined using the initial

conditions, when „ “ „0 and aÎ “ a0
Î then „0

´ —p

„

a0
Î “ Â0. Denoting the initial condition

as, “
e

“ “0 and p̂
e´Î “ p̂0

e´Î and “0 ´ —p

„

p0
e´Î “ �0. Thus the constant of motion using

the initial conditions is �0 ´ Â0 “ constant. Using the constants as defined, “
e

´ —p

„

p̂
e´Î ´

p„ ´ —p

„

aÎq “ �0 ´ Â0. Simplifying, “
e

´ —p

„

p̂
e´Î ´ Â “ �0 ´ Â0. Further simplifying,

“
e

´ —p

„

p̂
e´Î “ �0 ` Â ´ Â0. Thus the constant of motion using the initial conditions can

be written as,

„ ´ —p

„

aÎ “ Â, “0 ´ —p

„

p̂0
e´Î “ �0

“
e

´ —p

„

p̂
e´Î “ �0 ` �Â (2.15)

As we are studying the trapping of electron and wave-breaking in the wave potential, it

is desirable to obtain a relation between the longitudinal momentum, p̂
e´Î to the e�ective

potential, Â and the transverse momentum, p̂
e´K to analyze the trapping condition. Rear-

ranging the eq.2.15, “
e

“ �0 `�Â `—p

„

p̂
e´Î and using “

e

“ 1` p̂2
e´Î ` p̂2

e´K. Upon squaring

the equation it is, 1`p̂2
e´Î`p̂2

e´K “ �2
0`�Â2

`—p 2
„

p̂2
e´Î`2�0�Â`2�0—p

„

p̂
e´Î`2—p

„

p̂
e´Î�Â.

Simplifying and re-arranging in the format for a quadratic equation in p̂
e´Î,

p1 ´ —p 2
„

qp̂2
e´Î ´ 2—p

„

p�0 ` �Âq `

“`
1 ` p̂2

e´K
˘

´ p�0 ` �Âq

2‰
“ 0 (2.16)

Solving the quadratic equation, we can determine the discriminant, D “ 4—p 2
„

p�0 ` �Âq

2
`
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4p1 ´ —p 2
„

qp�0 ` �Âq

2
´ 4p1 ´ —p 2

„

q

`
1 ` p̂2

e´K
˘
. Simplifying,

D “ 4
”
p�0 ` �Âq

2
´ p1 ´ —p 2

„

q

`
1 ` p̂2

e´K
˘ı

.

We use eq.2.15, D “ 4
”
“2

e

` —p 2
„

p̂2
e´Î ´ 2“

e

—p

„

p̂
e´Î ´

`
1 ` p̂2

e´K
˘

` —p 2
„

`
1 ` p̂2

e´K
˘ı

.

Upon expanding the Lorentz factor, D “ 4
”
p̂2

e´Î ` —p 2
„

p̂2
e´Î ´ 2“

e

—p

„

p̂
e´Î ` —p 2

„

`
1 ` p̂2

e´K
˘ı

.

Thus, the discriminant of the equation is,

D “ 4p“
e

—p

„

´ p̂
e´Îq

2

. Using this we determine that D • 0.

So, there is always a real solution for the longitudinal momentum. The solution for the

longitudinal momentum from these considerations is, p̂
e´Î “ “p 2

„

´
—p

„

p�0 ` �Âq ˘

a
D{4

¯
.

Simplifying, p̂
e´Î “ “p 2

„

´
—p

„

p�0 ` �Âq ˘

a
D{4

¯
ˆ

´
—

p

„

p�0`�Âq¯
?

D{4
¯

´
—

p

„

p�0`�Âq¯
?

D{4
¯ . This gives the

longitudinal momentum as,

p̂
e´Î “

1 ` p̂2
e´K ´ p�0 ` �Âq

2

—p

„

p�0 ` �Âq ¯

c”
p�0 ` �Âq

2
´ p1 ´ —p 2

„

q

`
1 ` p̂2

e´K
˘ı (2.17)

We can determine the —
e´Î using p̂

e´Î if “
e

is known. We can obtain the Lorentz factor

using the longitudinal momentum p̂
e´Î in eq.2.17 and eq.2.15, “

e

“ —p

„

p̂
e´Î ` p�0 ` �Âq.

Substituting, we obtain,

“
e

“

—p

„

p1 ` p̂2
e´Kq ¯

a
D{4p�0 ` �Âq

—p

„

p�0 ` �Âq ¯

a
D{4

(2.18)

The longitudinal velocity is thus obtained using eq.2.17 and eq.2.19, —
e´Î “

p̂

e´Î
“

e

“

1`p̂

2
e´K´p�0`�Âq2

—

p

„

p�0`�Âq¯
?

D{4
ˆ

—

p

„

p�0`�Âq¯
?

D{4
—

p

„

p1`p̂

2
e´Kq¯

?

D{4p�0`�Âq . Simplifying the expression for the longitudinal

velocity of the electron,
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—
e´Î “

p̂
e´Î
“

e

“

1 ` p̂2
e´K ´ p�0 ` �Âq

2

—p

„

p1 ` p̂2
e´Kq ¯

a
D{4p�0 ` �Âq

(2.19)

For a background plasma electron to get trapped in the plasma wave it must gain a

longitudinal velocity which is equal to or greater than the plasma wave phase velocity,

—
e´Î • —p

„

.

To analyze this we evaluate the quantity, —
e´Î ´ —p

„

. By analyzing this expression we

can determine the trapping condition. Substituting the expressions, —
e´Î ´ —p

„

“

p̂

e´Î
“

e

. We

use, |—p

„

´ —
e´Î| “ ˘

?D
2“

e

“

´D{2˘
?D—

p

„

p�0`�Âq
—

p

„

p1`p̂

2
e´Kq ¯

?

