
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Complications in the Integration of
Commercial Microprocessors in Harsh

Radiation Environments
Dr. Heather Quinn

Technical Staff Member
Los Alamos National Laboratory

LA-UR-19-22575

https://www.gapingvoid.com/blog/2011/01/0
4/the-processor-is-an-expression-of-
human-potential/

3/27/2019 | 2Los Alamos National Laboratory

LANL’s 56 Years in Space
• LANL operational space systems

monitor the nuclear test ban treaties
– 1400 sensors, 400 instruments, 74

satellites
• Here are some other things we’ve

done in 56 years:
– Detected the first gamma-ray burst
– Collected 56 years of space weather

data in the magnetosphere
– Used lasers to shoot rocks on Mars to

learn that Mars once had water
– Flew the first Xilinx Virtex field-

programmable gate arrays (FPGAs) in
space

• …And now we are trying to find
sharks on Europa, Jupiter’s icy moon
(…or radiation-resistant bacteria)

https://en.wikipedia.org/wiki/Van_Allen_radiation_belt#/
media/File:Van_Allen_radiation_belt.svg

3/27/2019 | 3Los Alamos National Laboratory

…But We Also Have Giant Supercomputers
• Our supercomputers are larger than

our satellites by orders of magnitude
• From the early 2000s (130-150nm):

– The Q supercomputer had 24.0
radiation-induced faults per week in the
BTAG memory [1]

– The Cibola Flight Experiment satellite
had 3.5 radiation-induced faults per
week in the FPGAs [2]

• Turns out to be an old problem:
– We determined recently the first

radiation-induced fault in occurred at
LANL in a Cray-2 supercomputer

• But it is a current problem, too
– The designers and the programmers are

adjusting to the reality that the nodes
crash and hardware needs replacement

https://en.wikipedia.org/wiki/Cray#/media/File:Cray2.jpeg

[1] https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1545893
[2] https://dl.acm.org/citation.cfm?id=2629556

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1545893

3/27/2019 | 4Los Alamos National Laboratory

…And Giant Particle Accelerators
• We accelerate protons to 800

MeV to smash into a tungsten
plug to make neutrons

• Around the tungsten is a harsh
radiation environment of neutrons
and protons

• The entire system is surrounded
in a scourge of low-energy
neutrons and radio frequency
emissions that make it a horrible
environment for electronics,
which are needed for diagnostic
and beam control

https://en.wikipedia.org/wiki/Los_Alamos_Neutron_Science_Center#
/media/File:Los_Alamos_Neutron_Science_Center_01.jpg

3/27/2019 | 5Los Alamos National Laboratory

Here Is What We Have Learned From These Missions
• Science and national security concerns move at a rapid pace, and

even satellites need to be flexible
– While this fact seems obvious now, it was not obvious in 1998
– People yelled at us that we were “destroying space as we know it” by

putting all of the sensor data through the FPGA
– In 2012 we proved that we were right – the FPGA would not destroy the

data and increasing compute speeds 100x
– So maybe we did destroy space as it was known

• The supercomputers and particle accelerators are more accessible,
but not necessarily easier to fix
– The accelerator is radioactive and a destructive failure means turning the

system off
– The supercomputers are large, and destructive failures means humans

tracking down and swapping out hardware

3/27/2019 | 6Los Alamos National Laboratory

Outline

• The case for using commercial microprocessors in harsh radiation
environments

• What’s the catch? It’s a challenge to test microprocessors!
– The old way of testing: time-consuming programming in assembly
– The new way of testing: high-level languages

• We are concerned about the results are getting, and I have 21 open
questions for anyone looking for a project

The Case for Using Commercial Microprocessors in
Harsh Radiation Environments

3/27/2019 | 7Los Alamos National Laboratory

3/27/2019 | 8Los Alamos National Laboratory

The Rad Hard Market is Not Sleeping

• In the 1970s, the
market share for
government and
military was 1/3-
1/2

• It has been
consistently <1%
for 20 years

• The only
economically
feasible solution:
fly cell phone
hardware

Cumulative
Annual Growth
Rate (CAGR)

Rad hard
market

https://semiengineering.com/foundry-challenges-in-2018/

3/27/2019 | 9Los Alamos National Laboratory

The Current Approach to Radiation-Hardened Compute
is Inadequate

1

10

100

1000

10000

100000

1000000
Fr

ee
sc

al
e

M
S

C
82

56
A

er
of

le
x

LE
O

N
 3

FT
A

er
of

le
x

LE
O

N
 4

B
A

E
 R

A
D

75
0

B
A

E
 R

ad
R

un
ne

r
Fr

ee
sc

al
e

M
P

C
86

40
N

vi
di

a
Q

ua
dr

o
FX

 3
80

LP
TI

 C
64

74
Fr

ee
sc

al
e

M
P

C
86

40
D

TI
 C

64
55

M
ae

st
ro

A
ct

el
 P

ro
A

S
IC

3
10

00
N

vi
di

a
Te

sl
a

B
A

E
 R

A
D

SP
E

E
D

A
ct

el
 R

TA
X

40
00

D
X

ili
nx

 V
irt

ex
-5

Q
V

X
ili

nx
 V

irt
ex

-5
 (

5V
S

X
24

0T
)

