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ABSTRACT 

Linh Nguyen 

 

ADIABATIC CAPTURE OF NEUTRONS FOR HIGH-BRIGHTNESS BEAMS  

AND STORAGE OF LOW- AND HIGH-FIELD-SEEKING SPIN STATES 

 

 

The extensive field of accelerator physics furnishes a dizzying array of techniques for the 

manipulation and storage of charged particles. The neutron, being uncharged, is resistant to 

nearly all of these techniques but can nevertheless be controlled through its weak magnetic 

moment to achieve similar qualitative outcomes. The present work adapts the technique of 

adiabatic capture to neutrons and demonstrates successful neutron beam bunching in 

simulations. These higher-brightness beams are furthermore achieved in a system that 

makes no distinction between low- and high-field-seeking spin states when the proper 

magnet polarities are used, thereby avoiding a prevailing problem in most magnetic neutron 

storage techniques. The positive results presented suggest that a new set of experimental 

approaches and tools may be available to improve the outcome of many existing applications 

of neutron beams, such as scattering studies, and to service the increasingly active field of 

fundamental neutron physics and low-energy particle physics.  
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1 INTRODUCTION 

 

 

1.1 INTEREST IN THE NEUTRON 

 

The neutron is tremendously important both as an experimental probe and as an 

experimental subject. The subsections below briefly summarize its historical uses and the 

active and growing research surrounding it. 

 

1.1.1 Neutron beams and their applications 

 

Intense neutron beams first became available with the construction of nuclear reactors, 

where channels through the radiological shielding would give access to the high neutron 

fluxes occurring at the reactor core. The emergence of a new branch of nuclear physics known 

as neutron optics quickly followed, as did the demand for better neutron sources, and the 

neutron’s immense importance as a tool for studying the internal structure and dynamics of 

matter has arguably overshadowed its importance as a topic of research in its own right.  

Reference [1] provides a comprehensive overview of the ways in which almost all the 

familiar properties of electromagnetic waves (e.g., reflection, refraction, interference, etc.) 

can be achieved with neutrons, and outlines the advantages of using neutrons over other 

means of studying materials, such as electrons and X-rays. The neutron’s most obvious 

advantage over other available particles for scattering experiments is its net electrical 

neutrality. Its electrical polarizability is also extremely low. As a result, neutrons can 
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penetrate more deeply into matter at lower kinetic energies and achieve sensitivities many 

orders of magnitude below the strength of electromagnetic forces. Less obvious perhaps is 

that the spin states of free neutrons are more easily and efficiently controlled than those of 

free electrons, giving neutrons the advantage over electrons in demonstrating polarization 

phenomena. Although X-rays are also uncharged, matter such as light elements, neighboring 

elements in the periodic table, and different isotopes of the same element cannot be 

distinguished using X-rays, whereas they are easily distinguishable using neutrons, which 

primarily probe matter through their nuclear interactions. Neutrons also possess a magnetic 

moment that can be used to study magnetization in a sample, unlike X-rays.  

Spatially, neutron scattering can be used to resolve details as small as 0.1 nm [1], and 

it constitutes a form of non-destructive testing. Combined with their other measurement 

capabilities, neutron beams have thus been used in a wide and powerful array of applications 

demanding high precision, including structural analysis, sample identification, crystal lattice 

mapping, determination of material properties such as scattering lengths and resonance 

parameters, investigations into the effect of accelerating fields (in particular, gravity) on 

matter, determination of domain wall inclinations and separations in ferromagnets, and even 

the characterization of chirality domains in helimagnets [1]. Neutrons are also used for 

radiation therapy to treat cancer, but these are typically neutrons with high kinetic energy—

at least several MeV [2]. The most sought-after kinetic energy range for neutrons is below 1 

eV. (“Neutron energy” will henceforth refer to kinetic energy, unless otherwise noted.) These 

low-energy neutrons have an especially unique and important feature in that, not only are 

their de Broglie wavelengths still very well matched to atomic distances (owing to the 

neutron being heavy), their energies are also very well matched to typical quantized 

excitation energies of condensed matter (e.g., phonons, magnons, plasmons, etc.) [1]. This 

combination has made the neutron an unrivalled probe in condensed matter physics 
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experiments, as it allows neutrons to sample both static and dynamic states of matter—the 

latter through inelastic scattering. 

Neutron beams are also used when studying properties of the neutron itself. These 

applications will be addressed in the next subsections. In both cases, whether investigating 

fundamental neutron properties or other matter, neutron beams are limited in their 

effectiveness by low neutron densities, which can render electrons and X-rays—both 

producible in very large amounts—more sensitive as probes in many cases, despite their 

drawbacks. Low neutron densities are detrimental to statistics and incompatible with 

exposure time limitations, for example. Hence, high intensity is considered the most 

important requirement for neutron beams [1]. 

 

1.1.2 Ongoing investigations into fundamental properties of the neutron 

 

Values for fundamental properties of the neutron appear as inputs or constraints in many 

important physics equations; their experimental determination therefore serves as critical 

checks of the underlying laws or theories. One of the most actively researched fundamental 

properties of the neutron has been its lifetime. The theory of primordial nucleosynthesis 

(with its understanding of the onset of “nucleon freeze-out” and predictions regarding the 

subsequent abundances of elements), the weak coupling constants of the Hamiltonian for 

allowed beta decay in the vector minus axial vector (V-A) standard electroweak model, and 

the first element of the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix (and the 

corresponding checks of unitarity) all rely on the neutron lifetime [3, 4]. More than 20 major 

experiments have been done on the neutron lifetime since 1950 [3], but the discrepancies 

that have arisen in the measured value between the different methods employed so far 
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(beam, material bottle, and magnetic trap) have kept the matter very much open [5], and 

experiments continue. Magnetic trapping has since become the preferred method, with two 

recent improved measurements both using magneto-gravitational traps constructed of 

permanent magnets in a Halbach array [6, 7]. However, a notable aspect of such static 

magnetic storage techniques (mentioned in both Refs. [6] and [7]) is that, owing to the 

behavior of neutrons in magnetic fields, only one neutron spin state (up) is trappable for 

study. This phenomenon will be discussed in more detail in Chapter 2. 

 Neutron lifetime measurements form a subset of precise measurements involving 

free neutron beta decay. Other observables appearing in the neutron beta decay rate equation 

are referred to as correlation coefficients and, of the sixteen correlation coefficients possible, 

beta asymmetry, electron-antineutrino correlation, the Fierz term, and the two triple 

correlations have been studied in particular as tests for physics both within and beyond the 

Standard Model [8]. Previous experiments have investigated limits on scalar and tensor (S 

and T) coupling and time reversal (T) non-conservation and searched for evidence of right-

handed quark currents and spontaneous breaking of Lorentz invariance, among other new 

physical processes, often relying on neutron beams or high-density “clouds” for their 

measurements [8]. 

Lastly, the possible existence of a permanent neutron electric dipole moment (EDM) 

has also remained a highly active area of research since around 1950 [9]. A nonzero value 

would provide direct evidence of T symmetry violation, as well as of combined charge 

conjugation and parity (CP) violation, while the level of sensitivity would test or constrain 

many models, including the Standard Model and models of baryon asymmetry [9]. As above, 

neutron EDM searches involve free neutrons, albeit at the lowest possible energies (< 200 

neV), unlike scattering studies. At these energies, neutron densities are even lower, and 

reported effective equilibrium densities of 2 to 5 neutrons per cm3 are typical for experiments 
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[9, 10]. Given the shot noise dependence on the total number of neutrons counted, an increase 

in neutron density is required to increase the sensitivity of experimental searches [9].  

 

1.1.3 The growing field of low-energy particle physics 

 

Although many of the scientific areas described above can be categorized as topics in neutron 

particle physics, they are strikingly not in the realm of high-energy physics, which is so often 

associated with particle physics due to the high visibility of particle colliders. The neutron 

plays a central role in the emerging low-energy frontier of particle physics. Reacting to all 

known forces, it enables a vast array of investigations. Reference [11] provides a 

comprehensive early look at the opening landscape of low-energy particle physics with the 

neutron, while Refs. [12] and [4] provide updates on progress, outstanding problems, and 

measurement sensitivities—the former reporting 10-23 eV for energy resolution and 10-11 for 

relative uncertainties in atomic masses and neutron momentum transfer. As described in 

these references, in addition to the topics already covered, low-energy particle physics with 

the neutron can address questions related to baryon number non-conversation (via neutron-

antineutron oscillations), lepton number non-conservation (via reactor-neutrino 

oscillations), parity non-conservation (via neutron-nuclear interactions), the existence of 

axions, improvements in the value of the fine structure constant, dressed particle effects, 

geometric (Berry) phases in quantum systems, the foundations of quantum mechanics (via 

neutron interferometry), supersymmetric models (via EDM constraints), the equivalence 

principle in the quantum limit, gravity-induced quantum interference, bound quantum states 

in the gravitational potential, non-Newtonian gravity, dark matter, rare Standard Model 

decay channels, and quantum chromodynamics (QCD). The search for neutron-antineutron 
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oscillations, which involves observing a large number of low-energy neutrons over a long 

time of flight, in particular has been noted as awaiting increases in total neutron beam 

intensity to improve upon previously established upper bounds on the oscillation time [12, 

13]. In general, the development of new types of low-energy neutron sources and increases 

in neutron fluences has paved the way for new experiments and scientific areas [4]. Reference 

[8] discusses the comparable limits of low- and high-energy experiments and how the two 

regimes complement one another in the search for new physics beyond the Standard Model. 

 

 

1.2 MOTIVATIONS FOR THE PRESENT WORK 

 

In the summary above, two experimental aspects are specifically remarked upon: the benefits 

of achieving ever greater low-energy neutron densities and the unequal footing of up and 

down spin states in certain storage techniques. The present work, which concerns the 

adiabatic capture of neutron beams for neutron beam bunching, most clearly addresses the 

former by exploring the extension of a method already demonstrated with charged 

particles—such as in the Cooler Injector Synchrotron (CIS) ring at the Indiana University 

Cyclotron Facility (IUCF) [14]—to neutral particles with a magnetic moment. The outcome is 

a bunched neutron beam of greater brightness than the initial beam. The term “brightness” 

is used for the present work owing to its correspondence to density in phase-space, which is 

the treatment pursued. Transverse phase space is generally implied by this term—beam 

brightness being equal to beam current divided by transverse beam emittance—but while 

the adiabatic capture process studied in this work occurs in longitudinal phase space, it 

should be clear that it also occurs within the larger context of storage ring accelerator physics 
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and lattice design, where transverse emittance is a basic figure of merit that attends the entire 

machine. Hence, greater neutron density is a less stringent outcome. In applications where 

angular spread is not of much importance, “high-brightness” can simply be taken to mean 

“high-density”. 

 As will be seen in Chapter 4, the present work focuses on the adiabatic capture of 

neutrons with energies around 1 μeV—with higher energies being possible, albeit at the cost 

of more demanding magnets and larger rings. Such neutrons can be produced in much greater 

quantity than those required for the material bottle and magnetic trapping techniques 

described above; thus, the present work is also partly motivated by the possibility of greatly 

extending the working energy range of stored neutrons, which would improve neutron beam 

densities as a matter of course. 

 On the topic of existing magnetic storage techniques, the present work moreover 

seeks to avoid the problem of rejecting spin-down neutrons; accepting both spin states is 

achievable in the system put forth by the switching of magnet polarity. This ensures a 

symmetric benefit in brightness gains and makes available either spin state for experiments 

related to spin-dependent physics. 

Lastly, the rather sweeping review of neutron physics experiments in the preceding 

section does not mean to suggest that the present work will be beneficial or even applicable 

to all the topics discussed. Instead, it highlights the breadth and expanding opportunities in 

the field, while also touching on its comparatively small community. This fact alone makes 

any additional attention worthwhile and the impact and uses of any new tools hard to predict. 

On a final note, then, the present work hopes to aid in the growing interest in the neutron and 

low-energy physics.   
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2 THE PHYSICS OF SLOW NEUTRONS 

 

 

2.1 NEUTRON ENERGY SPECTRUM 
 
 

Although neutrons must first be liberated from nuclei via high-energy reactions before they 

can be used in experiments, mechanisms for lowering their energy following liberation are 

many (see, for example, Refs. [1] and [12] for an overview). As a result, the range of neutron 

energies available for experimenters is vast, ranging from several MeV down to peV [12]. 

“Temperature” is used to describe and make finer distinctions among the class of “slow”—

that is, sub-eV—neutrons. These neutrons are typically divided into epithermal, thermal, 

cold, very cold, and ultracold; however, there is some variation in the subgroups and their 

energy ranges among sources. For example, Ref. [4] uses 500 keV as the upper boundary for 

epithermal neutrons. Meanwhile, other sources omit the “very cold” subgroup (e.g., Ref. [8]). 

The present work will ascribe to the classification system presented in Ref. [1]. 

