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Tegan Lisbeth Johnson 

THERMIONIC VS FIELD EMISSION FOR NON-RELATIVISTIC ELECTRON 

GUNS 

Electron gun design as a whole is a well-studied field, but little research has been 

done at very low energies, and even less research has been done for asymmetric reentrant 

cavity designs.  Electron guns operating at lower energies require less power and are 

more efficient, with less ohmic heating. This thesis presents the results of simulated 

performances of asymmetrical electron gun cathode cavities optimized for shunt 

impedance and operation at non-relativistic energies.  Cavity performance includes 

current density output, comparing thermionic emission to field emission. An existing 

Mathematica code for optimizing symmetric cavities at relativistic energies was enhanced 

for this analysis.  For an asymmetric elliptical reentrant cavity designed for 100keV exit 

energy, with a shunt impedance of 147 MΩ/m: thermionic emission achieved a peak 

current density of 0.08 A/cm2, while field emission produced of 1.54 A/cm2. 
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1. Introduction 

The idea behind a particle accelerator is simple: take a particle, add a force, rinse and 

repeat.  The earliest versions, such as Cockroft-Walton voltage multipliers and Van de 

Graaff generators, relied on a single electrostatic potential to accelerate particles, but 

difficulty in maintaining increasingly higher voltages limited the particles’ energy [1].  

Subsequent accelerators overcame this limitation by accelerating particles repeatedly 

over a sequence of smaller potentials.  The linear Sloan-Lawrence structure, based on 

Wideroe’s work, used alternating charged drift tubes increasing in length to 

accommodate for the particles’ increasing speed.  The driving oscillator technology of the 

era limited the initial application of accelerators to heavy ions at low frequencies (order 

of MHz) and were ineffective at accelerating smaller particles like electrons [2].  At 

Stanford, Hansen’s resonant radio-frequency (rf) cavities made possible higher 

frequencies and lower losses. This paved the way for the Varian brothers’ klystron and 

higher available rf power [3].  And so continued the usual pattern of science: a limitation 

is reached and then removed by new technology.  Synchrotrons, super-conducting 

accelerators, and free electron lasers are all accelerators structures developed to address 

different limitations on accelerator performance. 

For what end?  Large scale particle accelerators have been instrumental in our current 

understanding of how the universe behaves at the most fundamental level.  The definition 

of what is the most basic building block of our world has rapidly evolved, or devolved as 

it were, from the chemical elements of the periodic table to individual atoms, to the more 

elusive elementary particles.  Now immortalized in the form of a poster plastered to every 

physics classroom wall, the standard model began as a much smaller collection of 
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theorized particles that were confirmed and expanded upon as a direct result of high 

energy particle accelerator experiments.   

Quarks, for instance, began as a hypothesis in 1964 to explain the composition of the 

numerous hadrons that had been discovered in the previous decade.  Gell-Mann and 

Zweig both predicted three flavors of quarks and their anti-particles: up, down, and 

strange [4].  Initially viewed as a mathematical convenience, quarks’ existence as 

elementary particles received further support in 1974. Experiments at both Stanford 

Linear Accelerator Center’s two mile accelerator and Brookhaven National Laboratory’s 

Alternating Gradient Synchrotron confirmed the existence of a fourth type: the charm 

quark [5] [6].  This made a lot of scientists happy for a very short period of time.  The 

four quark flavors with fractional electric charges fit nicely together, but the symmetry 

was short lived.  SLAC’s immediate subsequent discovery of the tau lepton left a hole in 

the standard model; a hole suspiciously shaped like two new quarks [4].  A race for 

discovery commenced.  The bottom quark was quickly confirmed at Fermilab’s fixed-

target experiment. The top quark followed two decades later, discovered at the Tevatron 

synchrotron accelerator, also at Fermilab [7].   

It is acknowledged that a wider audience may be less enthralled at the prospect of 

experimentally confirming mathematical models of particles.  The costly experiments are 

almost exclusively paid for by government funding, and fortunately the benefits to the 

individual tax payer are widespread and even tangible.   Research for the sake of research 

drives the innovation of technology that has applications far beyond just the laboratory.  

For instance; one need only to glance at one’s phone to reap the benefits of high-energy 

physics research.  The World Wide Web was developed at CERN as an efficient way to 
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share and access high energy physics data through the internet in the early 1990’s [8].  

Additionally, particle accelerators directly impact daily life more than one might realize.  

X-rays and electron beams are an FDA-approved method to sterilize and preserve many 

types of food, such as fresh fruits and vegetables [9]. Most major hospitals will have at 

least one radiation therapy machine or isotope production cyclotron on-site. The 

semiconductor industry utilizes accelerators for ion implantation, making cheaper, more 

compact electronics possible [10]. 

With the benefits of particle accelerator research clear, present research aims to 

revolutionize entire accelerator systems, as well as to improve the designs of smaller 

individual components.  At the beginning of every particle accelerator, there is a particle 

source.  For electron accelerators, the particle source is typically an electron gun.  

Usually consisting of one to three rf cavities, the design of an electron gun depends on 

many factors, including its desired final particle energy.  Accelerator centerline cavities 

are typically longitudinally symmetric, but for an initial cavity of an electron gun, a 

longitudinally asymmetric geometry is chosen to include an electron emitting cathode.  

Once a cavity geometry is set, one can explore the various methods of electron emission 

that the system might employ. 

1.1. RF cavity design 

An rf cavity is an enclosed conductive structure designed to increase a particle’s energy 

by efficiently accommodating a specific electromagnetic mode.  The simplest geometry is 

a metallic pillbox with no beam iris. The usual (and extremely effective) analogy is to 

compare the mechanics of this cylindrical metallic cavity to a resistor-inductor-capacitor 

(RLC) circuit. 
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1.1.1. Pillbox 

Let’s assume a single pillbox rf cavity with an oscillating electric field along the z-axis.  

This electric field could propagate a number of different ways, but here let’s only 

consider the TM010 mode with the electric field lines running longitudinally down the z-

axis. In the case of the first mode, it is easy to see the pillbox’s end plates behave like a 

circuit’s capacitor being driven at the frequency of the rf power source.  

For a given voltage across parallel capacitor plates, the electric field between the plates 

scales inversely with the area of the plates.  This fact holds true for rf cavities as well and 

can be used as a tool to focus the electric field, as will be seen later. This voltage 

differentiation between the two end plates must of course be accompanied by a current 

induced through the cavity’s conducting walls.  The cavity walls themselves are 

analogous to a resistor with an impedance value dependent on the material’s surface 

resistance. As the electric field is oscillating, so too is the magnetic field curling around 

the inside of the cavity.  A simple N turn inductor has a resulting voltage across the 

inductor proportional to the change in current in the loop, or change in flux through the 

loop.  As will be seen with rf cavities, the inductance can be increased by increasing the 

 

Figure 1-1: The rf cavity can be thought of as a lumped circuit, with its own resistance, 

capacitance, and inductance [11] 
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area over which the magnetic field is distributed.  Generated and driven by the induced 

surface currents, the magnetic field oscillates π/2 out of phase with the electric field, as is 

the case with the circuit’s inductor and its capacitor respectively.  