A
lte

ra
 S

tr
at

ix
-IV

 (
EP

4S
E2

30
)

M
illi

on
s

of
 In

st
ru

ct
io

ns
 P

er

Se
co

nd
/W

at
t

Rad
Hard

Comm’l

Freescale
MPC8640Freescale
MPC8640D

TI C6474

TI C6455

BAE RADSPEED

Maestro
Aerof lex LEON 3FT Xilinx Virtex-5QV

Altera Stratix-IV
(EP4SE230)

Xilinx Virtex-5
(5VSX240T)

Nv idia Tesla

Nv idia Quadro FX
380LP

BAE RAD750

Actel ProASIC3
1000

Actel RTAX4000D

Aerof lex LEON 4

BAE RadRunner

Sp
ac

e
Re

ad
in

es
s

Difficulty to Program

Programmability, Space Readiness,
and Performance Roundup

3/27/2019 | 10Los Alamos National Laboratory

Radiation-Hardened Compute is Four Generations
Behind…Right Now…And Not Catching Up
• The BAE RAD750 is the most commonly used radiation-hardened

microprocessor in space
– It is based on the Power PC 750, which was designed in 1997 and used as

the original iMAC processor in 1998
– BAE recently released the RAD750 replacement, which is the RAD5545

• It is a 45nm 4-core microprocessor, which is four generations behind the state of
the art

• It is better than all of its competitors, which are shown in the lower left corner of the
previous graph but still worse than any current commercial microprocessor

• The dynamic tension:
– Radiation-hardened microprocessors are necessary for mission processing
– Radiation-hardened microprocessors are not fast enough for other types of

processing

What’s the Catch?

3/27/2019 | 11Los Alamos National Laboratory

3/27/2019 | 12Los Alamos National Laboratory

Three Ways to Destroy a Deployed System

• Total ionizing dose (TID):
– Accumulation of ionizing radiation causes the

transistors’ parametrics to prematurely age
• Displacement damage (DD):

– Accumulation of radiation destroys the
transistors through knock-on effects

• Single-event effects (SEEs):
– An umbrella category of destructive and non-

destructive effects caused by single particles

Displacement Cascade Damage in Silicon
["Space Radiation Effects on
Microelectronics," NASA Jet Propulsion
Laboratory]

To insert commercial microprocessors into
satellites and accelerators, need to determine

how radiation affects the part.

http://parts.jpl.nasa.gov/docs/Radcrs_Final.pdf

3/27/2019 | 13Los Alamos National Laboratory

How Bad Could It Be?
• TID and SEE are known issues with microprocessors that could cause a

destructive failure to the system
– While we can swap out parts in the supercomputer and the accelerator, you

might not want to
– As for satellites…good luck explaining why your hand-picked compute system

on your $100M artisanal payload that took a decade to design is dead
• Even non-destructive failures are messy in microprocessors

– We were able to determine, quantify, and mitigate most of the major non-
destructive failure modes in FPGAs in seven years with a team of 20

– We are still documenting and quantifying the microprocessor problems, and only
have a single solution after a decade of research
• Bad News: there are really only about fifteen people working on this problem worldwide
• Good News: for the last five years all of us get together twice a month to discuss our

progress
• Even Better News: we’re satellite people, so we are used to being patient
• Best News: we have at least 21 open questions for grad students to pursue

3/27/2019 | 14Los Alamos National Laboratory

Why Is This Taking So Long?

http://www.spindrift-racing.com/jules-verne/drupal/en/out-of-the-classroom/sfs-otc-icebergs-en

What we know
about the actual
microprocessor

architecture

The information
deficit: what we

do not know
about that is

going to affect
the test

Manufacturers
unwilling to help

Preparing Commercial Microprocessors for Harsh
Radiation Environments

Los Alamos National Laboratory 3/27/2019 | 15

Qualification of Parts for Harsh Environments
• The part is characterized for how it works in the expected radiation environment
• The idea is to test additively under the assumption that the performance of the full

microprocessor system can be partitioned into sub-systems
– Memory
– Logic
– Control
– Operating System
– System Software

• This assumption is arguably incorrect:
– There is no known method for deconstructing or partitioning a system into tractable sub-

systems
– There is no known method of modeling microprocessor systems
– There is no known method for predicting untested microprocessor systems or software

using test results from known microprocessors or software
• On the other hand, this type of testing is the only known method for testing

complex systems so until someone develops a better methodology….