D{4p�0`�Âq . We use the expression �0 ` �Â “

“
e

p1 ´ —p

„

—
e´Îq. Substituting, —p

„

´ —
e´Î “

´ “

2
e

p—

p

„

´—

e´Îq2 ˘ —

p

„

“

2
e

|—p

„

´—

e´Î| p1´—

p

„

—

e´Îq
—

p

„

p1`p̂

2
e´Kq ¯ “

2
e

|—p

„

´—

e´Î| p1´—

p

„

—

e´Îq . From

the definition of Lorentz factor, 1 ` p̂2
e´K “ “2

e

´ “2
e

—2
e´Î. Substituting the Lorentz factor,

—p

„

´ —
e´Î “ “2

e

´ p—

p

„

´—

e´Îq2 ˘ —

p

„

|—p

„

´—

e´Î| p1´—

p

„

—

e´Îq
“

2
e

´
—

p

„

p1´—

2
e´Îq ¯ |—p

„

´—

e´Î| p1´—

p

„

—

e´Îq
¯ . We find the trapping condition as,

—p

„

´ —
e´Î “

´ p—p

„

´ —
e´Îq

2
˘ —p

„

|—p

„

´ —
e´Î| p1 ´ —p

„

—
e´Îq

—p

„

p1 ´ —2
e´Îq ¯ |—p

„

´ —
e´Î| p1 ´ —p

„

—
e´Îq

“ |—p

„

´ —
e´Î|

˜
´|—p

„

´ —
e´Î| ˘ —p

„

p1 ´ —p

„

—
e´Îq

—p

„

p1 ´ —2
e´Îq ¯ p—p

„

´ —
e´Îqp1 ´ —p

„

—
e´Îq

¸
(2.20)

“ |—p

„

´ —
e´Î| sgnp—p

„

´ —
e´Îq (2.21)

When electron velocity exceeds the plasma-wave phase-velocity, —p

„

† —
e´Î and sgnp—p

„

´

—
e´Îq “ ´1. And, when the plasma-wave phase velocity exceeds the electron velocity,

—p

„

° —
e´Î and sgnp—p

„

´ —
e´Îq “ `1.

Thus using the known values of p̂
e´K and �Â we obtain the condition where the wave

breaks and the electron velocity exceeds the plasma-wave phase-velocity.
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2.4 Trapping condition - multi-dimensional wake

Trapping occurs when —p

„

Ç —
e´Î as the particle slowly drifts in the wave-frame until it

reaches the accelerating phase of the wave potential. Since the particle cannot escape the

potential well it is localized to the region of accelerating phase in the wave-frame. So, the

electrons that are trapped in the plasma-wave gain energy from the fields and —
e´Î Ç —p

„

.

We refer to a particle being trapped when —p

„

“ —
e´Î. Thus under the trapping condition

D “ 4p“
e

—p

„

´ p̂
e´Îq

2
“ 0. Under this condition the expression for longitudinal momentum,

p̂
e´Î and the electron Lorentz factor “

e

are,

“
e

“

1 ` p̂2
e´K

�0 ` �Â

p̂
e´Î “

1 ` p̂2
e´K ´ p�0 ` �Âq

2

—p

„

p�0 ` �Âq

(2.22)

The trapping condition for the Lorentz factor in eq.2.22 is rearranged to obtain, �0 `

�Â “ “0 ´ —p

„

p0
e´Î ` �Â “

1`p̂

2
e´K

“

e

“

“

2
e

´“

2
e

—

2
Î

“

e

“ “
e

p1 ´ —2
„

q “

1
“

„

“

e

“

„

. Thus the condition on

the plasma-wave potential to trap the electrons is,

�Â “ p„ ´ —p

„

aÎq ´ Â0 “

1
“

„

“
e

“
„

´ “0 ` —p

„

p0
e´Î

If “0 “ 1, p0
e´Î “ Â0 “ 0, Â “

1
“

„

“
e

“
„

´ 1 (2.23)

The condition on e�ective potential Â for trapping in multi-dimensional wakes is similar

to the one derived from simple considerations shown in eq.1.14.

1D : „
lab´frame

†

ˆ
1
“

„

´ 1
˙

m
e

c2

e

multi ´ D : Â †

1
“

„

“
e

“
„

´ 1 (2.24)
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The factor “

e

“

„

“

c
1´—

p 2
„

1´—

2
e´K´—

2
e´Î

at the trapping condition becomes “

e

“

„

|p—

e´Î“—

p

„

q “

c
1´—

p 2
„

1´—

2
e´K´—

p 2
„

“

b
1

1´“

2
„

—

2
e´K

.

In the case where —
e´K “ 0 we get “

e

“

„

“ 1 which gives us the 1-D trapping condition.

It should be noted that this analysis determines an amplitude for the potential „ at

which —p

„

“ —
e´Î and there is onset of trapping. However, this analysis does not give any

estimate on the mixing time over which the electrons that are oscillating accrue enough

phase-shift to start experiencing the wave-fields / potential to get trapped.

2.5 Phase-mixing of non-linear plasmons

It is of relevance to study the injection of plasma e´ in a rising density inhomogeneity.

The feasibility of the trapping of plasma electron due to phase-mixing in both rising and

downward density gradient has been shown in [19]. However, no model of trapping in

non-linear plasma structures is presented and no scaling laws have been developed.

An uncontrolled injection of plasma e´ in successive plasmon buckets can increase

the energy spread of the accelerated beam. The termination of injection is critical to

maintaining nearly equal acceleration lengths at peak field of the stacked trapped beams

injected into multiple plasmon-buckets.

Secondly, in beam-driven schemes where the forward longitudinal momenta is smaller in

comparison to ultra-short laser pulses (where forward longitudinal ponderomotive force is

higher), this mechanism can lead to injection of plasma e´. The beam-driven plasma does

not trap and self-inject because plasma electron longitudinal momenta are lower. These

trapped particles may be observed as beam-lets at driving beam energy.

And, an analysis of trapped beams can be used as diagnostics of the beam-plasma

interaction and also to study the state of the plasma behind the driver[16].