𝐶 =
𝑄

𝑉𝐶
=

𝜖0𝐴

𝑑
                                                          (1-1) 

𝐿 = −𝑉𝐿 (
𝑑𝐼

𝑑𝑡
)
−1

= −
𝑑𝛷𝐵

𝑑𝑡
(
𝑑𝐼

𝑑𝑡
)
−1

= 
𝜇0𝑁

2𝐴

𝑙
                             (1-2) 

𝜔0 = √
1

𝐿𝐶
−

𝑅2

𝐿2
   ≈ √

1

𝐿𝐶
                                              (1-3) 

In both the circuit and cavity examples, the inductance can be thought of as containing 

energy stored within the structure at a particular phase in the cycle, while the resistance 

leads to energy loss in the structure. This π/2 phase difference occurs when the structures 

are operating at their resonant frequencies for a specific mode.   

1.1.1.1. Resonant Frequency 

To determine the resonant frequency of the pillbox, as previously mentioned, the focus 

will be the TM010 mode.  The electric field has only a longitudinal component, and the 

magnetic field will only be in the azimuthal direction.  Maxwell’s equations for a 

cylinder then reduce to: 

𝜕2𝐸𝑧

𝜕𝑟2
+

1

𝑟

𝜕𝐸𝑧

𝜕𝑟
=  

1

𝑐2

𝜕2𝐸𝑧

𝜕𝑡2
                                               (1-4) 

With the solution being of the exponential form (1-5). Solving (1-5) gives Bessel’s zeroth 

order equation (1.6).  For a conductor, Ez(r) = 0 at r = R, resulting in (1-7) [12].  
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𝐸𝑧(𝑟, 𝑡) = 𝐸(𝑟)𝑒𝑖𝜔𝑡                                                    (1-5) 

𝐸(𝑟) = 𝐸0 𝐽0 (
𝜔

𝑟
𝑐)                                                     (1-6) 

2𝜋𝑓 =
2.405𝑐

𝑅
                                                         (1-7) 

The resonant frequency’s independence of length may seem counterintuitive, but recall 

the mode chosen: TM010. As the electric field is only a function of r, it does not vary 

longitudinally.  

That’s not to say that cavity length is inconsequential to the accelerator performance.  

Depending on the particle’s velocity, the length of the cavity determines the range of the 

rf phase that is experienced by the particle.  When connecting several pillboxes in series, 

cavity length then dictates how those pillboxes couple to each other.  In other words: 

cavity length determines operating mode.  Consider a series of pillboxes coupled by irises 

on axis, like a disk-loaded waveguide.  

          

Figure 1-2: Example of a two pill box series at two different operating modes. Left: The two 

pillboxes have an rf phase identical to each other, known as the 0-mode.  Right: The cavities rf 

phase are π out of phase with  each other, known as the π-mode. 
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The rf power phase difference from one cavity to its neighbor is determined by its length.  

For example, if each cavity has a length equal to one half the rf wavelength, then each 

cavity would be 180 degrees (or π) off the phase from its neighbors.  This is known as the 

π-mode.  This operating mode is particularly useful for disk-loaded waveguides, as it 

allows a particle to gain energy in each cavity as it moves through, exiting the cavity just 

before the field oscillates to negative.  The benefit of using a cavity with length λrf/2 

becomes mathematically apparent when discussing another important cavity parameter: 

shunt impedance. 

1.1.1.2. Shunt Impedance: Relativistic Case 

With efficiency as a motivator, the design of a cavity should maximize the accelerating 

voltage achievable, given the power available.  This parameter, known as shunt 

impedance, is defined as: 

𝑅𝑠ℎ𝑢𝑛𝑡 = 
𝑉𝑎𝑐𝑐

2

𝑃𝑑𝑖𝑠𝑠
                                                         (1-8) 

where, Vacc is the accelerating voltage (or energy gain per unit charge), and Pdiss is the 

power dissipated into the cavity walls.  It can be shown that shunt impedance is solely 

dependent on the particle’s energy and injection phase as well as the cavity’s geometry 

and material. 

Take two infinite parallel plates in the x-y plane, each with a hole for a charged particle 

to pass through.  Assume a sinusoidal voltage is applied at frequency ωrf with phase φ, 

and the electric field between the two plates is uniform and a function of time, t.  

𝐸𝑧 = 𝐸𝑧(𝑡) =  𝐸0 𝐶𝑜𝑠(𝜔𝑟𝑓𝑡 +  𝜑)                                       (1-9) 
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The energy gain per unit charge is: 

𝑉𝑎𝑐𝑐 = ∫𝐸𝑧(𝑡) 𝑑𝑡                                                  (1-10) 

By defining t=0 as the center between the two plates, (1-10) can be rewritten: 

𝑉𝑎𝑐𝑐 = 𝐸0𝐶𝑜𝑠(𝜑)∫ 𝐶𝑜𝑠(𝜔𝑟𝑓𝑡) 𝑑𝑡 
𝑡/2

−𝑡/2

                                    (1-11) 

Integrating (1-11), where τ is the time it takes for the particle to traverse the cavity yields: 

𝑉𝑎𝑐𝑐 = 
2𝐸0

𝜔𝑟𝑓
𝐶𝑜𝑠(𝜑) 𝑆𝑖𝑛 (

𝜔𝑟𝑓𝜏

2
)                                      (1-12) 

The particle’s transit time can also be defined as the length of the cavity divided by the 

particle’s velocity, c. [13]  From here it is easy to identify why, for a particle with 

relativistic β= 1, it would be advantageous to set the length of the cavity to half of the rf 

wavelength.  Referred to as the pi-mode, this geometry choice paired with injecting 

particles in-phase with the rf power would maximize the accelerating voltage (and thus 

the shunt impedance).  In-phase implies that the particle is only in the cavity when the 

electric field is positive.  However, not all of the energy in the cavity is available to the 

particle, as some power Pdiss is dissipated in the cavity walls. 

A result of the magnetic field penetrating the cavity walls and inducing surface currents, 

the power dissipated into the cavity material is dependent upon the material used, the 

excitation frequency, and inner surface area of the cavity.  Surface resistivity (Rs), 

depends on the cavity material’s conductivity (σ) and skin depth (δ), with the skin depth 

of a material being specific to the materials and the frequency.   
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𝑃𝑑𝑖𝑠𝑠 = 
1

2
𝑅𝑠 ∫ 𝐻2⃑⃑⃑⃑  ⃑

 

𝑤𝑎𝑙𝑙

 𝑑𝑆                                              (1-13) 

𝑅𝑠 = 
1

𝜎 𝛿
                                                           (1-14) 

𝛿 = √
2

𝜇 𝜎 |𝜔|
                                                         (1-15) 

Note that the power dissipated depends on the magnetic field at the inner surface of the 

cavity.  As will be elaborated later, increasing the inner volume of the cavity can reduce 

the magnetic field penetrating the cavity walls and increase the inductance. Minimizing 

the power dissipated into the cavity walls can also be achieved by proper material choice.  