3/27/2019 | 16Los Alamos National Laboratory

3/27/2019 | 17Los Alamos National Laboratory

Taxonomy of Memory Failure Modes in Microprocessors

H. Quinn, et al, "Software resilience and the effectiveness of software mitigation in microcontrollers", TNS., vol. 62, no. 6, pp. 2532-2538, Dec. 2015.

3/27/2019 | 18Los Alamos National Laboratory

Taxonomy of Logic Failure Modes in Microprocessors

3/27/2019 | 19Los Alamos National Laboratory

Single-Event Latchup (SEL)
• Can naturally occur in any CMOS

circuits, due to the parasitic thyristors
in the layout
– Cannot avoid inserting the thyristor
– Resistors can keep the thyristor from

turning on, but not used anymore
• Once ON the thyristor can experience

snap back and try to pull an infinite
current.

• Many microprocessors have single-
event latchup (SEL) sensitivities
– Low-end microcontrollers often very

sensitive to SEL
– Most of the time we are weeding out

these parts, and not trying to remediate

http://www.ece.drexel.edu/courses/ECE-E431/latch-up/latch-up.html

Issues in Testing Microprocessors and Open
Questions

3/27/2019 | 20Los Alamos National Laboratory

3/27/2019 | 21Los Alamos National Laboratory

The Foundational Questions:

1. What is the underlying sensitivity to radiation in the hardware?
– Are we testing correctly?
– Could modeling help us?

2. How does software translate hardware faults into silent data
corruption and crashes?

– It is all how the software uses the architecture?
– Do the unused parts of the architecture affect either silent data corruption or

crashes?
– How does the full system stack affect errors?

3/27/2019 | 22Los Alamos National Laboratory

Evolution of Radiation Testing Microprocessors

Unclocked
Tests of Single

Microprocessors
in Assembly

Clocked but
Simple Tests of

Single
Microprocessors
in Embedded C

Tests of
Instrumented

Supercomputers

Full System
Tests of Single

Microprocessors
with Embedded

C

Clocked but
Simple Tests of

Multi-core
Microrocessors

in Assembly

Full System
Tests of Single
and Multi-core

Microprocessors
with Full

Operating
Systems and C

Did this rapid evolution of testing methodology improve the quality of test results?

3/27/2019 | 23Los Alamos National Laboratory

Benchmarking and Test Standards for Repeatable,
Comparable Test Results
• We have been working toward standardized test circuits and codes

for testing mitigation for awhile: FPGA benchmark done, software
benchmark limping along

• Can we develop a standard set of codes for characterizing all
microprocessors or groups of microprocessors?

Predicting the Unpredictable: Modeling Untested Codes
• How do we accurately predict

untested codes using information
about the hardware sensitivity?

• Additive testing
– Already discussed

• Use machine learning to extract
information about individual
operations from existing codes
– Determine the cross section for

different applications
– Determine which operations are used

via profiling
– Use machine learning to extract cross

sections for different operations
• And then a miracle occurs on the

modeling side…

Prediction of the
untested application

Model of untested
application

Database of operation
cross sections

Test data from several
test codes/applications

3/27/2019 | 24Los Alamos National Laboratory

Fault Injection Tools for Microprocessors
• All the testing is occurring in the beam right now
• The community of microprocessor testers (all fifteen of us) needs a

good fault injection tool that allows us to insert faults in a manner that
is:
– Fast
– Uniform
– Validated

• The problems:
– The information deficient affects the ability to do complete fault injection
– The lack of fault categorization affects the validity of doing fault-type-specific

fault injection
• If you have a good idea on how to design one, we will help you

validate it!
– We also promise to love you for the rest of your life

3/27/2019 | 25Los Alamos National Laboratory

3/27/2019 | 26Los Alamos National Laboratory

Is There a Correct Way to Test Upper Caches?
• Data moves from upper to lower

caches, lower caches to registers,
and registers to ALU
– Even if the caches are turned off, the

data will move through this datapath.
• Data are overwritten constantly, instead

of being cached
• If the tests gradually build from

registers only to registers and L1
cache and so on, it is possible to
disentangle the results?

• Maybe best to mimic the system
software’s memory usage to
determine whether there is an issue
with how data movement occurs in
the flight software?

http://hardware89.blogspot.com/2015/11/hardware-prefetcher.html

Measuring Failure Modes in Multi-core Microprocessors

• Multi-core microprocessors have
– Shared failure modes
– Intra-core interferences

• What knowledge from single-core
tests is useful in multi-core
systems?

• Need work on test standards

Stev en M. Guertin, Brian Wie, Michael K. Plante, Antwong Berkley, Lonnie S.
Walling, and Manuel Cabanas-Holmen. SEE Test Results for Maestro
Microprocessor. RADECS 2012.