Accordingly, slow neutrons are grouped as in Table 2.1. It is clear from the velocities listed 

that a non-relativistic treatment of the physics concerned will suffice throughout. As 

explained in the same reference, the transition from epithermal to thermal neutrons is 

characterized by a change in the nature of the collection’s energy distribution, with 

epithermal flux having a distribution that varies inversely with energy and thermal flux 

exhibiting the Maxwellian distribution belonging to a system in thermal equilibrium with its 

surroundings. The 25 meV of energy of a thermal neutron, therefore, corresponds to a 

neutron in thermal equilibrium at 300 K. The topic of the Maxwellian distribution of thermal 

neutrons will be revisited later in Section 4.3.3, as part of the discussion on simulation results. 
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2.2 THE NEUTRON MAGNETIC MOMENT 

 

The neutron’s lack of an electric charge—confirmed experimentally down to the order of  

10-22 electron charges [12]—has meant that experimentalists have often relied on its 

magnetic properties for manipulation. The neutron possesses an intrinsic magnetic moment 

𝜇𝑛 roughly two-thirds that of the proton and, in terms of the nuclear magneton 𝜇𝑁, the value 

is given by 

𝜇𝑛 = −1.91304 𝜇𝑁 (2.1) 

where 

𝜇𝑁 =
𝑒ℏ

2𝑚𝑝
 (2.2) 

Term Energy Approx. velocity (m/s) 

epithermal 25 meV < E ≤ 1 eV 2200 < v ≤ 13800 

thermal E ≃ 25 meV v ≃ 2200 

cold 50 μeV ≤ E < 25 meV 100 ≤ v < 2200 

very cold 200 neV ≤ E < 50 μeV 6 ≤ v < 100 

ultracold E < 200 neV v < 6 

 

Table 2.1: Slow neutron energy spectrum 
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in SI units. In the equation, 𝑒 = 1.60218 × 10−19 𝐶 is the elementary charge, ℏ = ℎ
2𝜋⁄ =

1.05457 × 10−34 𝐽 ∙ 𝑠 is the reduced Planck’s constant, and 𝑚𝑝 = 1.67262 × 10−27 𝑘𝑔 is the 

mass of the proton. The currently accepted numerical value of the neutron magnetic moment 

[15] is 

𝜇𝑛 = −9.66237 × 10−27 𝐽/𝑇 = −6.03076 × 10−10 𝑒𝑉/𝑇 

For comparison, the neutron’s mass 𝑚𝑛 being 1.67493 × 10−27 𝑘𝑔, its gravitational 

interaction 𝑚𝑛𝑔, where 𝑔 = 9.8 𝑚/𝑠2, is on the order of 10 × 10−10 𝑒𝑉/𝑚. The similar scales 

mean that the effects of Earth’s gravity are non-negligible in the regime to be considered; 

however, this matter will only be taken up at the end of this thesis, in Chapter 5, as it does not 

affect the axis that is the main focus of the present work (i.e., the longitudinal axis). 

 

 

2.3 NEUTRON SPIN AND SPIN BEHAVIOR IN FIELDS 

 

The neutron is a fermion with a spin of  
1

2
 ; Ref. [13] nicely summarizes the support for this 

value. This means that the neutron spin operator, as with all spin-
1

2
  particles, can be written 

as 

𝑺 =
ℏ

2
𝝈 (2.3) 

where 𝝈 are the Pauli spin matrices 

𝝈1 = (
0 1
1 0

)   ,     𝝈2 = (
0 −𝑖
𝑖 0

)   ,     𝝈3 = (
1 0
0 −1

) (2.4) 
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all with eigenvalues +1 and −1. This gives 𝑺 the eigenvalues  +
ℏ

2
  and  −

ℏ

2
 . 

 An alternative formula for the neutron magnetic moment can therefore be written 

using 𝑺. In this case, 

𝝁𝑛 = −1.91304 𝝁𝑁 = −1.91304(
𝑒

𝑚𝑝
)𝑺 (2.5) 

If we impose a magnetic field 𝑩 entirely along one direction, then the spin of a neutron under 

adiabatic conditions in that field will also lie entirely along that direction [1]. The potential 

energy that the neutron possesses in that configuration is given by  

𝑈 = −𝝁𝑛 ∙ 𝑩 = {
𝜇𝑛|𝑩| cos𝜃 , for 𝑆 = +

ℏ

2

−𝜇𝑛|𝑩| cos𝜃 , for 𝑆 = −
ℏ

2

 (2.6) 

where 𝜃 is the smallest angle between 𝝁𝑛 and 𝑩. We immediately see that the potential 

energy takes its most negative value when 𝜃 = 𝜋 for 𝑆 = +
ℏ

2
  and 𝜃 = 0 for 𝑆 =  −

ℏ

2
 .  

Since spin-up states correspond to +
ℏ

2
  and spin-down states to  −

ℏ

2
 , this result 

accounts for the manner in which a neutron’s spin orients itself in an external magnetic field: 

the spin of a neutron will tend to align with or anti-align with the field depending on whether 

it is in the down state or up state, respectively. Moreover, in the presence of field gradients, 

minimization of potential energy will cause spin-up neutrons to seek local minima, while 

spin-down neutrons will seek local maxima. If their kinetic energy is much less than |𝜇𝑛𝐵|, 

anti-aligned (spin-up) neutrons will reflect upon encountering a region of higher field, while 

aligned (spin-down) neutrons will be accelerated into the region [16]. Hence, in the literature, 

spin-up neutrons are referred to as “low-field seekers” and spin-down neutrons are referred 

to as “high-field seekers”.  
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Although quasistatic magnetic fields cannot exhibit local maxima in vacuum away 

from sources or currents to trap high-field seekers, time-varying magnetic fields can. 

Reference [16] presents the first observation of this phenomenon. In the described 

experiment, a magnetic field is ramped in the air gap of a split coil magnet that surrounds a 

vertically oriented guide for ultracold neutrons. As the field ramps up, a local field maximum 

is formed in the air gap, and low-field seekers are accelerated out. High-field seekers, 

meanwhile, are decelerated and remain inside. 

As will be explored later, a time-varying (ramping) magnetic field will likewise be 

exploited in the present work to enable the storage of either high- and low-field seeking 

neutrons. For now, a point must be made regarding the adiabatic condition that Ref. [16] 

takes care to address. This condition is given by 

|
𝑑𝐵⊥
𝑑𝑡

|

𝐵
=

|
𝑑𝐵⊥
𝑑𝑥

| |
𝑑𝑥
𝑑𝑡

|

𝐵
≪ 𝜔𝐿 (2.7) 

where 𝑑𝑥 𝑑𝑡⁄  is the neutron’s velocity and 𝜔𝐿 is the Larmor frequency of the neutron spin:  

𝜔𝐿 =
2𝜇𝑛

ℏ
𝐵 (2.8) 

In regions where the magnetic field is zero or near zero, this condition can become restrictive 

enough that nonadiabatic (Majorana) spin-flip transitions are likely, such as in certain 

magnetic trap configurations [17, 18]. In setting forth the present work, the use of sudden 

field transitions into and out of zero-field regions (used to achieve the magnetic shielding 

required for a neutron to experience net energy gain in the time-varying field, as discussed 

in the next chapter) may at first glance seem to violate the above adiabatic condition and thus 

repeatedly induce severe depolarization. However, a step-function-like behavior in the field 

at these locations is sought in the longitudinal direction only; the transverse field, on the 
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contrary, must be designed to be as gradient-free as possible throughout the system. The 

restriction on field gradients in Eq. (2.7) is in the transverse direction. It should also be noted 

that an identical problem ought to plague charged particle accelerators and storage rings if 

such transverse fringe fields could appreciably cause depolarization. That polarized 

programs in circular colliders are indisputably viable [19] despite the sheer number of 

particle passages through field-free regions per turn per second supports the case that the 

insertion of these regions in the proposed manner will not cause significant depolarization. 
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3 NEUTRON BEAM STORAGE 

 

 

3.1 NEUTRONS IN AN APPLIED MAGNETIC FIELD 

 

In this thesis, the term “magnetic field” has hitherto been used to refer to the field symbolized 

by 𝑩 —this is, in fact, the vector field traditionally known as the magnetic flux density (or 

magnetic induction), while 𝑯, which is equal to 𝑩 𝜇0⁄  in vacuum, is the magnetic field strength 

(or magnetic field intensity). This initial word choice was made in keeping with the language 

used in the cited sources; however, this thesis will henceforth refer to 𝑩 as the “B-field” to 

avoid the associated ambiguity without becoming needlessly verbose. 

 The present work deals with neutrons traveling in vacuum. Maxwell’s Equations in 

vacuum, in SI units, are 

𝛁 ∙ 𝑬 =
𝜌

𝜀0

(3.1𝑎) 

𝛁 ∙ 𝑩 = 0 (3.1𝑏) 

𝛁 × 𝑬 = −
𝜕𝑩

𝜕𝑡
(3.1𝑐) 

𝛁 × 𝑩 = 𝜇0𝑱 + 𝜇0𝜀0

𝜕𝑬

𝜕𝑡
(3.1𝑑) 

where the permittivity of free space 𝜀0 is equal to 8.854 × 10−12 𝐹/𝑚 and the permeability 

of free space 𝜇0 is 4𝜋 × 10−7 𝑇 ∙ 𝑚/𝐴 . For charged particle beams, Eqs. (3.1a) and (3.1d) 

retain source terms 𝜌 and 𝑱; however, owing to the electrical neutrality of the neutron, the 

source terms vanish, and the equations simplify to 
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𝛁 ∙ 𝑬 = 0 (3.2𝑎) 

𝛁 ∙ 𝑩 = 0 (3.2𝑏) 

𝛁 × 𝑬 = −
𝜕𝑩

𝜕𝑡
(3.2𝑐) 

𝛁 × 𝑩 = 𝜇0𝜀0

𝜕𝑬

𝜕𝑡
(3.2𝑑) 

The neutron’s magnetic moment will interact with the transverse components of an 

applied B-field in the following manner: a torque will be exerted in proportion to the 

magnetic moment and the field, or 

𝝉 = 𝝁𝑛 × 𝑩  →   |𝝉| = |𝝁𝑛||𝑩| sin 𝜃 (3.3) 

where 𝜃 is the smallest angle between 𝝁𝑛 and 𝑩. The potential energy associated with this 

torque is  

𝑈 = ∫ |𝝉|
𝜃

0

𝑑𝜃′ = |𝝁𝑛||𝑩|∫ sin𝜃′
𝜃

0

𝑑𝜃′ = −|𝝁𝑛||𝑩| cos𝜃 + |𝝁𝑛||𝑩| = −𝝁𝑛 ∙ 𝑩 (3.4) 

We have ignored the |𝝁𝑛||𝑩| term since it constitutes a constant in the potential energy, and 

−|𝝁𝑛||𝑩| cos𝜃 = −𝝁𝑛 ∙ 𝑩. This is the origin of Eq. (2.6). 

 The total change in energy ∆𝐸 experienced by the neutron as it travels through the 

field is found by integrating over the work done by the field: 

∆𝐸 = 𝑊 = ∫ 𝑭 ∙ 𝑑𝒓
𝑏

𝑎

(3.5) 

Furthermore, 

𝑭 = −𝛁𝑈 (3.6) 
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If we restrict the neutron’s motion to one direction, called the s-direction (defined in the next 

section), and choose the polarity correctly for the spin state, then the integral takes the form 

∆𝐸 = ∫ −
𝜕𝑈

𝜕𝑠

𝑏

𝑎

𝑑𝑠 = ∫ −
𝜕(−𝝁𝑛 ∙ 𝑩)

𝜕𝑠

𝑏

𝑎

𝑑𝑠 = 𝜇𝑛 ∫
𝜕(𝑩)

𝜕𝑠

𝑏

𝑎

𝑑𝑠 (3.7) 

Note that, if  𝑩 is a well-defined function, then so are  
𝜕(𝑩)

𝜕𝑠
 and 𝐵𝑠(𝑠) = ∫

𝜕(𝑩)

𝜕𝑠
𝑑𝑠. ∆𝐸 then takes 

the value 𝜇𝑛[𝐵𝑠(𝑏) − 𝐵𝑠(𝑎)] regardless of the behavior of  𝜕(𝑩) 𝜕𝑠⁄  between 𝑎 and 𝑏. 

Evaluating the integral over any interval where 𝐵𝑠(𝑎) = 𝐵𝑠(𝑏) will result in zero net energy 

change. Figure 3.1(a) shows this case: the energy gained by a neutron going from 𝑠1 to 𝑠2, 

when not attended by a spin flip at 𝑠2, is canceled by the energy lost going from 𝑠2 to 𝑠3 

because 𝐵𝑠(𝑠1) = 𝐵𝑠(𝑠3) means 𝐵𝑠(𝑠2) − 𝐵𝑠(𝑠1) = −[𝐵𝑠(𝑠3) − 𝐵𝑠(𝑠2)]. The case for 𝐵𝑠(𝑠1) =

𝐵𝑠(𝑠3) = 0 happens to be shown, but it would also apply if 𝐵𝑠(𝑠1) and 𝐵𝑠(𝑠3) were equal to 

an arbitrary constant. 

 However, now let us consider the field shown in Fig. 3.1(b). It shows the field 

suddenly vanishing at s′, just past 𝑠2. Mathematically, a near-instantaneous transition such as 

this can be modeled by 𝐵𝑠(𝑠2)[1 − 𝛩(𝑠 − 𝑠′)], where 𝛩(𝑠) is the Heaviside step function and 

𝐵𝑠(𝑠2) determines the height of the step. The derivative of 𝛩(𝑠) is the Dirac delta function 

𝛿(𝑠); the derivative of 𝐵𝑠(𝑠2)[1 − 𝛩(𝑠 − 𝑠′)] is therefore −𝐵𝑠(𝑠2)𝛿(𝑠 − 𝑠′). Substituting this 

into Eq. (3.7), we get, in the vicinity of the step, 

∆𝐸 = 𝜇𝑛 ∫
𝜕(𝑩)

𝜕𝑠

𝑏

𝑎

𝑑𝑠 = −𝜇𝑛𝐵𝑠(𝑠2)∫ 𝛿(𝑠 − 𝑠′)
𝑏

𝑎

𝑑𝑠 (3.8) 
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Strictly speaking, this would evaluate to −𝜇𝑛𝐵𝑠(𝑠2) since ∫ 𝛿(𝑠 − 𝑠′)𝑑𝑠 = 1
𝑏

𝑎
 as long as 𝑠′ is 

in the interval between 𝑎 and 𝑏. When added to the gain in energy +𝜇𝑛𝐵𝑠(𝑠2) (since  

𝐵𝑠(𝑠1) = 0 ) in the interval between 𝑠1 and 𝑠2, this would appear to lead to the same null 

result as above. However, 𝛿(𝑠 − 𝑠′) = 0 everywhere except at exactly 𝑠′, and physically the 

neutron is traveling with some velocity 𝑣 wherein the time ∆𝑡 spent in the gradient of the step 

goes to zero. Hence, we conclude that the integral substantially evaluates to zero for a 

physical system.  