As the phase-mixing injection mechanism is a 1-D process it is described using 1-D

model (seen in the on-axis trapping in Fig.4.2[a]-[c]). The 1-D momentum equation of
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longitudinal oscillations of a plasmon (along z) is d

2

d·

2 p—
„

p
ez

´ “
e

q ` Ê2
pe

pzq—2
„

p

ez

—

„

“

e

´p

ez

“ 0,

where d· “ dpz{—
„

´ tq. By simplifying, —e

z

“ p
ez

{“
e

, —
„

„ 1 and Z “

a
p1 ´ —e

z

q{p1 ` —e

z

q,

we have, d

2

d·

2 Z ` Ê2
pe

p—
„

· ` tq1
2p1{Z2

´ 1q “ 0. The equation is similar in form to the

Hill’s equation due to the presence of a function of dependent variable as the coe�cient.

The momentum solutions have phase-mixing (in Fig.2.2), as the solutions depend upon of

plasmon oscillation frequencies and amplitudes (k
pe

pzq and Ê
pe

pzq).

We can build a physical picture of trapping of plasma e´ by phase mixing of trajec-

tories. The up-ramped density inhomogeneity leads to frequency up-chirped spatial-train

of coherently oscillating sheets. The perturbed infinitesimal plasma sheets have di�erent

characteristic plasma frequency due to di�erent density, therefore coupled individual sheet

oscillators undergo a phase-mixing (see Fig.1)[4]. Following [4]sec.IV-1D model, the dis-

placement, ›
m

from equilibrium, x0 or the trajectory is d

2
›

dt

2 “ ´

≥
x0`›

x0
4fie

2
m

e

n0pxqdx. The

time for mixing to start is t
mix

“

fi

2pdÊ

pe

{dxq›

m

.

The displacement from equilibrium, X depends upon the maximum longitudinal field,

⁄
pe

pEÎ{E
wb

q. So, in 1-D model t
mix

9

1
EÎ{E

wb

1
pdÊ

pe

{dxq . The e�ect of phase-mixing between

infinitesimal sheet leads to plasma e´ encountering unbalanced fields that are not experi-

enced during in-phase oscillations, this results in their disruption. The trajectory of first

oscillation in the forward direction of propagation of the source do not cross. Because, the

driven e´ propagate in the same direction, ›
forward

. However, during the returning trajec-

tories of the oscillations, ›
returning

, the faster oscillators (higher in density) encounter the

potential well of the slower oscillators. Therefore the trapping of e´ occurs in the second

and subsequent buckets and not in the first bucket. Since, the peak fields are in the first

bucket this trapping mechanism is not ideal for acceleration.

The disruption of the plasma oscillations also occurs when the e´ trajectories are highly

non-linear (p
e

° m
e

v
„

) resulting in phase-mixing[4] (for instance they cross in the back of

the bubble). The plasma e´ that go out-of-phase see unbalanced fields in the wave-frame

and get trapped in the accelerating phase of the fields. Therefore in laser excited non-linear
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plasmons the trapping also occurs in the first bucket.
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3Ch
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te
r

1-D Planar geometry
Sheet Oscillations

in a Rising Density Gradient

To determine the applicability of the simple gradient and amplitude-dependent sheet cross-

ing model in the earlier chapter we use computational methods. It is important and nec-

essary to use computational method because the earlier models assume a freely oscillating

set of plasma electron sheet. However, in the wakefields, the sheets are driven by an energy

source of arbitrary shape. So the solutions of planar oscillations driven in the wake of a

driven in 1-D geometry are hard to model analytically. Thus, we use PIC code to determine

the phase-mixing time of the driven planar oscillations.

3.1 Scaling of phase-mixing in 1D beam-driven planar wake

We study the onset of particle trapping using the OSIRIS PIC code [15][21]. Here we study

the phase-mixing of plasma oscillations in 1D geometry. Thus spatially we retain only the

longitudinal dimension along which the driving energy source propagates. However, to

understand the e�ect of the driving energy source we retain all the 3 components of the

electron momentum.

As described earlier in 1D the oscillations are planar with individual electron sheets
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following the equation of motion. It was shown that the description of using individual

electron sheets as independent oscillator broke down when the amplitude of the oscillations

trajectory is higher than a critical amplitude. Secondly, a density gradient was shown to

cause phase-mixing due to trajectory crossing of individual oscillators.

We study beam-driven 1D oscillations here. It is important to note an essential dif-

ference between the beam-driven and laser-driven longitudinal oscillations. The maximum

longitudinal momentum of the oscillators in these two drivers is very di�erent. This can

be seen by comparing equations for longitudinal momentum in the two cases.

ˆ
1
c2

B

2

Bt2 ` k2
pe

˙
r“—Îs

“ ´

1
c

B

Bt
Òa2

K
2

----
laser

“ k2
pe

ª 8

´8

1
c

B

Bt

n
b

pzq

n0
dz

----
beam

(3.1)

Since, in the laser driven oscillations the longitudinal momentum depends upon the

ponderomotive force which depends upon the spatial profile the laser pulse intensity, Òa

2
0

2

and it can be quite high. In the regime where the peak vector potential a0 Ç 1 the electron

longitudinal velocity can approach the plasma wave velocity. Note from earlier discussion

that the trapping condition, —e

Î » —p

„

is then satisfied.

However, in the beam-driven oscillations the longitudinal momentum is dependent upon

the time variation of the beam density, B
Bt

n

b

pzq
n0

. However, the beam density is nearly

constant, B
Bt

n

b

pzq
n0

†† 1 over single plasma oscillation and changes much more slowly than

the plasma-wave time-scales B
Bt

n

b

pzq
n0

" Ê´1
pe

. This is an essential and good approximation in

the plasma wakefield theory, it is referred to as the quasi-static approximation or the frozen-

field approximation. Thus there is no trapping in beam-driven oscillations just behind the

beam.

Here, for isolating the e�ect of the oscillation amplitude on phase-mixing, we simulate
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cases where the driven oscillations are expected to be linear. Since, for linearity the con-

dition on the density perturbation in the plasma-wave is ”n ! n0. And, from the earlier

formulation we known that

”n 9 n
b

† n0.

Thus, in the simulations we beam density less than the background plasma density, n
b

† n0.