3/27/2019 | 27Los Alamos National Laboratory

Measuring Failure Modes in Fault-Tolerant Circuitry

• A fault-tolerant circuit should be
tested to assure it is more fault
tolerant than the unmitigated
circuit
– Corrects increased fault rate
– Corrects the types of faults that

occur in the circuit
– Corrects the deployed fault rate

• There are a lot of details that have
to be right to make certain the
mitigation technique will work
– Everyone gets it wrong occasionally,

and testing keeps everyone honest

S. M. Guertin, "SOC SEE Test Guideline Development," presented at the Single-Event
Effects Symposium, San Deigo, CA, 2013.

3/27/2019 | 28Los Alamos National Laboratory

3/27/2019 | 29Los Alamos National Laboratory

Compilers and Interpreters
• Side effect of testing software: compilers

and interpreters
• Compilers have a first order effect on the

test executable.
– Optimization steps can remove and reorder

code: make certain the test, the mitigation or
the checker are not removed

– The effect of compiler optimization on the
code’s resilience needs quantification

– The effect of different compilers and compiler
versions needs quantification

– The effect of how the compiler uses the
architecture needs quantification

– The difference between assembly and
compiled code needs quantification

• The effect of interpreters needs
quantification and study
– Guidelines are needed for use during tests
– Older test protocols might need modification

https://courses.cs.vt.edu/~cs1104/Compilers/Compilers.020.html

3/27/2019 | 30Los Alamos National Laboratory

Programming Languages
• Historically: assembly
• Currently: C, CUDA, and OpenCL

– C is a luxury: easier to develop and
maintain than assembly

– Flight software development is likely also
done in high-level languages, so the effect
of the programming language is important

• The programming languages affect
compilers and interpreters
– Might need to be studied alongside the

programming language
• Language differences is not

understood and needs quantification
– The effect of C vs. assembly needs

quantification
– Similar comparison between the GPU

programing languages need quantification
– The effect of the programming language

choice on system stability, vulnerability,
and robustness needs quantification

https://sdtimes.com/msft/sd-times-news-digest-redmonks-
programming-rankings-vs-code-1-21-apache-cordova-6-0/

Questions vs. Projects

3/27/2019 | 31Los Alamos National Laboratory

Operating Systems
• The operating system as “big software”

– Sits between the test code and the hardware
– Controls what executes when

• Widely believed that the operating system
sets the crash rate for the system
– Farokh Irom: “The hang rate was so high that

it was not possible to determine the error rate
for registers in those tests”

– Mike Wirthlin (BYU): “The OS increases the
crashing by 10x”

– LANL research: 100,000x increase in crashing
• All operating systems are problematic

– A solution is needed so we can stabilize
deployed system

– BYU is looking at doing a small, radiation-
resistant OS using their automated software
mitigation tool (COAST)

https://pbalasundar.wordpress.com/2012/06/11/introduction-to-operating-systems/

F. Irom, "Guideline f or Ground Radiation Testing of Microprocessors in the Space
Radiation Env ironment," 2008.

3/27/2019 | 32Los Alamos National Laboratory

File Systems
• A sub-problem with operating systems

– LANL has experienced a number of problems
with file systems during tests, because we did
not know that the ancillary hardware should
be protected from radiation during tests

– We now have the same issues in our
cubesats, which are our first satellites with file
systems

– Other testers are now seeing at LANSCE
• Eventually figured out radiation changes

files open in memory
– Operating system writes out the changed file

to permanent storage
– Once enough critical files are changed, the

secondary machine will crash and not reboot
properly

– Can fix by reformatting the hard drive, but
loss of data and time is problematic

• The problem does not need quantification,
but it does need a solution

http://www.shreddersandshredding.net/heavy-shredders.html

Measuring the Effect of Faults in Software

• The software sensitivity is
dependent on how the logic and
memory are used:
– The sensitivity from memory is usually

smaller than the full architecture
– Currently no way to compare the

sensitivity of the full architecture
versus how software uses it

• Need a method to translate the sub-
component testing into knowledge
about the software sensitivity F. Irom, "Guideline f or Ground Radiation Testing of Microprocessors in the Space

Radiation Env ironment," 2008.

3/27/2019 | 33Los Alamos National Laboratory

3/27/2019 | 34Los Alamos National Laboratory

Algorithm Design
• Algorithm performance:

– Faster algorithms are exposed to less
radiation per execution, therefore fewer
errors. Right? Not always.