 

Figure 3.1: Two different magnetic field ramps: (a) a ramp described by a well-defined 

function and (b) a ramp terminating in an idealized step. For the ramp to be single valued 

at 𝑠′, it is treated mathematically like the Heaviside step function 𝛩(𝑠 − 𝑠′), with 

derivative 𝛿(𝑠 − 𝑠′),  in the vicinity of 𝑠′, but then it is discontinuous. 
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That a neutron’s energy will remain substantially unaffected by field transitions that 

can be treated as step functions will be invoked later when discussing the magnetic insulation 

present in the proposed apparatus. 

 

 

3.2 NEUTRON STORAGE RING DYNAMICS 

 

3.2.1 Frenet-Serret coordinate system 

 

The present work will use the established coordinate system, known as the Frenet-Serret 

coordinate system, of accelerator physics [20]. It is a curvilinear coordinate system that 

moves with an idealized “design particle” along a reference orbit 𝒓0(𝑠), where 𝑠 is the path 

length along the reference orbit relative to some initial point 𝒓0(0). The instantaneous 

direction of 𝑠 is then given by the unit vector tangent to 𝒓0(𝑠), found by taking the derivative 

of 𝒓0(𝑠) with respect to 𝑠: 

𝒔̂(𝑠) =
𝑑𝒓0(𝑠)

𝑑𝑠
(3.9) 

The unit vector perpendicular to 𝒔̂(𝑠) but remaining in the plane of the reference orbit is 

designated 𝒙̂(𝑠): 

𝒙̂(𝑠) = −𝜌(𝑠)
𝑑𝒔̂(𝑠)

𝑑𝑠
= −

1

𝜅(𝑠)

𝑑𝒔̂(𝑠)

𝑑𝑠
(3.10) 

𝒔̂(𝑠) and 𝒙̂(𝑠) span the so-called osculating plane [21]. 𝜌(𝑠) is the local radius of curvature of 

the osculating circle that approximates the curve segment and 𝜅(𝑠), which is the reciprocal 
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of 𝜌(𝑠), is called the curvature. The convention in differential geometry is for 𝒙̂(𝑠) to point 

towards the center of the osculating circle; the convention in accelerator physics, however, is 

for 𝒙̂(𝑠) to point away from it, such that values of  𝑥 > 0 are at a greater distance from the 

center than the design particle. This is the source of the negative sign. 

 The remaining unit vector, which is orthogonal to the osculating plane, is typically 

denoted as 𝒚̂(𝑠) or 𝒛̂(𝑠); this thesis will use 𝒚̂(𝑠). For a right-handed orthonormal coordinate 

system in (𝒙̂, 𝒔̂, 𝒚̂), it is straightforward to write down its definition:  

𝒚̂(𝑠) = 𝒙̂(𝑠) × 𝒔̂(𝑠) (3.11) 

See Fig. 3.2.  

 For simplicity, we will ignore torsion, which is a measure of how much a curve is 

tending to deviate from the osculating plane. This is equivalent to restricting our reference 

orbit to a plane curve, rather than generalizing it to space curves [16]. With this 

simplification, the motion of an arbitrary particle in the system is given by the position vector 

𝒓(𝑠) = 𝒓0(𝑠) + 𝑥𝒙̂(𝑠) + 𝑦𝒚̂(𝑠) (3.12) 

 

Figure 3.2: Frenet-Serret coordinate system 
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Note that 𝒓(𝑠) is implicitly parameterized by time 𝑡 as the independent variable since, in the 

systems under consideration, 𝑠 = 𝑠(𝑡). 

 

3.2.2 Hamiltonian mechanics 

 

The Hamiltonian formulation allows us to immediately write down equations of motion for a 

system of particles in terms of generalized coordinates 𝑞𝑖 if we know the Lagrangian of the 

system. Noting that this thesis will switch the definition of 𝑈 and 𝑉 as given in Ref. [22] 

(wherein a derivation of what follows can be found) in order to remain internally consistent 

with variables, the Lagrangian 𝐿 is equal to the difference between the system kinetic energy 

𝑇 and potential energy 𝑈: 

𝐿 = 𝑇 − 𝑈 (3.13) 

The Lagrangian will depend on the generalized coordinates 𝑞𝑖, velocities 𝑞̇𝑖, and 𝑡: 𝐿 =

𝐿(𝑞𝑖, 𝑞̇𝑖, 𝑡). For a system with 𝑛 degrees of freedom, 𝑖 = 1, 2, … , 𝑛. As with elsewhere in this 

thesis, the dot above a variable denotes a derivative with respect to time. Furthermore, 𝐿 will 

satisfy the equation 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 0 (3.14) 

From here, conjugate momenta 𝑝𝑖  can be found (there is no sum over 𝑘): 

𝑝𝑖(𝑞𝑘, 𝑞̇𝑘 , 𝑡) =
𝜕𝐿(𝑞𝑘, 𝑞̇𝑘 , 𝑡)

𝜕𝑞̇𝑖

(3.15) 
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Performing a Legendre transformation on the Lagrangian, which accomplishes the change in 

variables from (𝑞, 𝑞̇, 𝑡) to (𝑞, 𝑝, 𝑡) when  𝑝, 𝑞, and 𝑞̇ are related through Eq. (3.15) [22], we 

arrive at the Hamiltonian 

𝐻 = ∑𝑃𝑖𝑞̇𝑖

𝑛

𝑖=1

− 𝐿(𝑞𝑘, 𝑞̇𝑘 , 𝑡) (3.16) 

and the equations of motion 

𝑞̇𝑖 =
𝜕𝐻

𝜕𝑝𝑖
   ,     𝑝̇𝑖 = −

𝜕𝐻

𝜕𝑞𝑖

(3.17) 

The variables 𝑞𝑖 and 𝑝𝑖  are known variously as canonical variables and canonically conjugate 

pairs. 

In Section 3.2.5, we will derive longitudinal equations of motion and a Hamiltonian 

for the proposed system from an analysis of a “synchronous” particle traveling through it, 

rather than from knowledge of the system Lagrangian. However, we need to express the 

equations of motion above in terms of our Frenet-Serret coordinate system, which requires 

knowing the conjugate momenta in Cartesian coordinates and hence the Lagrangian in 

Cartesian coordinates. Conventionally, lower-case conjugate variables (𝒒, 𝒑) are used to 

denote old variables and upper-case conjugate variables (𝑸, 𝑷) are the new variables 

following a transformation. In order to end up with the lower-case variety as our canonical 

variables for use throughout the remainder of this thesis, we start by letting (𝑸, 𝑷) be the 

canonical variables in Cartesian coordinates. From 𝐿 = 𝑇 − 𝑈 =
1

2
𝑚𝑛|𝑸̇|

2
− (𝑈𝐵 + 𝑈𝑔), 

𝐿 =
1

2
𝑚𝑛(𝑋̇2 + 𝑌̇2 + 𝑍̇2) + |𝝁𝑛||𝑩| + 𝑚𝑛𝑔𝑌 (3.18) 

Then, 
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𝑷 =
𝜕𝐿

𝜕𝑸̇
= 𝑚𝑛(𝑋̇𝑿̂ + 𝑌̇𝒀̂ + 𝑍̇𝒁̂) = 𝑚𝑛𝑸̇ (3.19) 

as there is no velocity dependence in either potential energy term. Following the derivation 

provided in Ref. [20], we perform a canonical transformation using the generating function 

of the third type, which depends on the old momentum 𝑷 and new coordinate 𝒓, as defined 

in Eq. (3.12): 

𝐹3(𝑷; 𝑥, 𝑠, 𝑦) = 𝐹3(𝑷, 𝒓) = −𝑷 ∙ 𝒓 (3.20) 

Thus, our new canonical momenta are 

𝑝𝑠 = −
𝜕𝐹3

𝜕𝑠
= (1 +

𝑥

𝜌
)𝑷 ∙ 𝒔̂ (3.21𝑎) 

𝑝𝑥 = −
𝜕𝐹3

𝜕𝑥
= 𝑷 ∙ 𝒙̂ (3.21𝑏) 

𝑝𝑦 = −
𝜕𝐹3

𝜕𝑦
= 𝑷 ∙ 𝒚̂ (3.21𝑐) 

and the equations of motion in the new coordinate system are  

𝑠̇ =
𝜕𝐻

𝜕𝑝𝑠
   ,     𝑝̇𝑠 = −

𝜕𝐻

𝜕𝑠
(3.22𝑎) 

𝑥̇ =
𝜕𝐻

𝜕𝑝𝑥
   ,     𝑝̇𝑥 = −

𝜕𝐻

𝜕𝑥
(3.22𝑏) 

𝑦̇ =
𝜕𝐻

𝜕𝑝𝑦
   ,     𝑝̇𝑦 = −

𝜕𝐻

𝜕𝑦
(3.22𝑐) 
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3.2.3 Transverse motion 

 

Although the present work concerns longitudinal synchrotron motion for neutrons, we make 

use of a few results from the extensive work done on transverse charged particle motion in 

accelerators. This description often begins with the model of a particle experiencing a force 

whose magnitude changes linearly with displacement from equilibrium, with the coefficient 

of proportionality being given the symbol 𝐾 [20]; those familiar with the field will recognize 

this as the effect of quadrupole magnets on the transverse motion of charged particles. The 

mathematical description is the familiar homogeneous linear second-order differential 

equation of a simple harmonic oscillator: 

𝑥′′ + 𝐾𝑥 = 0 (3.23) 

When 𝐾 > 0, it is called focusing; 𝐾 < 0 is called defocusing (𝐾 = 0 is called drift space). 

However, the value of 𝐾 changes as the particle travels through the accelerator: 𝐾 = 𝐾(𝑠). 

When 𝐾(𝑠) is periodic, we get a form of Hill’s equation [23]: 

𝑥′′ + 𝐾(𝑠)𝑥 = 0  ,     𝐾(𝑠 + 𝐿) = 𝐾(𝑠) (3.24) 

where 𝐿 is the period (i.e., length of the periodic structure in the accelerator).  

The trivial solution of this equation—that is, 𝑥 = 0 for all 𝑠—is called the closed orbit. 

The nontrivial solutions 𝑥𝛽(𝑠) constitute the so-called betatron oscillations, and betatron 

motion refers to the traverse motion of the particle around the closed orbit. However, the 

closed orbit is determined by a particle having the design momentum; off-momentum 

particles will follow a different trajectory through the system. As we will subsequently be 

using the language of energy rather than momentum, we will present the following 

formulation in terms of  ∆𝐸 𝐸0⁄  (where 𝐸0 is the design energy and ∆𝐸 is the difference 
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between the particle’s energy and the design energy), rather than the usual 𝛿 = ∆𝑝 𝑝0⁄  found 

in the literature on accelerator physics. 

 We now consider a linearized inhomogeneous off-energy Hill’s equation, to lowest 

order in ∆𝐸 𝐸0⁄  [20]: 

𝑥′′ + 𝐾(𝑠)𝑥 =
1

𝜌
(3.25) 

The solution to this inhomogeneous equation is the linear superposition of the particular 

solution and the solution to the homogeneous equation, which we already found to be 𝑥𝛽 . The 

particular solution, meanwhile, is 𝐷(𝑠)
∆𝐸

𝐸0
 , yielding the full solution 

𝑥 = 𝑥𝛽(𝑠) + 𝐷(𝑠)
∆𝐸

𝐸0

(3.26) 

𝐷(𝑠) is called the dispersion function. Although the present work will not require that we find 

an expression for it, we do make use of the fact that 𝐷(𝑠)
∆𝐸

𝐸0
  gives the off-energy closed orbit.  

We can therefore integrate over 𝐷(𝑠) to find the difference between the orbit path length of 

an off-energy particle and the design orbit: 

∆𝐶 =
∆𝐸

𝐸0
∮

𝐷(𝑠)𝑑𝑠

𝜌
(3.27) 

 

3.2.4 Synchronous particles 

 

Before proceeding to develop longitudinal equations of motion, we must define the meaning 

of a synchronous particle. As is well known in the field, charged particle accelerators typically 

rely on cavities operating in the radio frequency (RF) range (from a few hundred kHz to 30 
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GHz in practice [20]) to accelerate particles. However, depending on the arrival time of the 

particle relative to the phase of the RF wave, the particle may lose energy to, rather than gain 

energy from, the longitudinal electric field. The effective gap voltage of the RF cavity at time 

𝑡 is given by a sinusoid:  

∆𝑉 = 𝑉0 sin(𝜔𝑅𝐹𝑡 + 𝜑𝑅𝐹) (3.28) 

where 𝑉0 is the maximum voltage, 𝜔𝑅𝐹 is the frequency of operation, and 𝜑𝑅𝐹 is the phase 

angle. A particle with charge 𝑒 experiences a change in energy as it travels through the cavity 

gap equal to  

∆𝐸 = 𝑒∆𝑉 = 𝑒𝑉0 sin(𝜔𝑅𝐹𝑡 + 𝜑𝑅𝐹) (3.29) 

Hence, depending on the argument of the sinusoid, the change in energy per passage through 

the cavity may be positive or negative. 