Zero surface resistance is ideal, but it is only attainable with specific materials, such as 

niobium, cooled to superconducting temperatures (around 2-4 K).   OFE copper, with a 

conductivity of 58 MS/m, is the usual choice for normal-conducting accelerators [14]. 

1.1.1.3. Shunt Impedance: Non-relativistic Case 

At relativistic speed β~1 an accelerated particle’s speed approaches c.  At non-relativistic 

speeds, a particle can gain (and unfortunately lose) both energy and velocity.  The power 

dissipated into the cavity walls remains straight forward to calculate, but determining the 

accelerating voltage experienced by lower energy particles requires tracking the particle’s 

velocity and therefore position in the cavity over many sequential steps.  By calculating 

the particle’s change in energy Δε over some small dz, one can determine the particle’s 

change in velocity in terms of the relativistic gamma (γ). 

𝛥𝜀 =   𝑞𝐸0𝐶𝑜𝑠(𝜑)∫𝐶𝑜𝑠(𝜔𝑟𝑓𝑡) 𝑑𝑡 =𝑞𝐸0𝐶𝑜𝑠(𝜑)∫𝐶𝑜𝑠 (𝜔𝑟𝑓

𝑧

𝛽𝑛
)  𝑑𝑧     (1-16) 
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𝜀𝑛+1 = 𝜀𝑛 + ∆𝜀                                                     (1-17) 

𝛽𝑛+1 = √(
𝜀𝑛+1

𝜀𝑟𝑚
)2 − 1 = √𝛾𝑛+1

2 − 1                                    (1-18) 

Iterating over small enough increments of dz over the full length of the cavity produces 

the accelerating voltage experienced by the particle.  To maximize shunt impedance at 

non-relativistic speeds, the cavity should be designed with the average kinetic energy of 

the particle in mind. 

It is important to consider non-relativistic energies in cavity design for two main reasons.  

Electrons are not emitted at the speed of light, and therefore it is necessary to design 

structures to accelerate particles from lower energies to relativistic energies.  

Additionally, input power or efficiency requirements in some instances can only be met 

with lower field gradient structures. 

 

 

Figure 1-3: Particle’s voltage as a function of position in the cavity over a sampling of all 

injection phases.  Each colored trace denotes a different injection phase.  Left: The particle has 

an average kinetic energy of 50 keV, and at certain injection phases, escapes the cavity shortly 

after the field flips to negative.  Right: In the same cavity, a particle with 10 keV kinetic energy 

experiences more than one rf cycle.  Even at optimal injection phase, a particle only gains ~120 

eV.  Electrons ending up with negative energy are moving backwards and typically lost. 
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1.1.1.4. Drawbacks of On-axis Coupling 

Our original single pill box featured a longitudinal electric field with peak Ez on-axis.  

Adding an aperture to couple a series of pillboxes shifts the peak of Ez so that it is no 

longer on axis.  

This decreases the voltage available to the particle and therefore the shunt impedance of 

the cavity.  While the simple pillbox shape is useful as a starting point for a theoretical 

understanding of cavity design, in practice, the induced current in the cavity walls 

experiences significant resistance from the sharp corners of the cylinder.  Because the rf 

power is coupling directly through the beam hole iris, the iris must be large.  This reduces 

the on-axis electric field and therefore the accelerating voltage.  On-axis coupling also 

presents manufacturing challenges.  The resonant frequencies of the cavity are coupled to 

every other cavity in the accelerator, with immediate neighbors having the strongest 

  

Figure 1-4: ¼ profile of the electric fields in a pillbox cavity.  Left: Pillbox has no beam aperture 

and the peak electric field occurs down the accelerating centerline (x-axis).  Right: The inclusion 

of a beam aperture shifts the electric field away from the path of the particle. Color scheme 

normalized to maximum field value (red). 
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coupling.  Each cavity’s resonant frequency, and therefore the resulting structure’s 

resonant frequency, is extremely sensitive to machining errors.  Once brazed together, 

measuring each cavity’s resonant frequency is difficult, and methods for frequency 

adjustments (squeezing the radius of the cavity) are highly constrained. 

1.1.1.5. Alternative Coupling Methods 

There are two primary solutions to the constraints of on-axis coupling.  The more 

common solution is to incorporate side-coupled cavities into the accelerator design.  A 

side-cavity couples two centerline cavities by way of induction through rounded slits in 

both centerline cavities’ bowls.  The beam hole iris radius can therefore be much smaller 

than in the disk-loaded example, as the power coupling between cavities is no longer on-

axis.  The side cavities also decrease the waveguides sensitivity to tuning and machining 

errors.  Because the number of cavities in the structure has effectively doubled, and all 

cavities couple to all other cavities, the resonant frequency of a single cavity is less 

affected by a single mistuned cavity.  The centerline and side cavities of a side-coupled 

waveguide can both be tuned to higher frequencies.  The side cavities, given their more 

exposed position, can also be tuned to a lower frequency by pressing on the ends of the 

cavity, effectively increasing their radius.  

Side-coupling has been the standard in linear accelerator design for many decades.  More 

recent accelerator designs have started to utilize distributed coupling.  In this case, power 

is fed directly into each individual centerline cavity, rather than relying on large irises or 

side-cavities.  This allows for smaller irises and higher on-axis fields.  The coupling 

between cavities is therefore much smaller and in some cases can be neglected altogether.  
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Cavity geometry can then be fully optimized for high shunt impedance, without having to 

consider cell-to-cell coupling.  The challenge with distributed coupling is to provide the 

correct phase of rf power to each cavity.  Several successful solutions to this challenge 

exist [15]. 

1.1.2. Reentrant cavity 

By modifying the cavity geometry, it is possible to decrease the magnetic field 

penetrating the inner cavity walls and increase the on-axis electric field, both of which 

increase shunt impedance.  Reentrant cavities feature a curved inner bowl accompanied 

by rounded “noses” that protrude inward into the cavity space.   

The bowl curvature accomplishes several things.  Compared to the sharp corners of the 

pillbox, the curved reentrant cavity walls create less resistance for the induced current, 

meaning less power loss to the cavity walls.  The bowl shape also increases the volume  

Figure 1-5: Cross-section of a side-coupled electron linear accelerator from Varian Medical 

Systems.  With the side-cavities inductively coupled to the centerline, this guide operates at the 

π/2-mode [24]. 
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Figure 1-6: Distributed coupling accelerator from Dymenso.  A single brazing plane runs the 

entire length of the accelerator, and two tuning pins per cell (not shown) allow for frequency 

tuning.Photo courtesy of Dymenso LLC and Phillip Borchard. 

occupied by the magnetic field and the inner surface in which the induced currents run 

[16]. 

The protruding nose serves to shape the electric field into the path of the particle, as the 

lack of conductive material in the beam-hole iris decreases the axial electric field.  The 

specific curvature of the cavity noses (as well as the cavity bowl) decreases the capacitive 

area of the cavity and can be fine-tuned to maximize the shunt impedance of the cavity, 

given a length and desired resonant frequency.  