• Need to determine what makes resilient
algorithms:
– Is where the model of how the architecture

is used comes in?
• In the mid-2000s: iterative algorithms are

resilient!
– Assumption: iterative algorithms keep

running until the algorithm converged
– Assumption: recursion is bad
– Test data: faults cause issues with

convergence
– In the future, lets agree on this principle:

In god we trust, all others must bring
data

[H. Quinn, T. Fairbanks, J. L. Tripp, and A. Manuzzato, "The Reliability of Software Algorithms and
Software-Based Mitigation Techniques in Digital Signal Processors," presented at the NSREC, 2013.]

Correct Slow But
Correct

Broken But
Fixable

Huh?

3/27/2019 | 35Los Alamos National Laboratory

Exception Handling
• Many researchers believe that one

of the causes underlying crashes is
unhandled exceptions
– Error correction codes cause some

crashes, due to uncorrectable faults
– JPL has been able to catch exceptions

and roll back the fault before the
crash…but it only works in assembly

• The effect of exception handling on
system resilience needs
quantification
– Exception handling in high-level

languages need quantification
– Better exception handling in the

operating system is needed
http://tutorials.jenkov.com/exception-handling-strategies/overview.htm

3/27/2019 | 36Los Alamos National Laboratory

Categorization of Faults

• The percentage of faults that are from data vs. logic vs. control have
not been quantized

• Assumption: the breakdown changes with software
– Does Quicksort have more control flow errors due to context switching?
– Does Advanced Encryption Standard (AES) have more logic faults because

it takes very little memory and does a lot of bitwise math?
– Or is it all just memory faults, because there is so much memory?
– Worst thought ever: how many faults are caused by unused portions of the

architecture?

Summary

Los Alamos National Laboratory 3/27/2019 | 37

A Guide for the Perplexed

• It’s a challenge to test microprocessors!
• We had an older way of testing in assembly, but it is time-consuming

to design tests and hard to scale results
• We have newer ways to test using higher level languages, but we are

still concerned about the results are getting
• There is a benchmark for testing mitigated codes, but that might not

be enough
– The benchmark group is looking at new methods of testing: you should join

the effort!
– Take one of our 21 open questions. We cannot answer all of them.

3/27/2019 | 38Los Alamos National Laboratory

The Most Perplexing of the Open Questions
• Compilers and interpreters: (1) How does compiler optimization affect the code? (2)

How do different compilers and compiler versions affect the code? (3) What is the
difference between assembly and compiled code?

• Programming languages: (4) Does the language matter?
• Operating system: (5) Is it just large software? (6) Does it make software crash more

or less frequent? (7) Are all operating systems equal? (8) Can we design a better
operating system?

• File systems: (9) Can we design a robust file system that does not lose or corrupt your
files?

• Algorithm design: (10) Does the actual algorithm matter? (11) Does the design of the
algorithm matter? (12) Are iterative algorithms better? (13) Are recursive algorithms
worse?

• Exception handling: (14) Is exception handling in high-level languages? (15) Can we
build a universal exception handler as a middleware?

• Categorization of faults: (16) Can we predict the percentage of data vs. logic vs. control
faults?

• Testing: (17) Is there a way to standardize characterization of microprocessors? (18) Is
there a better way to test than additively? (19) Is there a way to determine if we are
testing correctly?

• Modeling: (20) Is there a way to model untested systems using tested systems?
• Fault injection: (21) Is it really feasible?

3/27/2019 | 39Los Alamos National Laboratory

Backup Slides

Another View of Executing of Instructions

From Joel Emer’s Computer Architecture Slides:
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/
6-823-computer-system-architecture-fall-2005/lecture-notes/l15_micro_evlutn.pdf

Start and
end in

memory

Control
operations

Needed for
OOO only

ALU
operation

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

MSP430 Architecture

http://www.ti.com/product/MSP430F2619

Several
peripherals

with memory
mapped

functionality

Instruction
cache

Data
cache

Cortex A9 Architecture

http://www.embeddedinsights.com/epd/arm/arm-cortex-a9.php

Multiple cores with separate
or shared caches

Logic for handling cache
coherence

6/28/2019 | 44Los Alamos National Laboratory

Caches

• Most microprocessors have on-chip managed caches, or unmanaged
static random access memory (SRAM) blocks.

• Caches for general-purpose microprocessors:
– Stage the data variables and instructions for quick execution
– Can include multiple levels of cache
– The control circuitry around a managed cache is immense

• Unmanaged SRAM for microcontrollers:
– Compiler and the linker determine where memory values are stored
– Memory is not staged for computation
– Less control circuitry

6/28/2019 | 45Los Alamos National Laboratory

Register File
• The set of memory closest to the ALU in a microprocessor

– The fastest to access due to cell design and locality
– The design of the memory cell is often the same, but functionality differs

• Two types of main registers: general-purpose registers for integers, and
floating-point registers for floating point
– These registers store

• Input values before processing
• Output data before moving back into the cache and permanent memory
• Branch/jump location before the program moves