We analyze the scaling of trapping using the 1D phase-mixing model for phase-mixing

time in the rising density gradient,

�t
mix

“

fi

2BÊ

pe

pxq
Bx

›
m

.

It is noted that the amplitude of the trajectory, ›
m

9 n
b

. Thus the scaling of trapping

using the 1D phase-mixing model for phase-mixing time in the rising density gradient,

�t
mix

----
beam´driven

9

fi

2BÊ

pe

pxq
Bx

n
b

.

In a general density gradient the plasma frequency along the density gradient varies as

Ê
pe

pxq “ Ê
p0

d
npxq

n0
.

Thus, BÊ

pe

pxq
Bx

“ Ê
p0

1
2
?

n0npxq
Bnpxq

Bx

. Substituting this into the phase-mixing time expres-

sion for beam-driven planar plasma oscillations, �t
mix

----
beam´driven

9

fi

2
1

Ê

p0 1
2
?

n0npxq
Bnpxq

Bx

n

b

.

This can be further simplified as,

�t
mix

----
beam´driven

9 fiÊ´1
p0

a
npxq{n0

Bnpxq
Bx

n

b

n0

(3.2)

Thus the model in eq.3.2 shows that the phase-mixing time, �t
mix

9

a
npxq{n0, de-

pends upon the location in the density gradient and increases with rising density. So, it

takes longer to accumulate phase-di�erence between individual oscillations as the density
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increases.

The eq.3.2 suggests that the phase-mixing is fastest close to the vacuum-plasma inter-

face and slowest close to where the gradient transitions into homogeneous plasma.

However, since phase-mixing eventually leads to the onset of trapping of plasma elec-

trons, near the vacuum-plasma interface where the density is low, smallest density of elec-

trons is trapped. As we move further up the density gradient a higher density of electrons

is trapped but the trapping is slower. Thus there is some optimum density, npxq at which

the density is just high enough and the phase-mixing fast enough to trap a significant

density of electrons in the plasma wave.

The eq.3.2 also provides 1D planar scaling laws for the onset trapping in a rising density

gradient with the drive-beam density, n

b

n0
and rising density gradient scale length, Bnpxq

Bx

.

�t
mix

----
beam´driven

9

ˆ
Bnpxq

Bx

˙´1

9

ˆ
n

b

n0

˙´1
(3.3)

In a linearly rising density gradient with the homogeneous plasma density Ê
p0 “

b
4fin0e

2
m

e

and which is taken to rise from Ê
pe

p0q|
npx“0q “ 0,

npxq “ n0
x

L�
Hpxq and Ê

pe

pxq “ Ê
p0

c
x

L�
Hpxq.

Thus, Bnpxq
Bx

“ L´1
� and

b
npxq
n0

“

b
x

L�
. Using these expressions, in a linear rising

density gradient,

�t
mix

----
beam´driven

9 fiÊ´1
p0

?

x

„ ?

L�
n

b

{n0

⇢
(3.4)
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We simulate the rising density gradient cases where L� “ 10 . . . 100 c

Ê

pe

and beam-

densities n
b

{n0 “ 0.025, 0.05, 0.075, 0.1, 0.2, 0.5.

3.2 Phase-mixing scaling with drive-beam density, n
b

{n0

We setup the PIC simulations for the 1D with a resolution of 40 simulation cells per plasma

skin-depth, c

Ê

pe

. The velocity components are initialized and updated in a 3D space. We

initialize plasma electrons with 400 particles per cell with fixed background ions. The

plasma electrons have a small thermal velocity of p
th

“ 0.02m
e

c. We initialize the electron

beam with 100 particles per cell with Gaussian profile of ‡
z

“ 1.5 c

Ê

pe

and a relativistic

factor “
b

“ 38, 000. The beam is assumed to have zero thermal velocity. The particle

shape is quartic. The particle and field boundaries of the simulation space are open. The

electromagnetic field solver uses second-order centered di�erence approximation. The rising

density gradients with di�erent gradients are setup to start from 50 c

Ê

pe

, with zero plasma

density ahead of the gradient.

In this section we analyze the dependence of the phase-mixing time of the planar

longitudinal oscillations on the beam density of the drive electron beam. We simulate

beam-densities n
b

{n0 “ 0.025, 0.05, 0.075, 0.1, 0.2, 0.5 and look for the trapped particles in

the longitudinal momentum phase-space. The rising density gradient scale-length is fixed,

L� “ 20 c

Ê

pe

.

The longitudinal momentum phase-space are shown in Fig.3.1 and Fig.3.2. As shown

in Fig.3.1(a) the drive electron beam is located at 140 c

Ê

pe

.

In Fig.3.3 we plot the location of the first trapped particles behind the drive beam. This

is equivalent to the phase-mixing time as it indicates the time the phase-o�set particles

require to get trapped with a phase of the plasma.

From Fig.3.1, Fig.3.2 we observe that for lower beam densities the plasma wave nearly

sinusoidal. But as the beam-density approaches, n
b

Ñ n0 the wave starts self-steepening.

The phenomenon of self-steepening occurs before the onset of trapping. Self-steepening
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Figure 3.1: Onset of phase-mixing self-injection in a beam-driven 1D planar plasma for
di�erent drive beam densities - I. In this figure we look at the onset of phase-mixing in the
wakefields driven in a rising density gradient in a 1D planar plasma. In the simulations
here, the plasma density rises from 0 to 1n0 over L� “ 20 c

Ê

pe

between 50 and 70 c

Ê

pe

. (a)
the beam location and shape is shown for the case of n

b

“ 0.025n0. (b),(c) and (d) show the
longitudinal momentum phase-spaces along the longitudinal dimension for n

b

“ 0.025n0,
n

b

“ 0.05n0 and n
b

“ 0.075n0 respectively.
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Figure 3.2: Onset of phase-mixing self-injection in a beam-driven 1D planar plasma for
di�erent drive beam densities - II. The longitudinal momentum phase-spaces are shown at
the same time as shown in Fig.3.1 with the beam located at » 140 c

Ê

pe

. (e),(f) and (g) show
the longitudinal momentum phase-spaces along the longitudinal dimension for n

b

“ 0.1n0,
n

b

“ 0.2n0 and n
b

“ 0.5n0 respectively.
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Figure 3.3: Dependence of the phase-mixing time on the drive-beam density. Dependence
of the phase-mixing time on the drive electron beam density. Location of the first trapped
particles behind the driver electron beam for di�erent drive beam densities in Fig.3.1
and Fig.3.2 with the beam located at » 140 c

Ê

pe

. Note that from eq.3.4 we know that
�t

mix

9 pn
b

{n0q

´1.

occurs when particles get close to the phase-velocity of the wave. The self-steepening of the

beam-driven wake is shown in Fig.3.2(g) as the wave potential gets higher the density wave

departs from its sinusoidal structure. There are more particles close the the accelerating

phase of the wave. Note that self-steepening also leads to trapping.