 For circular accelerators, a particle will return to the cavity after one revolution. If the 

particle does so in such a manner that it always remains synchronized with the RF phase at 

revolution period 𝑇0, it is called a synchronous particle. The angular revolution frequency of 

a synchronous particle is then 

𝜔0 =
2𝜋

𝑇0

(3.30) 

Note that 𝜔0 does not necessarily equal 𝜔𝑅𝐹: 𝜔𝑅𝐹 may also be an integer multiple ℎ of 𝜔0, 

that is, 

𝜔𝑅𝐹 = ℎ𝜔0 (3.31) 

In this case, ℎ is called the harmonic number.  
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3.2.5 Longitudinal equations of motion 

 

We now begin the substance of the present work. We specify a B-field 𝑩, in a region of length 

𝐿, that changes only with spatial coordinate 𝑠 and time 𝑡 : 𝑩 = 𝐵(𝑠, 𝑡). If this B-field is 

generated by a sinusoidally time-varying current, such as that provided by an RF supply, the 

most general B-field can be written as a product of an amplitude function and a sine function, 

with both components possibly having 𝑠 and 𝑡 dependence: 

𝐵(𝑠, 𝑡) = 𝐵𝑔(𝑠, 𝑡) sin[ℎ𝜔0(𝑠, 𝑡)𝑡 + 𝜑𝑠] (3.32) 

Here, the subscript 𝑔 is used to denote a gradient field amplitude, and 𝜑𝑠 is the phase angle 

for the synchronous particle with respect to the RF. 

In practice, 𝜔0 cannot easily be made to vary with 𝑠, and varying 𝜔0 with 𝑡 involves 

changes in energy and other engineering challenges for the RF supply. Therefore, we restrict 

the discussion on developing adiabatic capture to a fixed frequency, recognizing here that 

adiabatic capture can also be performed by varying other parameters. This simplification 

results in an 𝑠-dependence appearing only in the amplitude function 𝐵𝑔(𝑠, 𝑡), or 

𝐵(𝑠, 𝑡) = 𝐵𝑔(𝑠, 𝑡) sin(ℎ𝜔0𝑡 + 𝜑𝑠) (3.33) 

We further decompose 𝐵𝑔(𝑠, 𝑡) into separable components 𝐶𝑔(𝑠) and 𝐼(𝑡): 

𝐵𝑔(𝑠, 𝑡) = 𝐶𝑔(𝑠)𝐼(𝑡) (3.34) 

In other words, 𝐼(𝑡) is the field-generating alternating current amplitude, with only time 

dependence, and 𝐶𝑔(𝑠) is the proportionality constant for a given location 𝑠. For example, the 

B-field created by a so-called “window-frame dipole” [20] can be described by the equation 

𝐵 = 𝜇0

𝑁

𝑔
𝐼 (3.35) 
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where 𝑁 is the number of coil turns, 𝑔 is the gap length, and 𝐼 is the current through each turn 

of coil. In this case, 𝐶𝑔(𝑠) = 𝜇0
𝑁

𝑔
, with no explicit dependence on 𝑠. However, if the number of 

coils per unit gap can be made to vary with 𝑠, then 𝐶𝑔(𝑠) = 𝜇0
𝑁(𝑠)

𝑔
, etc.  

For reasons that will become apparent shortly, we concern ourselves only with 

magnet geometries that create B-fields with a linear dependence on 𝑠. The details of such a 

magnet are beyond the scope of the present work; however, a possible design is mentioned 

in the discussion on practical considerations. Figure 3.3 shows what Eq. (3.34) would look 

like in such a case for differing values of 𝐼(𝑡) if 𝐼(𝑡) is constant during the passage, leaving 

𝐵𝑔(𝑠, 𝑡) with only an explicit 𝑠 dependence (we will return to this assumption shortly). Note 

that the field region 𝐿 is magnetically insulated on both sides and that the neutron must exit 

the gradient field through a step-like transition, as required by the discussion in Section 3.1. 

 Figure 3.3: Linear ramping behavior through field region 𝐿 when 𝐼(𝑡) takes different 

constant values during the neutron’s passage through the alternating-current (AC) 

dipole magnet. Time-independent coefficient 𝐶𝑔(𝑠) is achieved geometrically. Magnetic 

insulation appears on both sides of the AC dipole. 
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With the assumption that 𝐶𝑔(𝑠) has a linear dependence on 𝑠, we can write 

𝐶𝑔(𝑠) = 𝐶𝑔𝑠 (3.36) 

Then, 

𝜕𝐶𝑔(𝑠)

𝜕𝑠
= 𝐶𝑔 (3.37) 

and 

𝜕𝐵𝑔(𝑠, 𝑡)

𝜕𝑠
=

𝜕

𝜕𝑠
𝐶𝑔(𝑠)𝐼(𝑡) = 𝐶𝑔𝐼(𝑡) (3.38) 

Substituting Eq. (3.34) into Eq. (3.33) and using the result in Eq. (3.38), we have  

𝐵(𝑠, 𝑡) = 𝐶𝑔(𝑠)𝐼(𝑡) sin(ℎ𝜔0𝑡 + 𝜑𝑠) (3.39) 

𝜕𝐵(𝑠, 𝑡)

𝜕𝑠
= 𝐶𝑔𝐼(𝑡) sin(ℎ𝜔0𝑡 + 𝜑𝑠) (3.40) 

From Eq. (3.7), the change in energy of the neutron through the field region is 

∆𝐸 = ∫
𝜕

𝜕𝑠
(−𝝁 ∙ 𝑩)

𝑠2

𝑠1

𝑑𝑠 = ±|𝜇𝑛| cos 𝜃 ∫
𝜕𝐵(𝑠, 𝑡)

𝜕𝑠

𝐿

0

𝑑𝑠 (3.41) 

The upper sign corresponds to spin-up states, and the lower sign to spin-down states (recall 

from Section 2.2 that 𝜇𝑛 = −1.91304 𝜇𝑁). The states will be either fully anti-aligned or 

aligned, respectively, so cos 𝜃 = 1. Substituting Eq. (3.40) in Eq. (3.41),  

∆𝐸 = ±|𝜇𝑛|∫ 𝐶𝑔𝐼(𝑡) sin(ℎ𝜔0𝑡 + 𝜑𝑠)
𝐿

0

𝑑𝑠 (3.42) 

Let us now assume that 𝐼(𝑡) varies slowly, such that it can be considered constant 

during the passage of a neutron through the field region 𝐿. Then, 𝐼(𝑡) can be replaced by 𝐼0, 

and we get 
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∆𝐸 = ±|𝜇𝑛|𝐶𝑔𝐼0 ∫ sin(ℎ𝜔0𝑡 + 𝜑𝑠) 𝑑𝑠
𝐿

0

(3.43) 

If the average velocity of the neutron through the field region with respect to 𝑠 is 𝑣, 

then 𝑠 is related to 𝑡 via 

𝑠 = 𝑣𝑡   →    𝑑𝑠 = 𝑣 𝑑𝑡 (3.44) 

and we can rewrite Eq. (3.43) as 

∆𝐸 = ±|𝜇𝑛|𝐶𝑔𝐼0𝑣 ∫ sin(ℎ𝜔0𝑡 + 𝜑𝑠) 𝑑𝑡

𝐿
𝑣

0

(3.45) 

This definite integral evaluates to 

∆𝐸 = ∓|𝜇𝑛|𝐶𝑔𝐼0
𝑣

ℎ𝜔0
cos(ℎ𝜔0𝑡 + 𝜑𝑠) |0

𝐿

𝑣                          

∆𝐸 = ∓|𝜇𝑛|𝐶𝑔𝐼0
𝑣

ℎ𝜔0
[cos (

ℎ𝜔0𝐿

𝑣
+ 𝜑𝑠) − cos(𝜑𝑠)] (3.46) 

Using the trigonometric identities 

cos(𝛼 + 𝛽) = cos𝛼 cos𝛽 − sin𝛼 sin𝛽 (3.47𝑎) 

cos(𝛼 − 𝛽) = cos𝛼 cos𝛽 + sin𝛼 sin𝛽 (3.47𝑏) 

with 𝛼 = 𝜑𝑠 and 𝛽 =
ℎ𝜔0𝐿

2𝑣
, we find (note the sign flip) 

∆𝐸 = ∓|𝜇𝑛|𝐶𝑔𝐼0
𝑣

ℎ𝜔0
[−2 sin (

ℎ𝜔0𝐿

2𝑣
) sin𝜑𝑠]     

= ±|𝜇𝑛|𝐶𝑔𝐼0
2𝑣

ℎ𝜔0
sin (

ℎ𝜔0𝐿

2𝑣
) sin𝜑𝑠         

= ±|𝜇𝑛|𝐶𝑔𝐼0
2𝑣

ℎ𝜔0
(
𝐿

𝐿
) sin (

ℎ𝜔0𝐿

2𝑣
) sin𝜑𝑠 
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∆𝐸 = ±|𝜇𝑛|𝐵𝑔 sin𝜑𝑠                                                (3.48)                                           

where 

𝐵𝑔 = 𝐶𝑔𝐼0𝐿
2𝑣

ℎ𝜔0
sin (

ℎ𝜔0𝐿

2𝑣
) (3.49)  

In other words, a synchronous neutron sees an effective field 𝐵𝑔 = 𝐶𝑔𝐼0𝐿
2𝑣

ℎ𝜔0
sin (

ℎ𝜔0𝐿

2𝑣
) when 

passing through the field region 𝐿. Since this neutron has an angular revolution frequency of 

𝜔0, it will encounter the field region 𝐿 with a frequency of 𝑓0 =
𝜔0

2𝜋
 Hz. This results in a rate of 

energy change equivalent to 

𝑑

𝑑𝑡
∆𝐸 = ∆𝐸̇ = ±

𝜔0

2𝜋
|𝜇𝑛|𝐵𝑔 sin𝜑𝑠 (3.50) 

 We now explore the behavior of non-synchronous neutrons in order to generate 

longitudinal equations of motion, following the traditional treatment used for circular 

charged particle accelerators and storage rings [20]. Non-synchronous neutrons can be 

described by their small deviations from the parameters of a synchronous neutron. Let 𝜔0 

again be the synchronous revolution frequency and 𝜑𝑠 the RF phase angle for a synchronous 

neutron, as above. In addition, let 𝜃0 be the azimuthal orbital angle of a synchronous neutron 

through the storage ring and 𝐸0 its energy. Then the equations describing the deviations of a 

non-synchronous neutron are 

𝜔 = 𝜔0 + ∆𝜔 (3.51𝑎) 

𝜑 = 𝜑𝑠 + ∆𝜑 (3.51𝑏) 

𝜃 = 𝜃0 + ∆𝜃 (3.51𝑐) 

𝐸 = 𝐸0 + ∆𝐸 (3.51𝑑) 
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where the variables without subscripts will correspond to non-synchronous particles for the 

remainder of the discussion. 

 Since 𝜑 and ∆𝐸 𝜔0⁄  can constitute a pair of conjugate phase-space coordinates, we 

find the time derivatives of these quantities in order to find equations of motion for the 

system. We start by noting that a change in the angular revolution frequency 𝜔 results from 

changes in the orbital angle with time, i.e., ∆𝜔 =
𝑑

𝑑𝑡
∆𝜃. Meanwhile, there are ℎ RF periods for 

every orbital period, and an advancing ∆𝜃 corresponds to a slipping ∆𝜑 relative to the RF 

phase. Therefore, 

∆𝜔 =
𝑑

𝑑𝑡
∆𝜃 = −

1

ℎ

𝑑

𝑑𝑡
∆𝜑 = −

1

ℎ

𝑑

𝑑𝑡
(𝜑 − 𝜑𝑠) = −

1

ℎ

𝑑𝜑

𝑑𝑡
(3.52) 

since 𝜑𝑠 does not change with time. Rearranging this result and switching to dots for 

compactness, we have 

𝜑̇ = −ℎ∆𝜔 (3.53) 

However, we need to relate this result to our other phase-space coordinate, ∆𝐸 𝜔0⁄ , for it to 

be useful. To do this, we first establish a relationship with  ∆𝐸 𝐸0⁄ , then proceed to create an 

equation of motion. 

 Let 𝑣0 be the velocity and 𝑅0 the average orbit radius of a synchronous neutron. 

Meanwhile, 𝑣 and 𝑅 will be the corresponding parameter for a non-synchronous neutron. The 

respective angular frequency will then be given identically by  

𝜔0 =
𝑣0

𝑅0
   ,     𝜔 =

𝑣

𝑅
 (3.54) 

Combining these equations with Eq. (3.51a), we get 
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∆𝜔

𝜔0
=

𝜔 − 𝜔0

𝜔0
=

𝑣
𝑅⁄

𝑣0
𝑅0

⁄
− 1 =

𝑣

𝑣0

𝑅0

𝑅
− 1 (3.55) 

Meanwhile, the kinetic energy of the synchronous and non-synchronous neutron, 

respectively, is  

𝐸0 =
1

2
𝑚𝑣0

2   ,     𝐸 =
1

2
𝑚𝑣2 (3.56)  

since we are not in the relativistic regime. This yields, for the ratio of the velocities, 

𝑣

𝑣0
=

√2𝐸
𝑚⁄

√2𝐸0
𝑚⁄

= √
𝐸

𝐸0

(3.57) 

Substituting this into Eq. (3.55), we get 

∆𝜔

𝜔0
=

𝑣

𝑣0

𝑅0

𝑅
− 1 = √

𝐸

𝐸0
(
𝑅0

𝑅
) − 1 = √

𝐸0 + ∆𝐸

𝐸0
(

𝑅0

𝑅0 + ∆𝑅
) − 1 (3.58) 

where we have applied Eq. (3.57) and likewise used the small-deviation formulation for 𝑅, 

i.e., 𝑅 = 𝑅0 + ∆𝑅. Invoking Eq. (3.27), which found the difference in orbit path length in terms 

of ∆𝐸 and 𝐸0, ∆𝑅 is related to ∆𝐸 and 𝐸0 via the integral 

∆𝑅 =
1

2𝜋

∆𝐸

𝐸0
∮

𝐷(𝑠)𝑑𝑠

𝜌
(3.59) 

We can write this more compactly as 

∆𝑅 = 𝛼𝑐𝑅0

∆𝐸

𝐸0

(3.60) 