– Register assignments determined by the machine code
• The special-purpose registers store the program state

– The program counter stores the location of the next instruction to be executed
– The instruction register stores the instruction being executed
– The accumulator register stores the output of the ALU before it is stored in a

general-purpose register
– These registers are not part of the user-defined memory and are controlled by

the microprocessor during operation of the program

6/28/2019 | 46Los Alamos National Laboratory

Pipeline Registers and Other Flip-Flops
• Pipeline registers is the most

common other form of memory:
– Break the execution phases of the

microprocessor into distinct phases
(instruction fetch and decode)

– Adders and multipliers can have
registers for pipelining

• In both cases the registers play the
same role: store the intermediate of
the calculation so that the inputs can
be changed every clock cycle

• The memory cell design for all of
these registers is a latch design.

• Microprocessor could have 10-20
pipeline stages
– Pipelining registers are used

throughout the architecture, including
the control logic

https://en.wikipedia.org/wiki/Computer_architecture

6/28/2019 | 47Los Alamos National Laboratory

Potential Radiation-induced Failures in Mathematical Units/Logic

• The second largest set of units are
mathematical operations
– ALU/FPU,
– Combinational logic

• Logic units are sensitive to single-
event transients (SETs) in
combinational circuitry, and single-
event upsets (SEUs) in the
pipelining registers

• SETs are the basis of all other
SEEs
– SETs have to be separated from

SEUs by frequency
– Also the microprocessor has to be

operating to measure SETs at all
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7004596&tag=1

Single-Event Upsets (SEUs)

• An SEU is essentially an SET
that is immediately latched

• The most common design for
static memory is a cross-
coupled set of inverters:
– An SET across one inverter only

needs to last long enough for the
second inverter to change its
output value

– Once the second inverter
changes, the SET will self-refresh
until overwritten

https://en.w ikipedia.org/wiki/Static_random-
access_memory#/media/File:SRAM_Cell_(6_Transistors).svg

Potential Radiation-induced Failures in the Memory/Datapath

• Microprocessor memory units abound:
– Managed caches or static memory,
– Register file,
– Pipeline registers,
– Buffers, and
– Flip flops.

• Memory is sensitive to SEUs
– An SEU is essentially an SET that is immediately

latched by the memory structure
– An SET across one inverter only needs to last long

enough for the second inverter to change its output value
– Once the second inverter changes, the SET will self-

refresh until overwritten
• The total memory in a general-purpose

processor (GPP) or graphics processing unit
(GPU) is immense
– SEUs in memory dominant error rate
– Failure modes from SEUs are not only confined

to changes in data variables

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7348804

https://en.wikipedia.org/wiki/Static_random-
access_memory #/media/File:SRAM_Cell_(6
_Transistors).sv g

6/28/2019 | 50Los Alamos National Laboratory

Potential Radiation-induced Failures in Control Units
• The control units are small, but the effect is

immense, because they provide both timing
and control signals to the microprocessor
– Precise timing of registers being loaded and

stored;
– Instructions being reordered and executed;
– Transferring data into and out caches;
– Determining whether a branch is taken or not; and
– Clearing out the pipeline registers when a branch

is taken.
• All of the faults in these circuits are

generically categorized as single-event
functional interrupts (SEFIs).
– SEFIs are caused by SEUs or SETs in control

circuitry of a component
– Components are not “self-aware” and usually

need external components to detect and correct
SEFI states

• Problems
– Very little documentation on control logic
– Very difficult to observe failures in these circuits

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7004596&tag=1

Original Focus: Creating Benchmarks Tests for
Mitigation Studies
• The number of mitigation methods for FPGAs and microprocessors

has been increasing rapidly since 2000
– Need a method for comparing all of the mitigation methods
– Need metrics to determine differences between mitigation methods

• FPGA benchmark: ITC’99
• Microprocessor benchmark:

– AES
– Coremark
– LANL Cache Test
– piFFT
– Matrix Multiply
– Quicksort

MSP430F2619 Radiation Test Results

H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp and G. Duran, "Robust Duplication With
Comparison Methods in Microcontrollers," in IEEE Transactions on Nuclear Science,
vol. 64, no. 1, pp. 338-345, Jan. 2017.

Zynq ARM Radiation Test Results

H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp and G. Duran, "Robust Duplication With
Comparison Methods in Microcontrollers," in IEEE Transactions on Nuclear Science,
vol. 64, no. 1, pp. 338-345, Jan. 2017.