We also observe trapped particles in each of the simulations. Upon plotting the phase-

mixing time leading to trapping we see that the 1D simulations suggest the hyperbolic

scaling shown in eq.3.4, �t
mix

9 pn
b

{n0q

´1.
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3.3 Phase-mixing scaling with rising gradient scale-length, L�

In this section we analyze the dependence of the phase-mixing time of the planar longi-

tudinal oscillations on the rising gradient scale-length, L�. We simulate rising gradient

scale-length, L� “ 10, 20, 30, 40, 50, 100 c

Ê

pe

and look for the trapped particles in the lon-

gitudinal momentum phase-space. The drive-beam density is fixed n
b

{n0 “ 0.1. As the

drive-beam density ensures ” “

n´n0
n0

»

n

b

n0
! 1 these simulations are in the linear am-

plitude regime. Thus, we ensure that the observed non-linear e�ect of phase-mixing and

trapping is due to the rising density gradient.

The longitudinal momentum phase-space are shown in Fig.3.4 and Fig.3.5. As shown

in Fig.3.1(a) the drive electron beam is located at 140 c

Ê

pe

. Plotting the phase-mixing time

leading to trapping we see that the 1D simulations suggest the parabolic scaling shown in

eq.3.4, �t
mix

9

?

L�.
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Figure 3.4: Scaling of the onset of 1D planar oscillations phase-mixing with rising
gradient length - I. In the simulations here, the plasma density starts rising from 0 to 1n0
from 50 c

Ê

pe

. The onset of trapping is shown in the longitudinal momentum phase-space of
the plasma electrons plotted along the longitudinal dimensions. (a),(b) and (c) show the
longitudinal momentum phase-spaces along the longitudinal dimension for L� “ 10 c

Ê

pe

,
L� “ 20 c

Ê

pe

and L� “ 30 c

Ê

pe

respectively.
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Figure 3.5: Scaling of the onset of phase-mixing in a beam-driven 1D planar plasma with
the rising gradient scale-length - II. The longitudinal momentum phase-spaces are shown at
the same time as shown in Fig.3.1 with the beam located at » 140 c

Ê

pe

. (e),(f) and (g) show
the longitudinal momentum phase-spaces along the longitudinal dimension for n

b

“ 0.1n0,
n

b

“ 0.2n0 and n
b

“ 0.5n0 respectively.
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Figure 3.6: Scaling of the onset of phase-mixing in a beam-driven 1D planar plasma with
the density gradient scale-length. Dependence of the phase-mixing time on the density
gradient scale-length. Location of the first trapped particles behind the driver electron
beam for di�erent density gradient scale-lengths in Fig.3.4 and Fig.3.5 with the beam
located at » 140 c

Ê

pe

. Note that from eq.3.4 we know that �t
mix

9

?

L�.
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2-D Cylindrical Geometry
Radial Oscillations

in a Rising Density Gradient

Here we look at the e�ect of longitudinal density gradient on radial oscillations in cylindrical

geometry. The longitudinal dimension is the direction along which the wave vector of

the plasma-wave is oriented and it is also the direction along which the energy-sources

propagate. So, it is an important question to ask - how does a longitudinal density gradient

a�ect the radial oscillations.

The electrons are primarily deflected along the radial dimensions when interacting with

short-intense energy sources. The oscillations driven in the wake of such drivers are thus

along the radial dimensions of a cylindrical geometry, as explored above. A significant

radial momentum is induced in the case of relativistically intense energy sources which can

drive the radial momentum of the plasma electron to be relativistic, p

e

K
m

e

c

• 1.

A longitudinal component of electron momentum is also forced by the longitudinal

force of the short-intense energy sources. In the case of a laser pulse the longitudinal force

which is equal to the ponderomotive force shown above, can be significantly high. It is

important to analyze the longitudinal momentum of the plasma electrons. Because, it is

the relative velocity between the wave phase velocity at which the fields change phase and
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the longitudinal velocity of the plasma electrons that decides the fields seen by the electrons

with the small relative velocity. It is well known and shown above that the trapping starts

if the wave potential is high enough and —p

„

» —e

Î.

4.1 Trapping of electrons in 2D cylindrical geometry in a rising density gradient

In this section using PIC simulations we show the e�ect of a longitudinal density gradient

on radial oscillations in a plasma wakefield. We use a density gradient that rises from a

vacuum to maximum density in 20c{Ê
pe

, with initial vacuum extending out from the edge

of the plasma. The profile of the density gradient is shown in Fig.4.1. We excite the density

gradient at the vacuum-plasma interface with a laser and an electron beam energy source

to determine the e�ect of trapping due to phase-mixing of oscillations in a rising density

gradient.

20 c/ωpe 

Figure 4.1: Rising plasma density gradient at the vacuum-plasma interface. The e´

density (negative) rises from 0 to 0.01n
c

between 50 and 70 c

Ê

pe

. The homogeneous plasma
density is 0.01n

c

.
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Figure 4.2: The 2D plasma e´ longitudinal momentum phase-space showing trapping of
plasma electrons. Beam-driven phase-spaces are in (a) with transverse dimension (p1x2)
and (b) with longitudinal (p1x1) dimension. Corresponding Laser-driven phase-space are in
(c) and (d). The e´ trapped in first laser-driven bucket gain a peak momentum “Î—Î ° 30,
whereas in both the beam and laser case, the second bucket e´ only gains, “Î—Î „ 20.
Also, phase-mixing injection occurs only on the axis.