1.2. Electron Emission 

For an electron gun cathode, there are three possible electron emission methods.  

Thermionic emission ejects electrons from the cathode by increasing their kinetic energy.  

Field emission lowers the potential barrier of the cathode surface to allow for tunneling.  

Photo-electric emission utilizes the photo-electric effect.  
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Figure 1-7: Two cavities with same basic dimensions, including beam aperture.  The left 

reentrant cavity has a higher axial electric field along the accelerating centerline.  Color scheme 

normalized to maximum field value (red).  

1.2.1. Thermionic Emission  

Heating metal increases the energy of the valence electrons within the metal.  Electrons 

with sufficient energy may then escape the surface of the metal, and a positively charged 

anode can be placed some distance away from this metal cathode to draw away these 

escaped electrons.  At lower voltages, the emission current is limited by space charge and 

the anode’s ability to clear away electrons at the surface of the cathode.  For a sufficient 

electric field between anode and cathode, the emission current can be considered 

independent of voltage and scales as a function of temperature only. 

1.2.1.1. Child Langmuir Law  

Using Helmholtz’s decomposition, an electrostatic field can be described as the gradient 

of a scalar function. The electrostatic potential V (1-19). Using this description of the 

electric field, Gauss’s Law becomes Poisson’s Equation (1-20).  

𝐸⃑ =  −𝛻⃑ 𝑉                                                          (1-19) 
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𝛻⃑ 2𝑉 = 
𝜌

𝜖
                                                          (1-20) 

By describing the volume charge density ρ in terms of current density (1-21) and using 

conservation of energy (1-22), (1-20) becomes (1-23): 

𝜌 =
𝐽 

𝑣 
                                                               (1-21) 

1

2
𝑚𝑣2 = −𝑞𝑉                                                      (1-22) 

𝛻⃑ 2𝑉 = 
1

𝜖

𝐽

√−2𝑞𝑚𝑉
                                                 (1-23) 

Imagine electrons with zero initial velocity being pulled off a cathode by a small potential 

gradient near its surface.  The electron cloud forming at the surface of the cathode then 

lowers the potential to the point that electrons are then pushed onto the cathode – thus 

raising the potential and so-on.  This balance forces the voltage at the surface of the 

cathode to be 0.  Perpendicular to the surface of the cathode and at the surface of the 

cathode, the change in the potential is also 0.  Given these boundary conditions, the 

second order differential equation can be solved to give an expression for the current 

density, also known as the Child-Langmuir Law [17]: 

𝐽 = (
4

9
𝜖 √

2𝑞

𝑚

1

𝑥2 
)𝑉3/2                                             (1-24) 

Where the leading term is called the perveance of the cathode and is solely a function of 

geometry.  In this regime of thermionic emission, the current increases as the anode 
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voltage to the 3/2 power. However, at sufficiently high voltages, this emission curve is 

limited by the work function and temperature of the cathode material [18].  

1.2.1.2. Richardson-Dushman Equation 

For a metal plate cathode in the x-y plane, with electron charge q, the current density 

across the cathode plane can be written as: 

𝐽𝑧 = ∫𝑞 𝑛(𝐸)𝑣𝑧(𝐸)𝑑𝐸                                              (1-25) 

Where n(E) is the density of electrons, 𝑣𝑧(𝐸) is the speed of the electrons in the 𝑧̂ 

direction, and the expression is integrated over all energies of electrons that escape the 

metal cathode’s potential barrier.  The density of electrons n(E) can be rewritten as a 

product of the density of states, g(E), and the probability that that state will occur, f(E). 

Electrons follow the Fermi-Dirac distribution. With Planck’s constant h and Boltzmann’s 

constant kB, the density of electrons in the cathode becomes: 

𝑔(𝐸) =
8√2 𝜋

ℎ3
 𝑚

3
2⁄  √𝐸                                              (1-26) 

𝑓(𝐸) =  
1

1 + 𝑒
𝐸−𝐸𝐹
𝑘𝐵𝑇

                                                 (1-27) 

Where EF is the Fermi Energy, and only electrons with E>>EF, have sufficient energy to 

escape the cathode’s potential barrier.  In this limit the exponential term in (1-27) will be 

large enough for f(E) to turn into the Boltzmann distribution: 

𝑓(𝐸) =  𝑒
−(

𝐸−𝐸𝐹
𝑘𝐵𝑇

)
                                                    (1-28) 
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As electrons in the cathode that have not yet escaped have zero potential energy, E can be 

written in terms of velocity.  Combining this substitution with (1-26) and (1-28) gives: 

𝐽𝑧 = 𝑞 
2 𝑚3

ℎ3
 𝑒

𝐸𝐹
𝑘𝐵𝑇  ∫ 4 𝜋 𝑣2 𝑣𝑧(𝐸)

∞

𝑣𝑚𝑖𝑛

𝑒
−

𝑚 𝑣2

2 𝑘𝐵𝑇 𝑑𝑣                        (1-29) 

Integrating over all values of vx and vy, and considering the minimum energy required to 

escape the metal occurs when the kinetic energy is equal to the potential energy: 

𝐽𝑧 = 𝑞 
2 𝑚3

ℎ3
 𝑒

𝐸𝐹
𝑘𝐵𝑇 (√

2𝜋 𝑘𝐵𝑇

𝑚
 )

2

∫  𝑣𝑧(𝐸)

∞

√2𝑈
𝑚

𝑒
−

𝑚 𝑣𝑧
2

2 𝑘𝐵𝑇 𝑑𝑣𝑧                (1-30) 

Grouping the leading constants from (1-31) into A0, or the Richardson-Dushman 

constant, and substituting the material’s work function for the Fermi energy less the 

potential energy required to escape the cathode material, yields (1-32), the Richardson-

Dushman equation [18] [17]. For thermionic emission, the current density emitted from a 

cathode can be described using the Richardson-Dushman equation, which accounts for 

the material’s work function and temperature. 

𝑗𝑡ℎ𝑒𝑟𝑚𝑖𝑜𝑛𝑖𝑐 = 
4𝜋𝑞𝑚2

ℎ3
𝑇2𝑒

−𝜑𝑤
𝑘𝑏𝑇                                         (1-31) 

𝑗𝑡ℎ𝑒𝑟𝑚𝑖𝑜𝑛𝑖𝑐 = 𝐴0𝑇
2𝑒

−𝜑𝑤
𝑘𝑏𝑇                                              (1-32) 

It can be seen from the Richardson-Dushman equation (1-32) that the current emitted 

from a specific cathode material increases quadratically with temperature and appears to 
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have no limit.  The cathode material only retains its integrity up to a certain temperature, 

thus limiting the practically achievable current.     

1.2.2. Field Emission 

Instead of increasing the electron’s energy within the metal, field emission decreases the 

cathode material’s potential barrier to allow electron tunneling.  Specific emitter tip 

geometries are used to increase the effective field at the emitter tips. 