𝛼𝑐 ≡
1

2𝜋𝑅0
∮

𝐷(𝑠)𝑑𝑠

𝜌
(3.61) 
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We call 𝛼𝑐  the energy compaction factor due to its analog with the momentum compaction 

factor [20]. Substituting this definition of ∆𝑅 into Eq. (3.58), we get 

∆𝜔

𝜔0
= √

𝐸0 + ∆𝐸

𝐸0
(

𝑅0

𝑅0 + 𝛼𝑐𝑅0
∆𝐸
𝐸0

) − 1 

∆𝜔

𝜔0
= √1 +

∆𝐸

𝐸0
(

1

1 + 𝛼𝑐
∆𝐸
𝐸0

) − 1        (3.62) 

Expanding  √1 + ∆𝐸 𝐸0⁄   and  
1

1+𝛼𝑐∆𝐸 𝐸0⁄
  in ∆𝐸 𝐸0⁄ , we get the following linearized equation 

for ∆𝜔 𝜔0⁄  after all higher order terms of ∆𝐸 𝐸0⁄  are disregarded: 

∆𝜔

𝜔0
= [1 +

1

2

∆𝐸

𝐸0
−

1

8
(
∆𝐸

𝐸0
)
2

+ ⋯] [1 − 𝛼𝑐

∆𝐸

𝐸0
+ (𝛼𝑐

∆𝐸

𝐸0
)
2

− ⋯] − 1                    

≈ (1 +
1

2

∆𝐸

𝐸0
) (1 − 𝛼𝑐

∆𝐸

𝐸0
) − 1 = 1 +

1

2

∆𝐸

𝐸0
− 𝛼𝑐

∆𝐸

𝐸0
− 𝛼𝑐

1

2
(
∆𝐸

𝐸0
)
2

− 1 

∆𝜔

𝜔0
≈

1

2

∆𝐸

𝐸0
− 𝛼𝑐

∆𝐸

𝐸0
= (

1

2
− 𝛼𝑐)

∆𝐸

𝐸0
                                                                  (3.63)  

In keeping with the convention of charged particle accelerators, we define a transition gamma 

𝛾𝑇 such that 

𝛾𝑇 ≡ √
1

𝛼𝑐

(3.64) 

allowing us to write ∆𝜔 𝜔0⁄  as 

∆𝜔

𝜔0
= (

1

2
−

1

𝛾𝑇
2)

∆𝐸

𝐸0
= −𝜂

∆𝐸

𝐸0

(3.65) 

𝜂 = (
1

𝛾𝑇
2 −

1

2
) (3.66) 
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Rearranging Eq. (3.65) to solve for ∆𝜔, we can now substitute it into Eq. (3.53) to get 

𝜑̇ = −ℎ∆𝜔 = ℎ𝜔0𝜂
∆𝐸

𝐸0
= ℎ𝜔0𝜂

∆𝐸

𝐸0
(
𝜔0

𝜔0
) (3.67) 

This results in our first longitudinal equation of motion: 

𝜑̇ =
ℎ𝜔0

2𝜂

𝐸0
(
∆𝐸

𝜔0
) (3.68) 

 The second longitudinal equation of motion for our chosen pair of conjugate phase-

space coordinates (𝜑, ∆𝐸 𝜔0⁄ ) requires that we find the time evolution of ∆𝐸 𝜔0⁄  in terms of 

𝜑. We begin by applying the small-deviation formulation above to 1 𝜔⁄ , as well as to the 

product of 1 𝜔⁄  and 𝐸̇: 

1

𝜔
=

1

𝜔0
+ ∆(

1

𝜔
) (3.69) 

1

𝜔
𝐸̇ =

1

𝜔0
𝐸0̇ + ∆(

1

𝜔
𝐸̇)    →    ∆ (

1

𝜔
𝐸̇) =

1

𝜔
𝐸̇ −

1

𝜔0
𝐸0̇ (3.70) 

Substituting Eq. (3.69) and the definition of 𝐸̇ = 𝐸0̇ + ∆𝐸̇ into Eq. (3.70) yields 

∆(
1

𝜔
𝐸̇) = [

1

𝜔0
+ ∆(

1

𝜔
)] (𝐸0̇ + ∆𝐸̇) −

1

𝜔0
𝐸0̇                                                

=
1

𝜔0
𝐸0̇ +

1

𝜔0
∆𝐸̇ + +∆(

1

𝜔
)𝐸0̇ + ∆(

1

𝜔
)∆𝐸̇ −

1

𝜔0
𝐸0̇ 

=
1

𝜔0
∆𝐸̇ + +∆(

1

𝜔
)𝐸0̇ + ∆(

1

𝜔
)∆𝐸̇                                  

∆(
𝐸̇

𝜔
) ≈

1

𝜔0
∆𝐸̇ + ∆ (

1

𝜔
)𝐸0̇                                                                        (3.71) 

because the ∆ terms are defined as small deviations. This means that the linearized form of 

Eq. (3.70) is 
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1

𝜔
𝐸̇ −

1

𝜔0
𝐸0̇ ≈

1

𝜔0
∆𝐸̇ + ∆ (

1

𝜔
)𝐸0̇ (3.72) 

Next, considering just 1 𝜔⁄ , its Taylor series expansion around the point 𝐸0 is 

1

𝜔
=

1

𝜔0
+ [

𝑑 (
1
𝜔

)

𝑑𝐸
]

0

(𝐸 − 𝐸0) + [
𝑑2 (

1
𝜔

)

𝑑2𝐸
]

0

(𝐸 − 𝐸0)
2

2
+ ⋯ (3.73) 

Per Eq. (3.51d), 𝐸 − 𝐸0 is equal to ∆𝐸, while 1 𝜔⁄ − 1 𝜔0⁄  is ∆(1 𝜔⁄ ). Therefore, after 

subtracting 1 𝜔0⁄  from both sides, we get 

∆ (
1

𝜔
) = [

𝑑 (
1
𝜔)

𝑑𝐸
]

0

∆𝐸 + [
𝑑2 (

1
𝜔)

𝑑2𝐸
]

0

∆𝐸2

2
+ ⋯ ≈ [

𝑑 (
1
𝜔)

𝑑𝐸
]

0

∆𝐸 (3.74) 

As above, we have discarded terms above first order. Substituting this linear expression into 

Eq. (3.72) , we get 

1

𝜔
𝐸̇ −

1

𝜔0
𝐸0̇ ≈

1

𝜔0
∆𝐸̇ + ([

𝑑 (
1
𝜔)

𝑑𝐸
]

0

∆𝐸)𝐸0̇                           

=
1

𝜔0
∆𝐸̇ + ∆𝐸 [

𝑑 (
1
𝜔

)

𝑑𝐸
]

0

(
𝑑𝐸

𝑑𝑡
)
0

 

=
1

𝜔0
∆𝐸̇ + ∆𝐸 [

𝑑 (
1
𝜔)

𝑑𝑡
]

0

              

1

𝜔
𝐸̇ −

1

𝜔0
𝐸0̇ =

1

𝜔0

𝑑

𝑑𝑡
∆𝐸 + ∆𝐸

𝑑

𝑑𝑡
(

1

𝜔0
)                                (3.75) 

We recognize this last expression as an application of the product rule of differentiation: 

1

𝜔0

𝑑

𝑑𝑡
∆𝐸 + ∆𝐸

𝑑

𝑑𝑡
(

1

𝜔0
) =

𝑑

𝑑𝑡
(∆𝐸

1

𝜔0
) (3.76) 
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Therefore, the linearized relationship between the time evolution of the energy change and 

the RF phase angle 𝜑 of the non-synchronous neutron is 

𝑑

𝑑𝑡
(
∆𝐸

𝜔0
) =

1

𝜔
𝐸̇ −

1

𝜔0
𝐸0̇                                                                                       

=
1

𝜔
(±

𝜔

2𝜋
|𝜇𝑛|𝐵𝑔 sin𝜑) −

1

𝜔0
(±

𝜔0

2𝜋
|𝜇𝑛|𝐵𝑔 sin𝜑𝑠) 

= ±
1

2𝜋
|𝜇𝑛|𝐵𝑔(sin𝜑 − sin𝜑𝑠)                                         

We have thus found our second longitudinal equation of motion: 

𝑑

𝑑𝑡
(
∆𝐸

𝜔0
) = ±

1

2𝜋
|𝜇𝑛|𝐵𝑔(sin𝜑 − sin𝜑𝑠) (3.77) 

As a reminder, our other longitudinal equation of motion is: 

𝜑̇ =
ℎ𝜔0

2𝜂

𝐸0
(
∆𝐸

𝜔0
) 

These equations can alternatively be called synchrotron equations of motion and the motion 

they describe, “synchrotron motion”. 

A Hamiltonian 𝐻 for phase-space coordinates (𝜑,
∆𝐸

𝜔0
), with time 𝑡 as the independent 

variable, can be constructed by satisfying the Hamiltonian equations of motion: 

𝜑̇ =
𝜕𝐻

𝜕 (
∆𝐸
𝜔0

)
   ,     

𝑑

𝑑𝑡
(
∆𝐸

𝜔0
) = −

𝜕𝐻

𝜕𝜑
(3.78)

 

From inspection, a possible Hamiltonian is then 

𝐻 =
ℎ𝜔0

2𝜂

2𝐸0
(

∆𝐸

𝜔0
)
2
±

1

2𝜋
|𝜇𝑛|𝐵𝑔[cos𝜑 − cos𝜑𝑠 + (𝜑 − 𝜑𝑠) sin𝜑𝑠] (3.79)  
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4 ADIABATIC CAPTURE OF NEUTRONS 

 

 

4.1 PHASE-SPACE MAPPING 

 

Equations (3.68) and (3.77) describe the evolution of our longitudinal phase-space 

coordinates 𝜑 and ∆𝐸 𝜔0⁄  in terms of time. We can reformulate this evolution in terms of the 

nth passage through the field region by noting that, in a lumped-element model in which the 

RF cavity generating the field is localized, each revolution with period 𝑇 =
1

𝑓0
=

2𝜋

𝜔0
  will 

correspond to one passage through the B-field. Thus, the derivative with respect to time is 

equivalent to the derivative with respect to passage number multiplied by 
𝜔0

2𝜋
, or 

𝑑

𝑑𝑡
=

ω0

2π

𝑑

𝑑𝑛
(4.1) 

Applying this substitution to Eq. (3.77), we get 

𝑑

𝑑𝑡
(
∆𝐸

𝜔0
) =

𝜔0

2𝜋

𝑑

𝑑𝑛
(
∆𝐸

𝜔0
) = ±

1

2𝜋
|𝜇𝑛|𝐵𝑔(sin𝜑 − sin𝜑𝑠) 

→     
𝑑

𝑑𝑛
(∆𝐸) = ±|𝜇𝑛|𝐵𝑔(sin𝜑 − sin𝜑𝑠) (4.2) 

where we have taken 𝜔0 out of the derivative because it is constant, and then simplified. 

Similarly, for Eq. (3.68), we get 

𝑑

𝑑𝑡
(𝜑) =

𝜔0

2𝜋

𝑑

𝑑𝑛
(𝜑) =

ℎ𝜔0
2𝜂

𝐸0
(
∆𝐸

𝜔0
) 

→     
𝑑

𝑑𝑛
(𝜑)  =

2𝜋ℎ𝜂

𝐸0
∆𝐸 (4.3) 
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The evolution of the phase-space coordinates 𝜑 and ∆𝐸 𝜔0⁄  can thus be tracked from 

the nth to the (𝑛 + 1)th turn by applying the incremental changes above sequentially. That is, 

the mapping equations governing this turn-by-turn phase-space evolution are: 

∆𝐸𝑛+1 = ∆𝐸𝑛 ± |𝜇𝑛|𝐵𝑔(sin𝜑𝑛 − sin𝜑𝑠) (4.4𝑎) 

𝜑𝑛+1 = 𝜑𝑛 +
2𝜋ℎ𝜂

𝐸0
∆𝐸𝑛+1                           (4.4𝑏) 

The Jacobian matrix of this mapping is 

𝐽 =
𝜕(∆𝐸𝑛+1, 𝜑𝑛+1)

𝜕(∆𝐸𝑛, 𝜑𝑛)
=

[
 
 
 
 
𝜕(∆𝐸𝑛+1)

𝜕(∆𝐸𝑛)

𝜕(∆𝐸𝑛+1)

𝜕(𝜑𝑛)

𝜕(𝜑𝑛+1)

𝜕(∆𝐸𝑛)

𝜕(𝜑𝑛+1)

𝜕(𝜑𝑛) ]
 
 
 
 

 

=

[
 
 
 
 

𝜕

𝜕(∆𝐸𝑛)
[∆𝐸𝑛 ± |𝜇𝑛|𝐵𝑔(sin𝜑𝑛 − sin𝜑𝑠)]

𝜕

𝜕(𝜑𝑛)
[∆𝐸𝑛 ± |𝜇𝑛|𝐵𝑔(sin𝜑𝑛 − sin𝜑𝑠)]

𝜕

𝜕(∆𝐸𝑛)
[𝜑𝑛 +

2𝜋ℎ𝜂

𝐸0
∆𝐸𝑛+1]

𝜕

𝜕(𝜑𝑛)
[𝜑𝑛 +

2𝜋ℎ𝜂

𝐸0
∆𝐸𝑛+1] ]

 
 
 
 

 

= [

1 ±|𝜇𝑛|𝐵𝑔 cos𝜑𝑛

2𝜋ℎ𝜂

𝐸0

𝜕(∆𝐸𝑛+1)

𝜕(∆𝐸𝑛)

𝜕(𝜑𝑛)

𝜕(𝜑𝑛)
+

2𝜋ℎ𝜂

𝐸0

𝜕(∆𝐸𝑛+1)

𝜕(𝜑𝑛)

] 

𝐽 = [

1 ±|𝜇𝑛|𝐵𝑔 cos𝜑𝑛

2𝜋ℎ𝜂

𝐸0
1 ±

2𝜋ℎ𝜂

𝐸0

|𝜇𝑛|𝐵𝑔 cos𝜑𝑛
] (4.5) 

where we note that 
𝜕(∆𝐸𝑛+1)

𝜕(∆𝐸𝑛)
 and 

𝜕(∆𝐸𝑛+1)

𝜕(𝜑𝑛)
 are simply elements 𝐽11 and 𝐽12, respectively. The 

determinant of this Jacobian matrix is  

|

1 ±|𝜇𝑛|𝐵𝑔 cos𝜑𝑛

2𝜋ℎ𝜂

𝐸0
1 ±

2𝜋ℎ𝜂

𝐸0

|𝜇𝑛|𝐵𝑔 cos𝜑𝑛
| 

= 1 ±
2𝜋ℎ𝜂

𝐸0

|𝜇𝑛|𝐵𝑔 cos𝜑𝑛 − (±
2𝜋ℎ𝜂

𝐸0

|𝜇𝑛|𝐵𝑔 cos𝜑𝑛) = 1 
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Since it is equal to 1 for a two-by-two Jacobian matrix, the mapping defined in Eqs. (4.4a) and  

(4.4b) satisfies the symplectic condition and preserves phase-space area [24]. 