To show the trapping of plasma e´ oscillating in cylindrical geometry in a longitudi-

nally rising plasma density gradient, we use 21
2D OSIRIS[21] PIC code. We use cartesian

coordinates for a laser pulse to setup circular polarization unlike a cylindrical / radial po-

larization that would be inherent under cylindrical symmetry. For the beam-driven case

we use cylindrical coordinates in the PIC simulations. However, to make a fair comparison

of trapping, the PIC results we present here are of the beam-driven wakefields in cartesian

coordinates.

The simulations are setup with Eulerian specification of the plasma dynamics in a fixed

82 of 98 Aakash A. Sahai



Phase-mixing self-injection in a rising plasma density gradient 4.1.0
D"
"

"
"

" "
"

(a)$

(c)$ (d)$

(b)$

beam*excited$electron$ beam*excited$electron$

laser*excited$electron$ laser*excited$electron$

�
!p$

�
!p$

�
!p$

�
!p$

Figure 4.3: Time evolution of plasma e´ longitudinal momentum (p1x1). The plasma
e´ longitudinal momentum phase-space at t „ 370 1

Ê

pe

and t „ 500 1
Ê

pe

.

frame. We initialize the homogeneous background plasma density to n0 “ 1 pre-ionized

singly-charged state. The density gradient at the vacuum-plasma interface is in Fig.4.1

starts at 50 c

Ê

pe

, with vacuum regions in the first and last 50 c

Ê

pe

longitudinal space.

For the case of a laser-driven wake we use a Ê
pe

“ 10Ê
pe

. We resolve and reference

the real time in simulation to the laser period 2fi{Ê0 thereby the dynamics within a single

plasma cycle is simulated in just
a

n
c

{n
e

„ 10 laser cycles. We discretize the space with

20 cells per skin-depth (c{Ê
pe

) in the longitudinal and 10 cells per c

Ê

pe

in the transverse

direction. The longitudinal simulation space size is 470 c

Ê

pe

and the transverse size is 300 c

Ê

pe

for laser-plasma and 600 c

Ê

pe

for beam-plasma simulations.

We use absorbing boundary conditions for fields and particles of all species. We use
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Figure 4.4: On-axis longitudinal electric field (e1) for the (a)laser and (b)beam excited
plasma. To compare the laser-drive and beam-driven wakefields in 2-D, the driver param-
eters are chosen such that the on-axis longitudinal accelerating field is nearly equal. A
comparison of the longitudinal fields is shown at 370 1

Ê

pe

.

cubic or quartic splines to model the particle shapes. The laser pulse is chosen to be a

circularly polarized pulse with normalized vector potential a0 “ 4.0 with a trapezoidal

pulse of Gaussian rise and fall time of 10 c

Ê

pe

and a flat-time of 20 c

Ê

pe

. Gaussian-apr̨q with

matched[14] FWHM focal radius of r0 “ 10 c

Ê

pe

. The particle beam is initialized with

“ „ 38, 000, n

b

n0
“ 5.0 and Gaussian-shape with dimensions of ‡

r

“ 2.5 c

Ê

pe

and ‡
z

“ 4.0 c

Ê

pe

.

These laser and beam driver parameters excite comparable longitudinal fields, in Fig.4.4.

In Fig.4.2, 4.3, the longitudinal momentum phase-space of the plasma e´ is shown.

The trapped e´ are seen propagating in longitudinally forward direction, Fig.4.3. The

forward propagating e´ are locked to the peak of the wake-plasmon longitudinal fields,

this allows the trapped e´ to continuously gain momentum. In 4.2(a) and (b) the beam-

driven longitudinal momentum of plasma e´ are shown at t „ 500 1
Ê

pe

for longitudinal

momentum with longitudinal-dimension (p1x1) and transverse-dimension (p1x2) phase-

space respectively. Corresponding snapshot of longitudinal momentum phase-space for

laser-driven case are shown in (c) and (d) respectively. It is important to note that the

forward longitudinal momentum (p1 ° 0) in the first bucket for the laser with a0 “ 4.0 is

84 of 98 Aakash A. Sahai



Phase-mixing self-injection in a rising plasma density gradient 4.1.0

much higher than the beam-driven case with n

b

n0
“ 5 (in Fig.4.4). The increase (by ?

“
e

c

Ê

pe

)

of first-bucket size due to relativistic e�ects can be observed in Fig.4.4(a),4.5(c). It is also

observed that in the beam-driven case, 4.2(a)-(b), there is no plasma e´ trapping in the

first bucket behind the beam. The plasma e´ are trapped in the rising density gradient at

the vacuum-plasma interface in the second and subsequent buckets. However, in 4.2(c)-(d),

plasma e´ are trapped in all the buckets. In the laser-driven case, the plasma oscillations

are non-linear due to relativistic e�ects and larger ponderomotive e�ect. So, trapping of

plasma e´ occurs in the first bucket due to trajectory distortion (trajectories cross in the

back of the bubble) as a result of non-linearity of longitudinal trajectories. However, the

trapping in the second bucket is due to the rising density gradient at the vacuum-plasma

interface.
!D!
!

!
!!

!! !
!!

(a)$

(c)$ (d)$

(b)$

beam*excited$electron$ beam*excited$electron$

laser*excited$electron$ laser*excited$electron$

Figure 4.5: Self-injected trapped plasma e´ in plasmon-buckets in real-space from 2-D
PIC simulations. The plasma e´ density is shown in real space. In (a) t » 370 1

Ê

pe

and
(b) t » 500 1

Ê

pe

the plasma e´ are trapped only in the second and subsequent buckets in
the case of beam-driven plasma. Whereas in corresponding snapshots in (c) and (d), the
plasma e´ are trapped in all the buckets in laser-driven case.
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In Fig.4.5 the plasma e´ density is shown in real-space. In 4.5(a)-(b), the beam-driven

plasma is shown in real-space. In laser-driven case in 4.5(c)-(d), the trapped e´ due to

trajectory crossing in the back of the first bucket can be observed.