1.2.2.1. Fowler-Nordheim Equation  

Field emission relies on the quantum mechanical effect of electron tunneling through a 

potential barrier.  Once the electron has escaped, it must also have enough kinetic energy 

to overcome the electrostatic force of its image charge. 

The general equation for current density J induced by an electron tunneling in the z-

direction through a potential barrier is identical to the thermionic distribution (1-25), with 

the addition of the tunneling probability T(Ez): 

𝐽 = 𝑞 ∫  𝑣𝑧 𝑇(𝐸𝑧) 𝑛(𝐸) 

∞

0

𝑑𝐸                                          (1-33) 

Where vz is the particles velocity in the z-direction, n(E) is the density of electrons with 

energy E, and T(Ez) is the tunneling probability of an electron tunneling through a barrier 

in the z-direction. n(E) can be found by taking the density of states g(E) and the 

probability that those states will occur f(E), and considering the particles are only 

tunneling in the z-direction (1-34).  Integrating over all vx and vy and rewriting in terms of 

E yields (1-35).  Using the identity (1-36) and relabeling variables produces (1-37): 
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𝐽𝑧 = 𝑞 ∫  𝑣𝑧 𝑑𝑣𝑧𝑇(𝐸𝑧) 
2𝑚3

ℎ3
𝑓(𝐸) 

∞

0

𝑑𝑣𝑥𝑑𝑣𝑦                             (1-34) 

𝐽𝑧 =
𝑞 4𝜋𝑚

ℎ3
∫   𝑑𝐸𝑧𝑇(𝐸𝑧)  ∫ 𝑓(𝐸)

∞

0

 𝑑𝐸

∞

0

                               (1-35) 

∫
1

𝑒𝑥 + 1
𝑑𝑥 = −𝑙𝑛 [𝑒−𝑥 + 1]                                        (1-36) 

𝐽𝑧 =
𝑞 4𝜋𝑚𝑘𝐵𝑇

ℎ3
∫   𝑑𝐸𝑧𝑇(𝐸𝑧) 

∞

0

𝑙𝑛 [𝑒𝑥𝑝 [
𝐸 − 𝐸𝐹

𝑘𝐵𝑇
] + 1]                  (1-37) 

To account for the potential barrier, T(Ez) can be found using the Wentzel-Kramers-

Brillouin (WKB) approximation for quantum mechanical tunneling: 

𝑇(𝐸𝑧) = 𝑒𝑥𝑝 [−2√
8𝜋2𝑚

ℎ2
 ∫ √𝑞 𝛷(𝑧) − 𝐸𝑧𝑑𝑧

𝑇𝑡𝑢𝑛

0

]                    (1-38) 

Where q Φ(z)-Ez is the energy difference between the potential barrier at z and the energy 

of the particle in the z-direction.  Ttun is the location along z in which tunneling occurs.  

By considering this tunneling probability occurs when Ez ≈ EF, using the Taylor 

expansion and the fact that the potential barrier is equivalent to the effective electric field 

necessary to tunnel at Ttun, algebra gives: 

𝐽𝑧 =
𝑞2

8𝜋ℎ𝛷
𝐹𝑧

2𝑒𝑥𝑝 [−
4

3
√

8𝜋2𝑚

ℎ2

(𝑞𝛷)
3

2⁄

𝑞𝐹𝑧
]                             (1-39) 

𝐽𝑧 = 𝐴𝐹𝑧
2𝑒𝑥𝑝 [

−𝐵

𝐹𝑧
]                                                 (1-40) 
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Grouping the two terms dependent on the work function of the material produces the 

Fowler-Nordheim equation for field emission, where temperature is assumed to be low. 

The effective field F is often expressed as β*E, where E is the nominal electric field and 

β is an enhancement factor dependent on geometry [19] [20]. 

Constants A and B are functions of the emitter material’s work function and are well 

understood. Lanthanum hexaboride (LaB6,) and cerium hexaboride (CeB6) have very low 

work functions (2.7 and 2.65 eV, respectively) [21]. The field enhancement factor β 

depends on many poorly-known variables associated with the surface conditions, like the 

specific emitter tip shape, surface smoothness and surface cleanliness and in practice is 

determined from data.  An experimental emitter tip array may have a typical 

enhancement factor value of around 30 [22]. 
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2. Methods 

To design an optimized electron gun cathode cavity, a simulation code must consider the 

geometric optimization of two longitudinally asymmetric halves of one cavity.  The effort 

conducted here takes an existing optimization code and modifies it to optimize 

asymmetric geometries at non-relativistic energies. 

The original optimization code is a custom finite element electromagnetic solver 

previously developed in C++ to solve azimuthally symmetric 2D problems, using 

Mathematica for the user interface1.   This tool has been expanded to optimize an 

azimuthally symmetric half cavity geometry for a given optimization function using 

splines [22] [23].  However, geometric constraints and the addition of an emitter in the 

cavity require more flexibility in the functional form and freedom for the cavity.  

2.1. Current Code 

The geometric boundaries of the cavity are set using standard cavity parameters, such as 

radius and length, as well as elliptical inputs for the shape of the curves of the cavity 

bowl and reentrant nose, see Figure 2-1.   The elliptical inputs are constrained to be 

within the cavity radius and length, with total angle of curvature restricted to π/2. Linear 

segments connect the geometric gaps between curves, see Figure 2-1.  Elliptical 

parameters for physical impossibilities such as overlapping curves are forced to smaller 

values. Any automatic correction of input parameters is noted in the simulation output. 

Following the definition of the ½ cavity profile, the boundary conditions are set.  See the 

rightmost illustration in Figure 2-1.  Note that the edge of the cavity along the y-axis is 

                                                 
1 Many thanks to the code’s originator: Sami Tantawi (SLAC) 
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Figure 2-1 Left: Cavity parameters are fixed during optimization, with the exception of the nose 

depth xx.  Center: Each ellipse is defined by its two axes; points are drawn over a maximum 

angle of π/2 to prevent sharp corners in the geometry.  Tolerance for number of points is an 

adjustable input. Segments are colored to illustrate the four separate curves.  Right: Boundary 

conditions for cavity geometry; red is resistive, green is perpendicular magnetic field, black is 

perpendicular electric field, and blue is the accelerating boundary. 

defined to have a perpendicular electric field on the assumption of geometric (and 

therefore field) symmetry over the y-axis.      

The resonant frequency of a cavity operating in the TM010 mode depends on its radius.  

The initial input of cavity radius, b, is tuned to correspond to the specified resonant 

frequency.  The initial radius has a wide margin of acceptable error for which the code 

will correct, and any change in cavity radius is noted in the simulation output. 

Using a triangular mesh, the electric and magnetic fields are calculated over the entire 

half cavity geometry.  These fields provide values necessary to calculate cavity 

characteristics.  The shunt impedance of the cavity is computed by calculating both the 

voltage gain of a particle passing through the cavity as well as the power dissipated into 

the cavity walls.  To calculate voltage gain, the simulation generates the electric field  
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Figure 2-2: Axial electric field for half the cavity.  This field is joined with its reflection across 

the y-axis for the axial field down the entire length of the cavity. 

values along the accelerating boundary: the axial electric field.  Because the simulation 

does this calculation on half of a symmetric cavity, the resulting field is then reflected 

across the y-axis to produce the axial electric field for the length of the entire cavity.   