Remaining Issue for the Original Benchmark: Inputs

• It is clear that some of the codes are very sensitive to input variations
• Matrix Multiply can mask SEUs in the inputs by multiplying by zeros –

you can make Matrix Multiply appear “harder” by multiplying by lots of
zeros
– We’re testing with all zeros, all ones, and random numbers to assess how

much the cross section changes based on inputs
• Qsort can mask problems with the sorting code by sorting arrays with

a widely varying set of values:
– For example, an input array of (0000, 1000, 2000, 3000, 4000) all SEUs in

the lowest three nibbles will not affect the sort
– Sorting random numbers often creates an array of numbers with too much

variation
– Sorting the input array of (0, 1, 2, 3, 4) is unrealistic
– We’re trying a combination of both sequential and random numbers

Issues with the Microprocessor Benchmark
• We have achieved our goals:

– Good for comparing results across architectures
– Good for comparing results across mitigation techniques
– Good for measuring results on common algorithms

• Besides the LANL Cache test, it was not designed for determining the
basic characteristics of the microprocessor
– It is, in fact, a bad benchmark for characterizing microprocessors
– It cannot predict the cross section other codes
– In fact, we specifically avoided this originally
– Most benchmark codes are also very memory heavy, making it only good

for predicting memory cross sections
• There is pressure inside and outside of the benchmark group to add

codes for characterizing the microprocessor to predict how other
codes behave in radiation environments

Pros and Cons of These Ideas

Operations
• Pros:

– Closer to what we are doing now

• Cons:
– What we are doing right now is not helpful
– Might not be able to instrument all of operations
– Likely a lot of assembly
– Hard to disambiguate SEUs in cache
– Might not be predictive for more complex systems

Machine Learning
• Pros:

– Not the same method we have been
trying for a decade

– Might be more predictive for complex
systems

• Cons:
– Not completely certain how this will

work
– Can we use the data we already

have? Do not know.
– Will we need to test a lot of codes?

Do not know.

What Is the Plan?

• Operations
• Heather is designing micro-

benchmarks that focus on
reducing memory access and
narrowing the focus to single
operations:
– Multiply
– Add
– Divide

• Looking to see if we can port the
LANL Cache test into a TLB Test

Machine Learning
• Paolo and Steve are collecting

information on a set of
applications on a specific
architecture

• The test data are used to create a
model to estimate the FIT and
SDC propagation behavior for
untested applications

The Basics of Characterizing Microprocessors

Characterizing Microprocessors
• Characterizing microprocessors

often focuses on testing:
– Input/output data,
– Multiple levels of memory,
– Multiple processing cores,
– Multiple processing modes, and
– Peripherals.

• To fully characterize a
microprocessor it is necessary to
test all of these different circuits

• Testing focuses on hardware, but
software and operating systems
affect how faults present in the
system, and determine how faults
turn into errors

F. Irom, "Guideline f or Ground Radiation Testing of Microprocessors in the Space
Radiation Env ironment," 2008.

Microprocessor Test Standards

• The Jet Propulsion Laboratory (JPL) Microprocessor Test Guideline
recommends testing:
– Registers
– Cache
– Flight software

• The JPL System-on-a-chip (SOC) Test Guideline recommends
testing:
– Peripherals
– Fault-tolerance circuitry
– Radiation-hardened circuitry

[1] https://nepp.nasa.gov/DocUploads/C288941E-C4DF-486A-9ADD317D00A26BC3/07-118%20Irom_JPL%20Guideline%20for%20Ground%20Rad%20test.pdf
[2] S. M. Guertin, B. Wie, M. K. Plante, A. Berkley, L. S. Walling, and M. Cabanas-Holmen, "SEE Test Results for Maestro Microprocessor," in RADECS, 2012.

https://nepp.nasa.gov/DocUploads/C288941E-C4DF-486A-9ADD317D00A26BC3/07-118%20Irom_JPL%20Guideline%20for%20Ground%20Rad%20test.pdf

6/28/2019 | 61Los Alamos National Laboratory

Hardware Test Setups

• Basic parts:
– Test boards
– Monitoring internal state
– Monitoring functionality
– Monitoring test conditions

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7004596&tag=1

Test Boards
• There are a wide range of test boards

used to test microprocessors,
including:
– Evaluation boards,
– Application boards,
– Custom test boards, and
– Desktop/laptop computers.

• Every option has advantages and
disadvantages:
– Evaluation boards: inexpensive, but

limited interfaces and capabilities
– Application boards: full stack, but

complicated
– Desktop/laptop: availability and full

stack, but hard to test and complicated
– Custom: ideal, but expensive.

S. M. Guertin, B. Wie, M. K. Plante, A. Berkley , L. S. Walling, and M. Cabanas-
Holmen, "SEE Test Results for Maestro Microprocessor," in RADECS, 2012.