4.2 2D scaling laws - trapping in cylindrical geometry oscillations

We present some preliminary scaling results of the trapping of plasma electrons undergoing

radial oscillations in the wakefields driven in a rising density gradient. We show the scaling

with the gradient of the rising density at the vacuum-plasma interface in Fig.4.6.

In PIC simulations presented here the particle beam is initialized with “ » 38, 000,
n

b

n0
“ 5.0 and Gaussian-shape with dimensions of ‡

r

“ 2.5 c

Ê

pe

and ‡
z

“ 4.0 c

Ê

pe

.

We compare the phase-mixing of radial oscillations using 2-D simulations in three dif-

ferent density gradients with LÒ “ 10, 20 & 100c{Ê
pe

.

It can be observed by comparing Fig.fig:2D-trapping-scaling-gradient(d) and (f) corre-

sponding to LÒ “ 10c{Ê and 100c{Ê respectively that the onset of trapping is delayed in

a density gradient with large scale-length. This is quite similar to the scaling in the sheet

model. Similarly, comparing Fig.fig:2D-trapping-scaling-gradient(d) and (e) in LÒ “ 10c{Ê

and 20c{Ê, we observe that the bunch trapped in a sharper gradient has gained a higher

energy. This occurs because electrons that are trapped earlier have undergone a larger

period of acceleration.

We can explain this behavior of the radial oscillations phenomenologically, in lack of a

2-D analytical model. The structure of the radial oscillations is modified due to varying

restoring force along the gradient. The envelope of the longitudinal structure formed by

the radial oscillations in a density gradient induces phase-mixing.
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Figure 4.6: Scaling of onset of trapping in radial oscillations with density gradient scale-
length - modeled using 2-D PIC simulations - comparison of the longitudinal momentum
phase-space. To show preliminary scaling for the onset of trapping of plasma electrons in
the 2D radial oscillations we compare three di�erent rising density gradient scale-lengths.
In (a),(b),(c) we show the scale-length for each of the case and in (d),(e),(f) we show the
longitudinal momentum phase-space with respect to the longitudinal dimension.
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Conclusions
& Future-work Directions

Using the non-linear plasma oscillations model developed by J. M. Dawson [4] for freely os-

cillating plasma electrons in di�erent geometries, we have tried to model the phase-mixing

between individual oscillators driven in a wakefield. More specifically, we try to understand

the scaling laws of the phase-mixing time in a rising density gradient.

The onset of trapping is shown to be dependent on either a critical oscillation amplitude

or just on geometry, independent of the amplitude. However, the phase-mixing time is not

generally considered in the analysis of trapping, as most trapping methods use amplitude

threshold crossing as the mechanism for phase-mixing. It is well known that once the

space-charge potential is high enough to result in trajectory-crossing, individual oscillators

invariably undergo phase-mixing.

We have analyzed driven oscillations in a rising density gradient of planar geometry

using 1D PIC simulations and of cylindrical geometry using 2D PIC simulations.

We have shown that the intentional phase-mixing induced in a density gradient leads to

trapping and acceleration of electrons in plasma wakefield acceleration structures. We have
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developed a model for the mixing time of the oscillations in a linear rising density gradient.

Using PIC simulations we have shown that the 1D scaling laws follow the model. In 2D

cylindrical oscillations in a plasma wakefield driven by a beam or laser, the oscillations

are primarily radial and thus 1D planar model is not adequate. Even though we have not

developed a phase-mixing model for cylindrical geometry wakefields that are sustained by

radial oscillations, driven in a rising density gradient, we observe that the 1D planar sheet

model holds well.

In the future, we wish to develop an analytical model for the phase-mixing of cylindrical

geometry electron oscillations in a longitudinal density gradient. Using this model we wish

to analyze the onset of trapping in linear & non-linear beam and laser-driven wake-field

plasma oscillations. We wish to explore electron and proton beam driven wakefields. We

also note that transverse gradients in density can also lead to phase-mixing of radial oscil-

lations of electrons and we wish to explore this further in the future.

There are several experimental designs such as the AWAKE experiment at CERN

that excite plasma wave in linear or quasi-linear regime. The plasma oscillations in these

wakefields are sub-threshold and thus trapping based self-injection is not possible purely

through the amplitude-based wave-breaking. This is especially the case in beam-driven

particle accelerators because high-intensity beams from conventional accelerators require

significant investment. It is a challenge to inject electrons into these linear wakefields. The

phase-mixing based self-injection scheme proposed here presents an alternative to engineer

a plasma density gradient in these accelerators and use it for injection of electrons.
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Chirp Pulse Amplified Ultra-short Lasers

Intense Lasers are useful tools to study non-linear optical e�ects and phenomenon in physics

of light-matter interactions. Traditionally, laser intensities were increased by compressing

the equivalent laser energy into shorter time duration pulses. Laser powers as high as

Giga-Watts (GW) were achieved using pulse-compression techniques such as Q-switching

and Mode-locking. These techniques could also have been used to generate Ultra-Fast laser

pulses of Terra-Watt (TW) and Peta-Watt (PW) power with shorter than a pico-second

(10´12) pulse duration. However, at such high powers the laser electric fields start being

equivalent to the interatomic fields and lead to non-linear ionization processes which can

ionize almost any material to plasma. This encouragingly allows observation of many

non-linear e�ects such as harmonics generation, nonlinear Raman and Brillouin scattering,

4-wave mixing, self-focusing etc.