The oscillating phase term of the rf input is included to calculate the net voltage gain 

experienced by the particle.  The phase term assumes the particle is traveling at 

relativistic speeds and is being injected on-phase for acceleration.   

𝑉𝑎𝑐𝑐 = ∫𝐸(𝑥)𝑒𝑖 2𝜋 𝑥/𝜆 𝑑𝑥                                                 2-1 

“On-phase” implies that the particle is only in the cavity when the electric field is 

positive.  Depending on the desired operating mode, cavity length is typically between 

λ/2 and λ/3 for a relativistic particle.  Cavity surface resistance (dependent on specified 

resonant frequency) and magnetic field values at the cavity’s inner surface determine the 

power dissipated in the cavity.  The code also generates the electric and magnetic fields 

along the surface of the cavity’s resistive boundary, noting the maximum value for each. 
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Figure 2-3:  Electric and magnetic field values along the inner surface of the cavity, normalized 

to the electric gradient. The smooth transition in surface electric field values suggests smooth 

geometric transitions between ellipses. 

With just the above functionalities, one could specify a cavity shape and hypothetically 

achieve an acceptable shunt impedance.  This would involve making many minute 

adjustments to any or all geometric parameters, requiring prior experience in cavity 

design, time, effort, and patience.  We propose instead to employ the simulation code to 

automatically maximize a certain optimization function, given flexible parameters such 

as the elliptical curves. 

The optimization portion of the code incorporates a predefined function G.  Using the 

Nelder-Mead method, the code maximizes G by adjusting (over a constrained range of 

values): the elliptical parameters, nose depth, and the angle at which the nose protrudes 

from the bowl of the cavity.  The user defines parameter constraints and a starting 

interval for each of the variables.  Reasonable values for the starting intervals depend 

primarily on cavity length and radius.  With the goal of maximizing shunt impedance in 

mind, we chose the following expression for G: 

𝐺(𝑅𝑠ℎ𝑢𝑛𝑡 , 𝐸𝑠𝑢𝑟𝑓𝑚𝑎𝑥, 𝐸𝑔𝑟𝑎𝑑) =  
𝑅𝑠ℎ𝑢𝑛𝑡

√1 + (
𝐸𝑠𝑢𝑟𝑓𝑚𝑎𝑥/𝐸𝑔𝑟𝑎𝑑

2.5
)
20

                              (2-2) 
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Where Esurfmax is the maximum value of electric field over the entire inner surface of the 

cavity, and Egrad is the accelerating gradient over the length of the cavity.  The function’s 

denominator ensures that the shunt impedance is maximized without allowing 

excessively high surface fields.  A higher ratio of surface electric field to gradient can be 

a sign of a sharp edge in the cavity creating a higher peak field, risking electric field 

break down. The limit of 2.5 was arrived at empirically.  A high enough surface field in 

the cavity can become a source of electron field emission. 

2.2. New Requirement: Non-relativistic Particle 

By only considering a relativistic particle, the original simulation makes two 

assumptions: 1) the particle’s velocity is equal to c and independent of its voltage gain 

within the cavity and, 2) the particle is injected on-phase. A particle is considered “non-

relativistic” if its kinetic energy is at or below its rest mass (β <0.86).  The only particles 

to be considered in this thesis will have velocities well below relativistic speeds, so 

velocity scales quadratically with particle kinetic energy, but we will consider a narrow-

enough energy window to perform a linear approximation.  We choose to define the  

 

Figure 2-4: Electron’s velocity as a function of kinetic energy.  For the particle energy ranges 

discussed here, highlighted red region, and gradients of less than 100 keV/cm, the particles’ 

velocities are approximated to scale linearly with energy. 
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average kinetic energy of the particle within the cavity to calculate an approximate 

energy gain.   

The assumption of on-phase injection is no longer valid at non-relativistic speeds.  

Because it takes the particle longer than one half of an rf cycle to traverse the cavity, 

injecting on the incorrect phase could actually result in the particle being accelerated 

backwards.  To determine the optimal phase to inject the non-relativistic particle, the 

particle is traced through the cavity over injection phases from θ = 0 to π to determine 

maximum voltage gain. 

𝑉𝑛+1 = 𝑅𝑒[𝐸(𝑥)𝑒𝑖(𝜃𝑛−𝜋
2⁄ )]𝑑𝑥 + 𝑉𝑛                                                  (2-3) 

𝜃𝑛+1 = 𝜃𝑛 + 2𝜋𝑓
𝑑𝑥

𝛽𝑐
                                                               (2-4) 

Injection phases of π to 2π which give negative acceleration are omitted.  The shunt 

impedance of the cavity is then calculated using this maximum accelerating voltage.  The 

rf power is assumed to be sinusoidal, with the axial electric field positive from 0 to π, and 

negative from π to 2π. 

Figure 2-5: Particles injected at phases ranging from 0 to π.  The injected particle with the 

highest exit energy that also never accelerated backwards is considered to have been injected at 

the optimum phase, see bold particle trace. 
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Non-relativistic edits to the optimization code were checked against the original code 

using the relativistic input of 100MeV average kinetic energy. 

2.3. New Requirement: Asymmetric Cavity 

To extend the simulation’s application to electron gun cavity optimization, it is necessary 

to include asymmetric capabilities.  Inputs should include different elliptical parameters 

for both halves of the cavity, as well as independent nose depths, iris radii, and half-

cavity lengths.  The only parameter constrained to be identical for both halves of the 

cavity is the bowl radius, b, to ensure smooth continuity between cavity halves.  

Azimuthal symmetry is still assumed.  Boundary conditions are also modified, as there is 

no longer a perpendicular electric field boundary between the two halves.  Both irises are 

set as perpendicular magnetic field boundaries.  In the asymmetric case, the fields are 

calculated across the entire profile of the cavity.   

 

 Figure 2-6 Boundary conditions for full cavity profile geometry; red is resistive, green is 

perpendicular magnetic field,, and blue is the accelerating boundary 
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The addition of asymmetrical capabilities complicates the optimization process.  The 

code must consider twice as many variables to maximize G, with constraints and starting 

intervals of the parameters being unique to each half.  Over-constrained inputs produce 

null results, while under-constrained inputs produce less than elegant cavity geometries. 

Often the result is an uninteresting “boxy” solution with all elliptical parameters equal to 

each other.  Appropriate constraints and starting intervals for a set cavity radius scale 

loosely with cavity length.   

2.4. Asymmetric Non-relativistic Inputs and Post-processing 

The reason to accommodate asymmetric capabilities is to be able to model an electron 

gun emission cavity.  One iris is set to a small value ~0.001 λ, as are the two elliptical 

parameters defining the nose curvature closest to the centerline.  The resulting 

asymmetric axial electric field can be seen in Figure 2-7.  It should be noted that the 

perpindicular magnetic field boundary on the left side is preserved.  The code was not 

modified to accept an iris of radius of 0.  Since the depth of the bowl curvature is 
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restricted to be within the length of the cavity, a reentrant design of this type includes a 

small vestige of unwanted cavity space included in the calculation. 