 

 

4.2 ADIABATIC SYNCHROTRON MOTION 

 

Equations (4.4a) and (4.4b) provide a method for determining neutron motion in our system 

that is separate from Hamiltonian formalism. The two approaches may yield different results. 

Agreement depends on whether or not the system Hamiltonian can be considered quasi-

static during the time that the neutron energy is changing. In other words, if the change in 

energy of a neutron during each revolution is sufficiently small and 𝜂 is sufficiently far away 

from 0, we can consider the mapping equations and Hamiltonian formalism equivalent. This 

regime is called adiabatic synchrotron motion [20]. Outside this regime, the Hamiltonian’s 

dependence on time will need to be taken into account. 

 The standard condition for adiabatic synchrotron motion is [20] 

𝛼𝑎𝑑 = |
1

𝜔𝑠
2

𝑑𝜔𝑠

𝑑𝑡
| =

1

2𝜋
|
𝑑𝑇𝑠

𝑑𝑡
| ≪ 1 (4.6) 

where 𝜔𝑠 is the so-called synchrotron frequency and 𝑇𝑠 the synchrotron period. These 

quantities characterize particle orbits through longitudinal phase space. They generally differ 

from the corresponding quantity characterizing the neutron’s physical orbit in the storage 

ring. The ratio between synchrotron frequency and physical angular revolution frequency is 

known as the synchrotron tune 𝑄𝑠:  
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𝑄𝑠 =
𝜔𝑠

𝜔0
=

𝑇0

𝑇𝑠

(4.7) 

Reference [20] provides the value 𝛼𝑎𝑑 ≤ 0.05 as a good rule of thumb based on the 

experience of accelerator physicists working with charged particle accelerators. 

 

 

4.3 SIMULATION RESULTS 

 

The simulations that follow were all performed using custom MATLAB code implementing 

mapping equations Eqs. (4.4a) and (4.4b) to generate phase-space plots. For simulations 

presented in Sections 4.3.1 through 4.3.6, Table 4.1 lists the fixed values used for parameters. 

These values were chosen based on physical plausibility and expected efficacy in the 

simulations. Specifically, 1-Telsa fields are very achievable without superconducting 

technology, and a 1-Hertz revolution frequency for neutrons with kinetic energies around 1 

μeV (i.e., velocities around 13.865 m/s) results in a ring about 4.4 m in diameter. Simulations 

 

Parameter Value 

Average kinetic energy  𝐸 = 1 𝜇𝑒𝑉 

Maximum B-field 𝐵𝑔,𝑚𝑎𝑥 = 1 𝑇 

Synchronous revolution frequency 𝑓0 = 1 𝐻𝑧 

Harmonic number ℎ = 1 

Synchronous phase 𝜑𝑠 = 0 

Slip factor 𝜂 = −
1

2
 

 

Table 4.1: Simulation parameters for Sections 4.3.1 through 4.3.5 
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presented in Sections 4.3.7, 4.3.8, and 4.4 will have had their parameters varied as noted in 

the text.  

 As covered in Chapter 2, the neutron possesses two spin states: up and down, with 

the spin-up state corresponding to a negative value for 𝜇𝑛. The negative value for 𝜇𝑛 is used 

explicitly in the code, so spin-up neutrons are used implicitly in the simulations. However, 

switching the polarity of the magnet will negate a change in sign of 𝜇𝑛, as would occur with 

the use of spin-down neutrons. Therefore, the results that follow are valid for both spin-up 

and spin-down neutrons so long as the magnet polarity is properly configured. 

 

4.3.1 Phase-space ellipses 

 

To confirm the expected steady-state behavior of the mapping equations, the non-ramping 

condition with on-energy neutrons was simulated. Particles circulating in a storage ring in 

the absence of changing magnetic conditions should exhibit simple harmonic motion and 

trace out constant phase-space ellipses [20]. Figure 4.1 shows these ellipses for 200 

iterations of the mapping equations, which is equivalent to each neutron undergoing 200 

turns through the ring and thus 200 passages through the field region, with 𝐵𝑔 held at 1 T. 

The baseline behavior of the mapping equations was therefore as expected. 

 

4.3.2 Synchrotron tune 

 

As a second check on the expected simple harmonic motion in steady-state conditions, we 

look at synchrotron tune versus phase. As seen in Eq. (4.7), the synchrotron tune is a measure 
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of a neutron’s period in the physical system (orbital period) compared to its period in phase 

space, where it is tracing out a constant phase-space ellipse. Figures 4.2(a)-(c) show the steps 

for generating the desired curve. First, the phase of each on-energy neutron in Fig. 4.1 is 

plotted versus turn number, as shown in Fig. 4.2(a). Then, a fast Fourier transform is 

performed on the resulting sinusoidal curves, and the tune corresponding to the peak of the 

FFT spectrum is assigned as that neutron’s tune, as shown in Fig. 4.2(b). The tune is then 

 

Figure 4.1: Longitudinal phase-space mapping equations applied in steady-state 

conditions. On-energy neutrons trace out constant phase-space ellipses, as expected. Since 

ℎ = 1, the phase of the entire ring goes from −𝜋 to 𝜋. 
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plotted versus the neutron’s initial on-energy phase, furnishing Fig. 4.2(c). This is the 

expected relationship [20].  

The turn-by-turn change in the synchrotron tune provides us with another definition 

of the adiabatic condition. From Eq. (4.6), one version of the adiabatic condition is 

𝛼𝑎𝑑 = |
1

𝜔𝑠
2

𝑑𝜔𝑠

𝑑𝑡
| ≪ 1 

The ratio 𝜔𝑠 𝜔0⁄ , in addition to being the definition of the synchrotron tune 𝑄𝑠, is related to 

the synchrotron tune of the “stationary bucket” 𝜈𝑠 via 

𝜔𝑠

𝜔0
= 𝜈𝑠√|cos𝜑𝑠| (4.8) 

In this case, since we are examining the synchronous phase, 𝜑𝑠 = 0 and  

𝜔𝑠 = 𝜈𝑠𝜔0 (4.9) 

Substituting,  

𝛼𝑎𝑑 = |
1

𝜔𝑠
2

𝑑𝜔𝑠

𝑑𝑡
| = |

1

𝜈𝑠
2𝜔0

2

𝑑

𝑑𝑡
(𝜈𝑠𝜔0)| = |

1

𝜈𝑠
2𝜔0

2 (𝜔0

𝑑𝜈𝑠

𝑑𝑡
)| (4.10) 

Equation (4.1) provides our conversion of 𝑑𝑡 to 𝑑𝑛, or 𝑑𝑡 = 2𝜋𝑑𝑛 𝜔0⁄ . Substituting for 𝑑𝑡 and 

then replacing the differentials with discrete changes, 

𝛼𝑎𝑑 = |
1

𝜈𝑠
2𝜔0

2 (𝜔0

𝑑𝜈𝑠

2𝜋𝑑𝑛
𝜔0

⁄
)| = |

1

2𝜋𝜈𝑠
2 (

∆𝜈𝑠

∆𝑛
)| (4.11) 

This provides a numerical check during simulations. Alternatively, applying the analysis done 

with charged particles circulating in a storage ring [20], 

∆𝜈𝑠 = √
ℎ𝜂∆𝐸

4𝜋𝐸0

(4.12) 
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where ∆𝐸 is the change in the neutron’s energy for a given turn, i.e., ∆𝐸 = |𝜇𝑛|𝐵𝑔. Adiabaticity 

can therefore be improved by changing 𝐵𝑔 more smoothly turn by turn.  

  

 

Figure 4.2: Synchrotron tune versus phase in steady-state conditions. (a) The phases of 

on-energy neutrons are plotted versus turn number. (b) A fast Fourier transform is 

performed on the curves in (a). The tune corresponding to the peak is assigned to that 

neutron’s initial phase. (c) Tune is plotted versus phase, showing the relationship 

expected of a simple harmonic oscillator. 
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4.3.3 Maxwellian energy distribution 

 

At first, adiabatic capture was attempted with a continuous beam exhibiting a Maxwellian 

energy distribution, which is the energy distribution of thermalized neutrons, as covered in 

Section 2.1. Through repeated elastic collisions with nuclei of the moderator, these neutrons 

reach thermal equilibrium and have an energy proportional to temperature: 

𝐸 =
1

2
𝑚𝑣2 =  𝑘𝑇 (4.13) 

where 𝑘 = 1.38 × 10−23 𝐽/𝐾 is the Boltzmann constant. The resulting fluxes (neutrons per 

unit area per second at energy 𝐸), confirmed experimentally [1], follow the distribution 

𝜑𝑇 =
𝜑0

(𝑘𝑇)2
𝐸𝑒−

𝐸
𝑘𝑇 (4.14) 

Accordingly, 𝑘𝑇 is the most probable energy (peak of the relative flux curve), and it is 

this value that is set to the nominal neutron energy of 1 μeV. The integration of 𝜑𝑇 over 𝐸 

yields the neutron current (neutrons per second). 

 The method used for initializing a randomized continuous neutron beam is as 

follows: a neutron is first sampled from the specified energy distribution and then randomly 

placed in phase according to the uniform distribution. The process is repeated until the 

neutron beam consists of the total number of neutrons needed for the simulation. In this case, 

the prescribed energy distribution is Maxwellian, although the actual code used a Gamma 

distribution random number generator in the absence of a dedicated Maxwell distribution 

random number generator (see the Appendix for how to achieve equivalency). Figure 4.3 

shows a result of this process, with the histogram of neutron energies clearly exhibiting the 

expected Maxwellian shape and a peak around 1 μeV. 
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 Adiabatic capture was then attempted using a linear ramp to the maximum B-field. 

Owing to the prevailing neutron lifetime value of about 878 seconds [25], the code’s 𝑁𝑟𝑎𝑚𝑝 

parameter—which dictates how many turns it takes for the magnet to reach the maximum B-

field strength—would need to be as small as possible to extend the useful experimentation 

time with the final neutrons. On the other hand, the ramp could not be too fast and violate the 

adiabaticity condition; furthermore, a more adiabatic capture leads to better phase space 

density at the end of the process [20]. An 𝑁𝑟𝑎𝑚𝑝 value of 200 turns (∆𝐵𝑔 = 0.005 𝑇) was 

therefore taken as a good starting point for simulations. However, as shown in the 

corresponding results in Fig. 4.4, no discernible bunching was seen in the beam. Different 

ramp slopes up to 𝑁𝑟𝑎𝑚𝑝 = 800 were subsequently tried in case the analytical adiabatic 

condition was invalid somehow, but the results remained substantially unchanged. Finally, 

the maximum B-field 𝐵𝑔,𝑚𝑎𝑥 was even increased to as much as 5 T to investigate the feeble 

response in the beam, but still no overall bunching was observed. At this point, it became 

clear that an initial continuous Maxwellian beam would essentially remain a continuous 

Maxwellian beam, as it could not be meaningfully bunched in this manner due to excessive 

energy spread.  

From this finding, it was concluded that a more monochromatic initial neutron beam 

would be needed for successful adiabatic capture with a ramping dipole magnetic field. 

However, since neutron transport lines generally involve bends and other structures that 

perform energy filtering as a matter of course—and the storage ring itself would impose an 

energy acceptance by virtue of its lattice and physical attributes—this was not a problematic 

result. The investigation therefore turned to exploring the theoretical limits and efficiency of 

adiabatic capture. 
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Figure 4.3: Randomized continuous neutron beam exhibiting a Maxwellian energy 

distribution. Neutrons are first sampled in energy, then placed randomly in phase 

according to the uniform distribution. Velocity is calculated from the relationship  

 
1

2
𝑚𝑣2 =  𝑘𝑇 governing thermalized neutrons. 
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4.3.4 Adiabatic capture and ramp functions 

 

In Section 4.3.1, the phase-space analysis was performed with on-energy neutrons (∆𝐸 = 0) 

uniformly distributed in phase and circulating around the ring while 𝐵𝑔 remained constant. 

To characterize the quality of the adiabatic capture, a similar method was used, but with 𝐵𝑔 

now allowed to ramp. Furthermore, in addition to on-energy neutrons, neutrons at different 

 

Figure 4.4: Negative simulation results with a continuous Maxwellian beam. The bottom 

plot shows the magnet ramp used to attempt adiabatic capture. The top plot is the 

neutron beam in longitudinal phase space at the end of the ramp. 
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levels of ∆𝐸 𝐸0⁄  were sent through the system. The plots on the left of Fig. 4.5 show the results 

for ∆𝐸 𝐸0⁄ = 0.0, 0.025, 0.05, 0.1, 0.15, and 0.2 when using the linear ramp from the previous 

subsection. The number of neutrons participating in the simulation was 10,000.  