But, the same e�ects are severely damaging to the amplification medium. The refractive

index of the medium depends upon the laser intensity (» irradiance), n “ n0 `n2 ˆIp

W

cm

2 q,

through the material-dependent non-linear coe�cient, n2. The propagation of laser electric

field in a medium thereby depends upon its own amplitude in addition to the medium

property. Laser intensity depends upon space and time, hence, the e�ect of medium on

the propagation of an intense pulse is time and space dependent. Spatial variation of

a pulse results in intensity dependent focusing lens (Kerr-lens) for most common spatial

(transverse) beam profiles (like Gaussian) with larger intensity at the center, resulting in
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beam self-focusing. Time variation of the e�ects of the medium lead to the generation of

new frequencies through self-phase-modulation. These e�ects lead to further shortening of

the laser pulse (through Kerr-lens-mode-locking) in a medium when the intensities are high

enough. In solid crystalline amplifying medium, n2 is high enough to lead to catastrophic

self-focussing, leading to irreversible material damage. This material damage also entirely

destoys the laser properties due to its ionization of the medium into a plasma and leading

to e�ects such as mirroring, filametation and other instabilities. Mirroring can damage the

ultra-fast oscillator if light couples back into it.

To e�ciently couple the energy stored in the laser active medium as population inversion

to stimulated emission photons, requires that output fluence („
out

) from the medium be

of the order of the saturation fluence for the medium („
sat

). Typical („
sat

) for solid state

gain medium ranges between 1 - 10 J

cm

2 , this allows only nanosecond or longer pulses to

be amplified without damaging the active medium.

The demonstration of Chirped Pulse Amplification [23] in late 80s was a breakthrough,

because at that point the output power was limited to Giga-Watts by non-linearities,

primarily self-focussing. Only alternatively available to increase the output power, dictated

expanding the focussed beam in space to allow smaller intensities, within the medium.

Expansion of a beam meant large, bulky and thereby expensive active medium.

The CPA techniques use three main elements to amplify ultra-short pulses beyond what

is possible without CPA. The first element expands ultra-short laser pulse generated by a

femtosecond oscillator to a nanosecond pulsewidth (time-spread the energy by a factor of

103
´ 105), the second element (a gain-bandwidth limited amplifiying medium) amplifies

(amplification factor of 106) is then done at these low intensities (spatial profile is not

modified) that are below the active medium damage threshold and the third element com-

presses the output from the active medium in air or vacuum to a subpicosecond pulsewidth,

Fig.A.1. The initial time-domain expansion and post-amplification compression of the laser

pulse is achieved by having time-dependent frequency (frequency dependent delay in the

spectrum) in the laser pulse. Such a pulse is referred to as “chirped” pulse. The chirp
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parameter ‘
c

is positive if frequency increases in time and negative if vice-versa. The

pulse expansion element (positive group velocity dispersion (GVD) - high-frequencies take

longer to propagate through the dispersive element) positively chirps the pulse resulting in

time-expansion of the pulse which is now chirped. After the pulse is amplified by the gain

medium, it is processed through a negative chirp element (negative GVD - low-frequencies

take longer to propagate through the dispersive element) that tries to exactly invert the

positive chirping and restores the pulse to its original ultra-short duration. The pulse com-

pression elements have to be able to withstand the high intensities that are output from

the gain medium. The expansion and compression elements are typically a pair of gratings

or prisms.

After, the compression stage, the laser pulse is focussed using metallic optical compo-

nents placed in good quality evacuation chamber (even metals start ionizing for intensities

° 1014 W

cm

2 ). Evacuation chamber is used after the compression stage because even any low

density gas present in the path of the laser beam ionizes and can lead to plasma e�ects

such as filamentation of the beam.

Since, the size of the active medium can be minimized with CPA technique, it allows

miniaturization of these lasers leading to Table-Top TeraWatt systems.

Ti:sapphire and Nd:glass, are the active medium for most of the CPA lasers. Ti:sapphire

is ideally suited to CPA technique due its excellent mechanical and thermal stress handling

properties and the largest bandwidth of the laser transition » 230nm. Using Ti:Sapphire,

expanded sub-nanosecond pulsewidth can be e�ciently coupled out, because of its high

„
sat

of 0.9 J

cm

2 . The disadvantage of Ti: sapphire is that it needs to be externally pumped

using frequency-doubled Nd:YAG, Nd: YLF, and Nd: glass lasers. This is because of

the relatively short lifetime of the upper laser level » 3 ms. High energy 4J Nd:YAG

pump lasers that operate at ⁄ “ 532nm and repetition rates of 10 Hz are commercially

available. Energy from Nd-glass laser can be accumulated over many pulses and used to

pump Ti:sapphire at lower repetition rates (or even single-shot). Crystal size places the

ultimate limit upon the output energy from the active medium. The bandwidth of the
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Figure A.1: Schematic of Chirp Pulse Amplified laser - from Chirp Pulse Amplification
- Wikipedia page

medium is limited by gain narrowing (can be as low as 40-50 nm) but gain-flattening using

spectrally selective elements like etalon or bi-refrengent filters allow spectrum up to 80 nm

and pulse-width † 20fs. Other broadband solid state active medium materials have also

been explored with CPA: Cr: LISAF, Cr: forsterite, Yb:glass, Ce:LICAF etc.

Almost all high-intensity sub-nano-second short pulse lasers with output powers ° 50

TW use CPA technique. Exception is the set of 500TW lasers at the National Ignition

Facility (NIF) at LLNL using purified glass technology which were commissioned before

the wide-spread use of CPA. However, CPA technology is still limited to about a kilo-Joule

of energy whereas NIF lasers combined to deliver Mega-Watt far-infra-red power on target.

Relativistic laser intensities are high enough to impart relativistic transverse oscillating

momentum to the interacting electrons. These intensities were only possible due to the

invention of Chirped Pulse Amplification. The invention of the Chirped Pulse Amplification

(CPA) technique has led to the development of ultra-intense (»

T W

cm

2 ) lasers with ultra-short
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Figure A.2: evolution of accessible physics regimes and applications with laser intensi-
ties, right hand side axis points to the electron quiver momentum imparted to electrons
interacting with the fields [23]

pulse lengths (picoseconds and lesser). Further development of CPA to higher intensities

would allow access to physics regimes of higher electric fields, Fig.A.2, that were not possible

before and hence high-intensity laser technologies are of immense value to understanding

physics.
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