For an iris equal to 0.001 λ, the electric field in this region of the cavity is on the order of 

10-7 V/cm.  An axial electric field is calculated for the entire length of the cavity, but a 

threshold is set to omit fields below ~10-5 V/cm, thus omitting this sliver.  This region of 

the cavity is ignored for further calculations, but the calculation of power loss does 

include the appendage.  As can be seen from Figure 2.7, the magnetic field in this region 

of the cavity is very small, as is the percentage of total surface area contained in this 

region, making this small systematic error negligible. 

Figure 2-7: Left:Asymmetric cavity designed for a 100keV particle with cavity length ~0.2 λ.  

Color scheme normalized to maximum field value (red). Right, Top: Resulting axial electric field. 

Right, Bottom, surface fields normalized to gradient along the inner surface of the cavity. 
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A scaling factor is used to achieve a specified energy output. Cavities are designed for the 

average kinetic energy and total energy gain of the particle.  The axial electric field is 

scaled accordingly, with cavity power loss scaling as the square of the scaling factor. 

For cathode cavities, both thermionic and field emission are considered for a single 

geometric design.  As discussed in section 2.2, the particle is traced over a range of 

injection energies.  Output current density is generated by calculating the voltage at the 

cathode, which is the peak surface electric field, over the acceptable range of injection 

phases.  The result is current density as a function of rf phase.  For thermionic emission, 

the Child-Langmuir law will be used (2-5).  For the peak current density achieved, the 

Richardson-Dushman equation will determine the minimum cathode temperature 

necessary to achieve that output (2-6).   For field emission, the Fowler-Nordheim 

equation will be used (2-7). 

𝐽 = (
4

9
𝜖0 √

2𝑒

𝑚𝑒

1

ℓ𝑒𝑓𝑓
2  )𝑉3/2                                            (2-5) 

𝑗𝑡ℎ𝑒𝑟𝑚𝑖𝑜𝑛𝑖𝑐 = 𝐴0𝑇
2𝑒

−𝛷
𝑘𝑏𝑇                                                (2-6) 

𝐽𝑧 = 𝐴 104.25 𝛷−1/2 𝛽2𝐸2

𝛷
𝑒𝑥𝑝 [

−𝐵𝛷3/2

𝛽 𝐸
]                                 (2-7) 

Where ϵ0 is the permittivity of free space, e is the charge of an electron, me is the mass of 

an electron, ℓ eff is the effective cavity length (omitting the sliver of cavity mentioned 

above), A0 is Richardson’s constant 120 A/(cm2 K2) [17], A is (1.54 * 10-6 eVA/V2), B is 

6.83 * 109 V/(eV3/2 m), β = 30, and the work function for LaB6 (Φ = 2.7 eV) will be used 

[19]. 
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This thesis designs and presents three initial electron gun cavities with asymmetrical 

cathode nose features with exit energies of 20, 40, and 100 keV.  The peak surface 

electric field and acceptable injection phases of each cavity will then produce two current 

profiles; one via thermionic emission and one via field emission.  The final design will be 

a series of three cavities: an initial 40keV emitter cavity with two subsequent reentrant 

cavities.   

For the three cavity design, a single scaling factor is applied to all three cavities’ electric 

field.  The particle is traced through the series of cavities to identify the range of 

acceptable injection phases.  For the three cavity system we treat the particle’s changing 

velocity correctly without averaging.  The total power loss of the series is summed over 

the length of the system for the total power dissipated.  The power loss, the optimal 

injection phase, and total acceleration of the particle define the system shunt impedance. 
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3. Results 

All cavities discussed will be X-band OFE copper cavities, designed to operate at 9.3 

GHz, with 0.1 cm thick walls. 

3.1. Single Emitter Cavity, 100 keV exit energy 

Figure 3-1: Asymmetric emitter cavity designed for an exit energy of 100keV and 

performance values of interest. The left side of the cavity exhibits a slight oddity in the 

curvature from bowl to nose. Color scheme normalized to maximum field value (red). 

  ℓeff 0.53 cm, 

0.166λ 

Vacc 100 keV 

Tavg 50 keV 

Rshunt 147 MΩ/m 

Esurf max 40 MV/m 

Egrad 18 MV/m 

Esurf max / Egrad 2.17 

φinj 32.4 degrees 

Jpeak 

thermionic 

0.08 A/cm2 

Jpeak field 

emission 

1.54 A/cm2 



34 

 

 

Figure 3-2 Left: Normalized with reference to the accelerating gradient, the surface electric and 

magnetic fields along the inner surface of the cavity. Right: rf electric field peak value over one 

oscillation, with acceptable injection phase range highlighted in red. 

See Figure 3-1 for cavity profile shape and figures of merit.  This cavity is designed to 

emit particles from the left side inner-wall and accelerate them to exit the right side at 

100 keV.  Figure 3-2 shows the electric and magnetic fields along the cavity’s inner 

surface as a fraction of the accelerating gradient.  The acceptable range of injection 

phases is shown in the left portion of Figure 3-2.  The final set of plots in Figure 3-3 

shows the emitted current as a function of injection phase.   

 

Figure 3-3: Left, current density emission curve for thermionic emission.  Peak current of 0.08 

A/cm2 would require a LaB6 cathode temperature of 1435K. Right, current density emission curve 

for field emission of a LaB6 tip , with a peak current of 1.54 A/cm2 
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3.2. Single Emitter Cavity, 40 keV exit energy 

 

 

Figure 3-5: Left: Normalized with reference to the accelerating gradient, the surface electric and 

magnetic fields along the inner surface of the cavity. The electric field exhibits more sharp peaks 

as compared to the 100 keV cavity. Right: rf electric field peak value over one oscillation, with 

acceptable injection phase range highlighted in red. 

ℓeff 0.34 cm, 

0.105λ 

Vacc 40 keV 

Tavg 20 keV 

Rshunt 90 MΩ/m 

Esurf max 29 MV/m 

Egrad 11 MV/m 

Esurf max / Egrad 2.49 

φinj 36 degrees 

Jpeak thermionic 0.06 A/cm2 

Jpeak field emission 0.07 mA/cm2 

Figure 3-4: Asymmetric emitter cavity designed for an exit energy of 40keV and performance 

values of interest. Color scheme normalized to maximum field value (red).  The left side of the 

cavity again exhibits a slight oddity in the curvature from bowl to nose. 
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See Figure 3-4 for cavity profile shape and figures of merit.  This cavity is designed to 

emit particles from the left side and accelerate them to exit the right side at 40 keV.  As in 

the 100keV case, the region of the cathode side where the bowl transitions to the nose has 

an undesirable corner-like geometry. Figure 3-5 shows the electric and magnetic fields 

along the cavity’s inner surface relative to the accelerating gradient.  Here the electric 

field values have much sharper peaks, note the peak around 0.5 cm where the bowl to 

nose transition forms a pseudo-corner. The acceptable range of injection phases is noted 

in the left part of Figure 3-5.  The final set of plots in Figure 3-6 shows the emitted 

current as a function of injection phase.  The peak surface electric field in this cavity is 

approximately half that of the 100keV cavity, but the resulting field emission current is 

over four orders of magnitude smaller. 