 In comparing the topmost left plot in Fig. 4.5 with the bottom plot in Fig. 4.1, the beam 

has clearly been bunched in longitudinal phase space for on-energy neutrons. The remaining 

plots on the left show successful adiabatic capture until somewhere between  ∆𝐸 𝐸0⁄ = 0.15 

and ∆𝐸 𝐸0⁄ = 0.2. Although this was a good result, there was reason to believe that a 

smoother ramp function, such as one based on the hyperbolic tangent (tanh) function, would 

result in better bunching and hence lower emittance in the final beam [26]; in fact, a real 

magnet ramp would more closely resemble a tanh function than a simple piecewise linear 

function, which has nondifferentiable endpoints. Consequently, the plots on the right of Fig. 

4.5 show the simulations all repeated using the ramp shown in the bottom righthand plot. In 

the code, this magnetic field is given by 

𝐵𝑔 =
1

2
𝐵𝑔,𝑚𝑎𝑥 [tanh (𝑠𝑙𝑜𝑝𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 ×

𝑛 + 𝑜𝑓𝑓𝑠𝑒𝑡 − 𝑁𝑟𝑎𝑚𝑝

𝑁𝑟𝑎𝑚𝑝 2⁄
) + 1] (4.15) 

where 𝑠𝑙𝑜𝑝𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 governs the steepness of the ramp, 𝑜𝑓𝑓𝑠𝑒𝑡 horizontally translates the 

ramp, 𝑁𝑟𝑎𝑚𝑝 is the characteristic duration of the ramp in turns, and 𝑛 is the turn number. The 

values chosen (𝑠𝑙𝑜𝑝𝑒𝑓𝑎𝑐𝑡𝑜𝑟 = 2 and 𝑜𝑓𝑓𝑠𝑒𝑡 = 0) were manually optimized. 

 While the two ramps lead to very similar behavior for ∆𝐸 𝐸0⁄  far from zero, there is a 

significant difference in the area and filamentation of the final phase-space ellipse for ∆𝐸 𝐸0⁄  

closer to zero, and the effect is most pronounced for the on-energy neutrons. This indicates 

that the dynamic aperture is largely determined by the bucket height set by 𝐵𝑔,𝑚𝑎𝑥, while 

phase-space mixing and emittance are driven by the ramp. Due to the better bunching and 

more realistic ramping, a tanh function was used for the remaining work. 
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Figure 4.5: Comparison of adiabatic capture using a linear ramp (left plots) and a tanh-

function ramp (right plots).  
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4.3.5 Analytical bucket 

 

A noticeable feature in the plots of the longitudinal phase space of the beams that have 

undergone adiabatic capture is that their bucket is tilted and asymmetrical. We can compare 

it to the theoretical bucket by calculating the analytical Hamiltonian contour. From Eq. (4.79), 

the Hamiltonian for our system is given by 

𝐻 =
ℎ𝜔0

2𝜂

2𝐸0
(
∆𝐸

𝜔0
)
2

±
1

2𝜋
|𝜇𝑛|𝐵𝑔[cos𝜑 − cos𝜑𝑠 + (𝜑 − 𝜑𝑠) sin𝜑𝑠] 

The separatrix defines the boundary between stable and unstable trajectories in phase space 

and corresponds to what is called the RF bucket in charged-particle accelerators; however, 

this work will drop “RF” because the frequencies involved are much lower than RF 

frequencies. The unstable fixed points occurring at ∆𝐸 = 0 and 𝜑 = 𝜋 or 𝜑 = −𝜋 are used for 

finding the separatrix [20]. With 𝜑𝑠 = 0, we get 

𝐻𝑠𝑥 = ±
1

2𝜋
|𝜇𝑛|𝐵𝑔(−2) (4.16) 

Setting 𝐻𝑠𝑥 equal to 𝐻 (with 𝜑𝑠 again equal to zero), 

ℎ𝜔0
2𝜂

2𝐸0
(
∆𝐸

𝜔0
)
2

±
1

2𝜋
|𝜇𝑛|𝐵𝑔(cos𝜑 − 1) = ±

1

2𝜋
|𝜇𝑛|𝐵𝑔(−2) 

ℎ𝜂

2𝐸0

(∆𝐸)2 = ±
1

2𝜋
|𝜇𝑛|𝐵𝑔(−1 − cos𝜑) 

∆𝐸 = ±√
𝐸0|𝜇𝑛|𝐵𝑔(−1 − cos𝜑)

𝜋ℎ𝜂
(4.17) 

Note that we have eliminated the sign governing spin-up versus spin-down neutrons by 

assuming that the polarity of 𝐵𝑔 is always correctly matched to the spin state, thereby 
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resulting in an overall positive value. However, since ∆𝐸 is squared, the value after the square 

root can be either positive or negative, constituting the upper half and bottom half of the 

separatrix, respectively. When plotted against 𝜑, Eq. (4.17) gives the analytical bucket. 

 Figure 4.6 shows the evolution of this analytical bucket as the field ramps up during 

adiabatic capture. Lines of constant initial ∆𝐸 𝐸0⁄ , spaced by ∆𝐸 𝐸0⁄ = 0.025 and color-coded, 

are also plotted; each initial line consists of 1000 neutrons. A closeup of the bottom right 

plots, which display the final bucket and phase-space distribution after 800 turns, along with 

the field value with turn number, is shown in Fig. 4.7. The deviations of the numerical bucket 

from the analytical bucket can be attributed to the Hamiltonian not taking nonlinearities 

(resonances) into account. 

 

4.3.6 Numerical dynamic aperture  

 

Lines of constant initial ∆𝐸 𝐸0⁄  can be used to determine numerically the dynamic aperture 

of the adiabatic capture. By decreasing the spacing between the energy levels and increasing 

the number of neutrons per level, we can increase the resolution of the result, albeit at the 

expense of computation. This approach was done with 200 pairs of off-energy levels 

separated by ∆𝐸 𝐸0⁄ = 0.001 , for an analysis from −20% to +20%. Each level was initially 

populated with 5000 neutrons. Figure 4.8(a) shows the initial and final phase space. The 

uncaptured lines in Fig. 4.8(b) can be counted and, together with the initial off-energy range 

and level spacing, used to determine the maximum off-energy level captured. There are 25 

lines counting from both the bottom and the top; line 26 on both sides is fully captured. Thus, 

from the abrupt transition demarcating the separatrix, the simulation reveals 100% capture 

efficiency for ±17.4% ∆𝐸 𝐸0⁄ , with a resolution of 0.1%.  
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Figure 4.6: Evolution of the analytical bucket and lines of constant initial ∆𝐸 𝐸0⁄  with 

ramping field. Each initial line comprises 1000 neutrons, and the lines are spaced by 

∆𝐸 𝐸0⁄ = 0.025. 
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Figure 4.7: Evolution of the analytical bucket and lines of constant initial ∆𝐸 𝐸0⁄ . Each 

initial line comprised 1000 neutrons, and the lines were spaced by ∆𝐸 𝐸0⁄ = 0.025. 
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(a) 

 

 
 

(b) 

Figure 4.8: Numerical determination of the dynamic aperture. Plot (b) is a closeup of 

the left edge of the right plot in (a) and shows 25 uncaptured lines counting from both 

the bottom and the top after the simulation is complete.  Line 26 on both sides is fully 

captured. Since the initial off-energy range was ±20% and the level spacing 0.1%, the 

dynamic aperture is ±17.4%. 
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4.3.7 Higher harmonics  

 

Although a study of higher harmonics is beyond the scope of the present work, the simulation 

code permits them. Figure 4.9 shows the result of repeating the simulation performed in 

Section 4.3.5 but with ℎ = 3. The phase-space structure clearly shows that neutron storage 

rings are subject to the same considerations regarding resonances and other dynamics as 

charged-particle storage rings. 

 

Figure 4.9: Adiabatic capture with ℎ = 3 
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4.3.8 Other findings  

 

Lastly, as a curiosity, if the polarity of the ramping magnet happens to be backwards for the 

spin state, the simulations show that, all else being equal through the ring, the preceding 

results are simply shifted by 𝜋. See Fig. 4.10. Of course, since spin-up and spin-down neutrons 

bend in opposite directions, if the ring magnets are likewise backwards, the neutrons will 

bend out of orbit after passing through the ramping magnet.  

 

 

Figure 4.10: 𝜋 phase slippage with backwards magnet polarity. However, results are 

otherwise identical. 
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4.4 OPTIMIZATION 

 

As stated previously, the parameter values specifying the tanh ramp function used in the 

simulations of Sections 4.3.4 through 4.3.8 were selected via manual optimization. It is 

reasonable to assume that these values can be improved further by numerical methods. The 

following subsections report some results from a few investigations into the optimization 

space. 

 

4.4.1 Global bunch length minimum via evolutionary algorithms 

 

Given the present work’s focus on spatially localizing neutrons as much as possible, bunch 

length following adiabatic capture was a natural value to try to minimize since, for a fixed 

number of neutrons in a bunch, a shorter bunch length entails a greater average neutron 

density within the bunch. Although phase-space area (emittance) is traditionally considered 

the relevant figure of merit in accelerator physics [20], for the purposes of the following 

optimization problems, energy spread will be considered secondary to phase—and hence 

spatial—spread. The objective function for minimization will then solely reflect the neutron 

bunch’s extent in phase, with energy information projected onto the phase axis. 

 The comparison between the linear ramp and the tanh ramp in Section 4.3.4 indicated 

that neutrons initially on or near design energy responded most sensitively to the differences 

in the ramps, whereas neutrons initially more significantly off energy (i.e., ∆𝐸 𝐸0⁄ > ±10%) 

exhibited final phase-space trajectories that were essentially identical in both cases, being 

largely determined by the final stationary bucket after ramping. We will therefore use the 
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bunch length of the most sensitive case,  ∆𝐸 𝐸0⁄ = 0, as a proxy for the quality of the adiabatic 

capture: the smaller the final on-energy bunch length, the more effective the bunching and 

the less phase-space mixing in the final distribution. 

 As a slight complication, the phase-space ellipse of on-energy neutrons undergoes the 

most rotation due to nonlinearities, as seen in the top plots of Fig. 4.5. A root-mean-square 

(RMS) fit to the final bunch in phase space will therefore need to involve a rotated ellipse. 

Beginning with the standard equation for an unrotated ellipse, 

𝑥′2

𝑎2
+

𝑦′2

𝑏2
= 1 (4.18) 

and noting that the smallest angle of rotation 𝜓 in this case occurs in the clockwise direction, 

we apply the rotation matrix 

𝑅𝑐𝑤 = (
cos𝜓 sin𝜓

− sin𝜓 cos𝜓
) (4.19) 

to coordinates 𝑋 and 𝑌 in the unrotated frame to yield the necessary transformation: 

(
𝑥′

𝑦′) = (
cos𝜓 sin𝜓

−sin𝜓 cos𝜓
) (

𝑋
𝑌
) (4.20) 

𝑥′ = 𝑋 cos𝜓 + 𝑌 sin𝜓 (4.21𝑎) 

𝑦′ = 𝑌 cos𝜓 − 𝑋 sin𝜓 (4.21𝑏) 

For our coordinate system in phase space, the 𝑋-axis in these equations corresponds to 𝜑 and 

the 𝑌-axis corresponds to ∆𝐸 𝐸0⁄ . This gives, for the equation of the fitted phase-space ellipse, 

(𝜑 cos𝜓 +
∆𝐸
𝐸0

sin𝜓)
2

𝑎2
+

(
∆𝐸
𝐸0

cos𝜓 − 𝜑 sin𝜓)
2

𝑏2
= 1 (4.22)
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There are therefore three parameters to be determined in this nonlinear data-fitting 

problem: 𝑎, 𝑏, and 𝜓. Note that the on-energy neutrons initially at 𝜑 = ±𝜋 will be ignored in 

the fit since, in the absence of numerical errors, these would be fixed stable points, rather 

than part of the bucket. To mitigate the effect of noise further, 10,000 neutrons are used. 

 As with the search and evolutionary algorithms employed below, it is beyond the 

scope of the present work to examine in detail optimization algorithms. Instead, it will focus 

on creating suitable objective functions and then rely on routines contained in MATLAB’s 

optimization toolboxes for minimization. For the rotated phase-space ellipse, MATLAB’s 

lsqnonlin function [27] can be used to solve for 𝑎, 𝑏, and 𝜓 in a least-squares fit. Figure 

4.11 shows the outcome of this fit when applied to the tanh ramp used in the previous 

sections. The fit is done on turn 500 (more on this choice below). 

 We can thus define the objective function as the maximum absolute value of 𝜑 along 

the fitted ellipse. Since, for the scales used, the ellipse attains greater values in phase than in 

fractional energy deviation, this is equivalent to the projection of the fitted ellipse’s major 

axis onto the phase axis, which we previously stated would be considered our bunch length, 

henceforth denoted as 𝜎𝑏. In Fig. 4.11, 𝜎𝑏 = 0.6867. We now seek to minimize 𝜎𝑏 by 

optimizing the ramp function, subject to certain constraints. 

 The first of these constraints is that we will continue to assume a field that is ramped 

according to Eq. (4.15). That is, at turn number 𝑛, the neutrons see a field  

𝐵𝑔 =
1

2
𝐵𝑔,𝑚𝑎𝑥 [tanh (𝑠𝑙𝑜𝑝𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 ×

𝑛 + 𝑜𝑓𝑓𝑠𝑒𝑡 − 𝑁𝑟𝑎𝑚𝑝

𝑁𝑟𝑎𝑚𝑝 2⁄
) + 1] 

As in the previous sections, 𝐵𝑔,𝑚𝑎𝑥 will be set to 1 T. That leaves 𝑁𝑟𝑎𝑚𝑝, 𝑠𝑙𝑜𝑝𝑒_𝑓𝑎𝑐𝑡𝑜𝑟, and 

𝑜𝑓𝑓𝑠𝑒𝑡 as the parameters to be varied in search of a global minimum. Since we can arbitrarily 

achieve better bunching by making the process slower and hence more adiabatic, we must 
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also constrain the ramp function to complete the ramping process within a set amount of 

time. The original ramp function was manually optimized to finish ramping by turn 400; we 

therefore add the constraint that 𝐵𝑔 must achieve at least 99.9% of 𝐵𝑔,𝑚𝑎𝑥 by turn 400. If this 

constraint is not satisfied, then that combination of parameter values is penalized by being 

assigned the maximum possible bunch length (𝜋).  