 

Figure 3-6 Left, current density emission curve for thermionic emission.  Peak current of 0.06 

A/cm2 would require a LaB6 cathode temperature of 1419K. Right, current density emission curve 

for field emission of a LaB6 tip, with a peak current of 0.07 mA/cm2 
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3.3. Single Emitter Cavity, 20 keV exit energy 

The optimized 20keV cathode cavity included a different geometric anomaly.  The 

transition from bowl to nose on the right side of the cavity contains a sharp point in the 

geometry, creating the peak surface electric field on the anode side of the cavity, see 

Figure 3-8.  This surface electric field has little contribution to the acceleration of the 

particle, given its location.  Thus the field at this point has to be very high for the on-axis 

field to be high enough to achieve the accelerating voltage desired.  If the cathode were 

intended to be on the right side, it would have a decent current output, see Figure 3-9. 

ℓeff 0.21 cm, 

0.065λ 

Vacc 20 keV 

Tavg 10 keV 

Rshunt 32 MΩ/m 

Esurf max 31 MV/m 

Egrad 9.6 MV/m 

Esurf max / Egrad 3.29 

φinj 43 degrees 

Jpeak thermionic 0.09 A/cm2 

Jpeak field emission 1.02 mA/cm2 

Figure 3-7 Asymmetric emitter cavity designed for an exit energy of 20keV and performance 

values of interest. Color scheme normalized to maximum field value (red).  The right side of the 

cavity has a small but sharp switchback that is creating a peak surface electric field on the non-

cathode side of the cavity.  
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Figure 3-8: Left, the peak surface electric field is on the right side and has a much higher ratio to 

gradient than in the previous two cases. Right: rf electric field peak value over one oscillation, 

with acceptable injection phase range highlighted in red.  

 

 

Figure 3-9: Left, thermionic, and right, field emission curves for 20keV cavity.  The voltage 

inputs were based on the peak surface electric field, which in this case in on the non-cathode side 

of the cavity. 
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Figure 3-10: Left: Particle injected at optimum phase for energy gain.  The transition between 

cavities can be seen around 0.4 and 1.1 cm.  Right: Effective length and acceleration of the entire 

system and per individual cavity. 

Three cavities were optimized separately, then the particle was traced through all three 

axial electric fields, operating in the π-mode, to find an optimal injection phase.  The 

initial cathode cavity is the same design from section 3.2; the 40 keV exit energy cathode 

cavity.  The second and third were symmetric cavities of the same design.  

 

3.4. Series of 3 cavities 

 

ℓeff, total 1.35 cm 

 ℓeff, 1 0.342 cm 

 ℓeff, 2 0.503 cm 

 ℓeff, 3 0.503 cm 

Vacc, total 95 keV 

Vacc, 1 31 keV 

Vacc, 2 42 keV 

Vacc, 3 22 keV 

Rshunt, total 44.3 MΩ/m 

Egrad, total 7.12 MV/m 

Esurf max 1 29 MV/m 

Jpeak thermionic 0.06 A/cm2 

Jpeak field 

emission 

0.05 mA/cm2 
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Figure 3-11: Utilizing the peak surface field of the cathode cavity, and the acceptable injection 

phases of the system, thermionic emission (left) achieves a peak current density of 0.06 A/cm2.  A 

peak current density of this value would require a cathode temperature of 1400 K. Field emission 

(right) achieves a peak current density of 0.05 mA/cm2. 



41 

 

4. Discussion 

The most successful of all the designs reported is the 100 keV cavity, and this can be 

attributed to the successful optimization of its geometry.  The 20 keV cavity contained a 

sharp point, and the 40 keV cavity had a more exaggerated “corner” geometry as 

compared to the 100 keV cavity.  The higher energy cavity also exhibited a much 

smoother distribution of the electric field along its inner surface.  For the discussed 

thermionic output of all cavity designs, temperature would not have been a limiting factor 

for the cathode.  All peak current densities fell below normal cathode operating 

temperatures, around 1600-2000 K. 

The three cavity stack proved very capable of meeting low current needs. Higher currents 

would require further design modification, such as using a cathode metal with a lower 

work function or implementing a field emission tip with a higher field enhancement 

factor. 

It is worth noting that the power requirements for the individual cavity designs discussed 

are quite low.  The 100 keV cavity requires 68 W average power, while the 40 keV and 

20 keV cavities only require only 17 W and 12 W respectively. 

There are clear areas of improvement that could make this optimization program facilitate 

gun design more easily. Stacking the three cavities into a single unit proved to be a 

laborious task, as each optimization was done in series, with only user input to 

communicate one cavity’s output to another.  A single Mathematica program could be 

devised to design three cavities together, such that the output of the first design feeds into 
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the next.  This single program should utilize a single scaling factor over all three cavities’ 

fields. 

The optimizer requires very specific ranges of acceptable elliptical parameters, especially 

with the shorter cavities.  Even over one hundred iterations, often the most optimal cavity 

still contained jagged edges between the nose’s elliptical curves.  Not only are these sorts 

of shapes non-machinable, they are also generally undesirable shapes.  For instances 

other than an intentional array of electron emitter tips, a sharp edge point and the 

extremely high surface electric field it brings with it can cause unintentionally emitted 

electrons and field breakdown.  This geometric issue would not affect lower frequency 

designs. The optimization code would be very successful at designing, for instance, low 

gradient S-band cavities. 

Because the lengths of the two cavity halves are not optimized, the output parameters of 

the cavity are limited by the selection of the cavity length and cavity length to nose depth 

ratio which is iterated upon.  Generally, the optimal cavity length is between λ/2 and λ/3. 

The creation of the “null” sliver of space on the left-hand side complicates that decision, 

as does the ability to skew which side of the cavity contains more or less of the entire 

cavity length.  Including the cavity length as an optimized parameter would not be 

possible with the code in its current form.  Because the cavity length, in part, bounds the 

limits of the elliptical curves, adding cavity length as another variable would result in an 

inefficient optimizer.  It might be worth exploring holding some elliptical parameters 

constant while varying cavity length and nose depth.  This feature would be especially 

useful for stacking a multiple-cavity system.   
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Further development of this optimization code should include the capability to eliminate 

the iris on one (or both) sides of the cavity design.  Part of the input parameters could be 

removing the perfect magnetic conductor boundary and having the resistive boundary 

meet the accelerating boundary.  For the shorter cavities at lower energies, a new list of 

optimizing constraints and starting intervals should be explored.  The shorter cavities 

were prone to overlapping elliptical curves and sharp edges.  Future modifications of the 

code should investigate how best to modify the maximizing function constraints to both 

increase shunt impedance while also not creating sharp tips and therefore excessively 

high peak surface electric fields. 
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