 This latter constraint creates discontinuities in the objective function. We can 

therefore only pursue gradient-free global minimization techniques. MATLAB’s 

 

Figure 4.11: Phase-space ellipse fitted to the neutron bunch at turn 500 when using the 

manually optimized tanh-function ramp for adiabatic capture. The least-squares fit for 

the data results in 𝜎𝑏 = 0.6871. 
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GlobalSearch and ga functions both employ gradient-free algorithms belonging to the 

class of evolutionary methods (scatter search and genetic algorithm, respectively) [28, 29]; 

they differ in the heuristic used for generating trial points. The genetic algorithm approach is 

based on randomization, while scatter search is not [30]. Global minimization runs were 

carried out using both algorithms. It was found that the genetic algorithm more often found 

the lowest 𝜎𝑏, although the advantage was typically only by about 0.2% to 0.5%. 

 Figure 4.12 shows an optimal ramp per the genetic algorithm under the 400-turn 

constraint, again fitted at turn 500. The minimum 𝜎𝑏,400 found following several runs (to 

account for the randomization in the genetic algorithm) was 0.6510, or a 5.2% reduction in 

bunch length compared to the original manually optimized ramp. In fact, the algorithm found 

multiple ramps that could achieve this bunch length while satisfying the constraints. (The 

existence of multiple solutions would be the case for all optimizations.) The ramp shown in 

Fig. 4.12 uses the solution 𝑁𝑟𝑎𝑚𝑝 = 206.8413, 𝑠𝑙𝑜𝑝𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 = 1.8277, and 𝑜𝑓𝑓𝑠𝑒𝑡 = 2.2499. 

The manually optimized bunch length 𝜎𝑏,𝑚𝑎𝑛 is also plotted for comparison. 

 As mentioned above, the constraint for the end of the ramping process is a significant 

factor in determining the smallest possible bunch length following adiabatic capture. Figures 

3.13 (a) and (b) show the results of ga-based global minimization when 𝐵𝑔 must achieve at 

least 99.9% of 𝐵𝑔,𝑚𝑎𝑥 at turn 200 and turn 600, respectively. The faster ramp only reaches a 

minimum value of 𝜎𝑏,200 = 0.9010, while the slower ramp achieves 𝜎𝑏,600 = 0.5401. In both 

cases (and as above for the 400-turn constraint investigations), the phase-space ellipse is 

fitted at 100 turns past the prescribed end of the ramp. This ensures that the objective 

function reflects the effect of the ramp, without subjecting the bunches to varying amounts of 

time at maximum field. The latter would be the case if the phase-space ellipse is fitted at turn 

800, for example, regardless of when the ramp finished. 
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Figure 4.12: Optimal ramp parameters found by a genetic algorithm, subject to the 

constraint that ramping must be completed by turn 400 (i.e., 𝐵𝑔 at turn 400 is greater 

than 99.9% of 𝐵𝑔,𝑚𝑎𝑥). The bunch length at turn 500 for this numerically optimized ramp 

is 0.6510, as opposed to 0.6867 for the manually optimized ramp. 
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4.4.2 Pareto front between bunch length and capture time 

 

The results shown in Figs. 4.12 and 4.13 demonstrate the existence of a tradeoff between the 

minimum bunch length possible and the amount of time it takes to ramp the field to its 

maximum value. This tradeoff can be explored by generating the so-called Pareto front, which 

contains a set of optimal solutions to the corresponding multi-objective optimization 

problem [31]. Our objective function will now not only return 𝜎𝑏, but also 𝑁𝑒𝑛𝑑 , which is the 

turn number at which the ramp achieves 99.9% of 𝐵𝑔,𝑚𝑎𝑥. The objective space is probed via 

 

Figure 4.13: Minimum bunch length achieved when the ramp is optimized to finish 

within 200 turns (a) versus 600 turns (b). For (a), the value is 0.9010; for (b), it is 0.5401. 

The minimum achieved for the case of 400 turns is also plotted as 𝜎𝑏,400.  
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𝑁𝑟𝑎𝑚𝑝, 𝑠𝑙𝑜𝑝𝑒_𝑓𝑎𝑐𝑡𝑜𝑟, and 𝑜𝑓𝑓𝑠𝑒𝑡 as before. We again use a genetic algorithm—in this case, 

MATLAB’s gamultiobj function to handle the two-objective function [32]. The resulting 

Pareto front is plotted in Fig. 4.14. The lack of kinks in the curve indicates good convergence 

in the set of optimal solutions. More encouragingly, the optimized values 𝜎𝑏,200, 𝜎𝑏,400, and 

𝜎𝑏,600 found in the previous section via global single-objective minimization all fall nicely on 

the curve. This curve can be inspected during any future work when seeking a balance 

between ramp time and bunch length when 𝐵𝑔,𝑚𝑎𝑥 = 1 𝑇.  

 

 

Figure 4.14: Pareto front between bunch length and capture time. The results of the 

global single-objective optimization problems of the previous section are also plotted as 

𝜎𝑏,600, etc., and show very good agreement with the curve. 𝐵𝑔,𝑚𝑎𝑥 = 1 𝑇. 
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4.4.3 Dynamic aperture versus maximum field 

 

Given the realities of magnet engineering, it may be preferable to reduce 𝐵𝑔,𝑚𝑎𝑥 below 1 T. 

Doing so would come at the cost of the dynamic aperture. Using the line-counting technique 

employed in Section 4.3.6, we can programmatically sweep across different values of 𝐵𝑔,𝑚𝑎𝑥, 

count the uncaptured lines, and find the resulting numerical dynamic aperture when using 

the tanh ramp optimized for 400 turns. Figure 4.15 plots the results with 0.1% resolution in 

the dynamic aperture.   

 

Figure 4.15: Numerical dynamic aperture vs maximum field 𝐵𝑔,𝑚𝑎𝑥 as determined by 

counting off-energy levels captured by the bucket. The remaining ramp parameters in 

Eq. (4.15) are set to the 𝜎𝑏,400-optimized values. 
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5 PRACTICAL DISCUSSION AND CONCEPTUAL DESIGNS 

 

 

As stated previously, practical considerations were the dominating factor in the selection of 

parameters to use in the simulations. Higher-energy neutrons can be captured via the 

presented approach, but one must be mindful of the increasing demands on the magnets and 

supplies as one goes up in energy, possibly necessitating the use of superconducting magnets. 

The ring would also become larger. Another consideration to balance against the neutron 

energy would be the limitations imposed by the adiabatic condition together with the 

neutron lifetime: in order for the capture process to remain adiabatic, the ramping of 𝐵𝑔 must 

not proceed too quickly turn by turn, but the whole process must be completed before most 

of the neutrons have decayed—and ideally with time to spare for experiments, whether 

performed in the ring or after the neutrons have been transported elsewhere. 

 For the system discussed, by far the greatest practical concern is the design of the AC 

dipole magnet. The present work requires a longitudinal field gradient, with essentially no 

transverse gradients, for this region and is predicated on a linear dependence of 𝐵𝑔 on 𝑠. In 

Section 3.2.5, it was assumed that this linear dependence is achieved geometrically, by a B-

field with separable components 𝐶𝑔(𝑠) and 𝐼(𝑡)—the former being a fixed proportionality 

constant and the latter changing in time and being responsible for the actual ramp. See Fig. 

5.1. The window-frame dipole magnet was given as an example of a B-field with the correct 

form. Returning to its equation, Eq. (3.35), 

𝐵𝑔(𝑠, 𝑡) = 𝜇0

𝑁

𝑔
𝐼(𝑡) 
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we see that, to achieve 𝐵𝑔(𝑠, 𝑡) = 𝐶𝑔(𝑠)𝐼(𝑡) with a gradient in 𝑠, 𝑁 𝑔⁄  must vary with 𝑠. This 

can be achieved through 𝑁, 𝑔, or both. Practically speaking, 𝑔 is best kept constant, which 

leaves 𝑁. As a reminder, in the above equation, 𝑁 is the number of coil turns, 𝑔 is the gap, and 

𝐼 is the current through each turn of coil.  

 The magnetic isolation needed for the ramping magnet also requires some attention. 

Since the time-varying field is purposely quasistatic for the sake of adiabaticity, high-

 

Figure 5.1: Achieving the required 𝐵𝑔(𝑠, 𝑡). (a) If 𝐵𝑔(𝑠, 𝑡) is the product of a linear 

function 𝐶𝑔(𝑠) and a time-dependent but 𝑠-independent current 𝐼(𝑡), then 𝐵𝑔(𝑠, 𝑡) can 

be ramped with time while preserving the required longitudinal gradient. (b) The 

required field has a longitudinal gradient but no transverse gradients. 
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permeability metal alloys such as mu-metal will need to be carefully incorporated into the 

design. Faraday shielding will not be effective at such low frequencies. 

 Although the dynamic aperture found in Section 4.3.6 was ±17.4%, the momentum 

acceptance of existing particle storage rings is generally ±10%—that is to say, a physical 

realization of the system explored in the present work is currently most limited transversely, 

not longitudinally [33]. In order to realize the theoretical maximum in capture efficiency 

presented, the energy acceptance of the accompanying storage ring must match the dynamic 

aperture of the adiabatic capture. On this point, gravity becomes an especially important 

consideration in the lattice design, as the neutron’s feeble interaction with electromagnetic 

fields and its sensitivity to Earth’s gravitational field make it very susceptible to vertical orbit 

deviations. The attendant lattice is therefore another major practical consideration. 

 Following adiabatic capture, the bunched neutron beam can either remain circulating 

in the storage ring for experiments or exit to another storage ring or beamline(s) where 

experiments are then performed. The storage ring approach is an under-exploited 

opportunity, as a storage ring for neutrons has only been preceded by NESTOR [34], which 

did not have strong focusing and ceased operating in the 1980s. Many developments and 

advances have occurred since. One experimental setup that is easily attainable with storage 

rings is the use of distributed detectors. Because the neutron bunch will return to each 

detector location in a controlled, periodic manner, combined with thoughtful shielding, 

background noise can be well characterized. Both spin states could even be theoretically 

stored and observed simultaneously in counter-propagating rings sharing the same ramping 

magnet in a Figure-8 configuration, with a difference of 𝜋 between their phases, but 

admittedly, such a design would be extremely ambitious and challenging.  
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6 SUGGESTIONS FOR FUTURE WORK 

 

 

The present work has shown that neutron beams can be successfully bunched via adiabatic 

capture in simulations. However, the process has specific requirements regarding the fields 

and gradients; it furthermore must take place in the environment of a storage ring. Therefore, 

the most pressing future work would be related to the design of the ramping magnet and the 

storage ring lattice—both to ensure that the neutrons arrive at the magnet with acceptable 

transverse qualities and to capitalize on the maximum capture efficiency predicted by the 

simulations.  

It may also be beneficial to explore other forms of  
𝜕𝐵(𝑠,𝑡)

𝜕𝑠
  besides the linear one 

pursued in the present work in order to expand magnet design options. These new field 

geometries would then need to be followed by a new suite of simulations.  

 As demonstrated in Section 4.3.7, neutron storage rings are not immune to the 

nonlinearities and detrimental dynamics experienced by charged-particle rings—although 

they are fortunately spared the issue of wakefields. Thus, another very important area of 

future work would be on spin and betatron resonances. These investigations could be 

accompanied by the less pressing but still valuable study of higher harmonics. 

Fortunately, the extensive existing body of work related to charged-particle 

accelerators and storage rings provides ample guidance for future work. The many 

outstanding problems involving neutron physics, meanwhile, provide ample cause for 

devising new experiments using bunched neutron beams and a neutron storage ring. 

  



71 

APPENDIX 

 

 

The Maxwell(-Boltzmann) distribution is a special case of the Gamma distribution [35]. The 

probability density function (PDF) of the Maxwell distribution is given by 

𝑃𝐷𝐹𝑀𝑎𝑥𝑤𝑒𝑙𝑙(𝑥) = 𝐴1𝑥
2𝑒

−
𝑥2

2𝜎2 (𝐴. 1) 

where 𝐴1 is the normalization factor. The neutron flux, meanwhile, is given by [1] 

𝜑𝑇 =
𝜑0

(𝑘𝑇)2
𝐸𝑒−

𝐸
𝑘𝑇 (𝐴. 2) 

which does not look immediately Maxwellian, but noting that 𝐸 =
1

2
𝑚𝑣2, we see that it is 

Maxwellian in standard form in 𝑣. 

 The Gamma distribution is given by [36] 

𝑃𝐷𝐹𝐺𝑎𝑚𝑚𝑎(𝑥) = 𝐴2𝑥
𝑎−1𝑒−

𝑥
𝑏 (𝐴. 3) 

where 𝑎 is called the shape parameter, 𝑏 is called the scale parameter, and 𝐴2 is the 

normalization factor. It is easy to see that Eq. (A.3) is equal to Eq. (A.2) for 𝑎 = 2, 𝑏 = 𝑘𝑇, and 

𝐴2 = 𝜑0 (𝑘𝑇)2⁄ . Therefore, to sample the distribution in 𝐸 directly, one can use a Gamma 

random number generator. In MATLAB, for one sample of a neutron energy 𝐸𝑁, this appears 

as 

E_N = gamrnd(2,kT)/1.6e-19 

for energy in eV. 
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