Monitoring Internal State

• Determines where faults are in the system
• Most commonly done through boundary scan:

– Most components have a boundary scan port
– Boundary scan provides access to some or all of the internal memory

• Joint Test Action Group (JTAG) standard is the most common
boundary scan
– JTAG implementations vary widely

• Some ARM components have Serial Wire Debug (SWD) capabilities
– The data rate is much faster than JTAG

• Can transfer the microprocessor’s state to a secondary computer
during the test: possibly need debugger hardware and/or software

6/28/2019 | 64Los Alamos National Laboratory

Monitoring Functionality
• Determines whether the output is

erroneous
– Software is outputting errors
– Microprocessor is hung or crashed

• In theory, a secondary computer is
monitoring for faulty operation

• In practice, detecting errors in real
time is not simple
– Detection process has to be fast
– Detecting errors in random inputs is

challenging
• Simplification of error detection:

– BIBO systems
– Self-checking test codes
– Analyze the data offline to find the

errors after the test (last resort)

hw: TMS570LS1224
test: qsort_no_ecc
mit: none
printing: 1
Array size: 2000
ver: 0.1
fac: LANSCE Aug 2018
start_time: 2018 Sep 04 06:38:35
end_time: 2018 Sep 04 06:48:35
count: 43884
LANSCE_conversion_factor: 21601
distance: 35.0
d:
0, 0
- i: 134231096

E: {9141: 949,}
- i: 134231088

E: {768: 512,}
10000, 2
- i: 134231096

E: {1592: 1593,1593: 1594,1594: 1595,1595: 1596,…
- i: 134231096

E: {1741: 9933,}
20000, 67

6/28/2019 | 65Los Alamos National Laboratory

Monitoring Functionality and Internal State Simultaneously

• Ideally want to correlate errors to faults simultaneously
• Right now, independent researchers have not been able to fully

correlate all of the faults with errors
• Full functionality monitoring is impractical for three reasons:

– Often the boundary scan ports have been disabled
– Transferring all the internal state in real-time to the test control computer

might not be possible, making real-time monitoring difficult
– Most microprocessor have hidden state, so a full accounting of the internal

state is not possible
• Most microprocessor characterization monitors the functionality only

6/28/2019 | 66Los Alamos National Laboratory

Test Control and Monitoring
• Test control and monitoring make the test.
• Test control provides the ability to interact with the test fixture to

change the test conditions:
– Resetting the test board when the test crashes or hangs,
– Loading, reloading, and changing test software,
– Changing inputs, and
– Changing power supply conditions.

• Test monitoring provides the ability to collect results from the test
fixture:
– Collecting outputs,
– Logging outputs to the hard drive,
– Determining functional errors,
– Monitoring power supply conditions, and
– Plotting results in real-time.

6/28/2019 | 67Los Alamos National Laboratory

Handling SEFIs

• Most microprocessors crash when exposed to radiation, which
complicates test control

• The test can be resurrected by:
– Reloading a program into the microprocessor,
– Issuing a reset to a power-on-reset pin,
– Power cycling, or
– A combination of these options.

• Good test control allows these commands to be issued easily (or
automatically), and quickly during the test.

Test Methodologies

Test Methodologies
• There are three basic test

methods:
– Static
– Semi-static
– Dynamic

• The differences depend on:
– Whether the part is clocked or not

clocked while the beam is on,
– Whether the microprocessor is

executing instructions or not in the
beam, and

– If the microprocessor is executing
instructions, whether the software
being executed is meant to provide
full or characteristic coverage.

Static Testing
• Commonly used for

cache/register tests in the last
decade
– Pro: Simple, great for

measuring SEUs in memory,
should be able to get end-to-
end memory coverage, no
interference from software or
OS

– Con: bad for measuring SETs,
unlike normal operating
conditions, unable to
discriminate multiple-cell upsets
(MCUs) from single-bit upsets,
might need boundary scan to
be implemented for the memory

Start

Initialize
test

Stop
clock

Turn on
beam

Wait

Turn off
beam

Start
clock

Log
results

Stop

Semi-static Testing
• Forms of semi-static testing have

become fairly standard in recent years
– Pro: Simple, good for SEUs in memory, can

be done in assembly, might not need JTAG,
more accurate accounting of behavior, able
to handle MCUs, beam will be on the entire
test

– Con: Might still not get SETs, needs to be
done in assembly for registers, susceptible
to crashes

• Irom notes for this particular register
test: “Note that this test method
assumes that the processor works
properly nearly all of the time during the
test. It will not work effectively unless
the error rate is relatively low and
dominated by register errors.”
– Likely works better as a cache test in

modern architectures F. Irom, "Guideline f or Ground Radiation Testing of Microprocessors in the Space
Radiation Env ironment," 2008.

Dynamic Testing
• Pros: capture full behavior of the system,

beam on during entire test, measure
complex operations, best option for
measuring SETs

• Cons: hard to distinguish/categorize
failure modes, crashes, full interference
from software and OS

• Dynamic testing is necessary.
– Determine the on-orbit behavior for the

microprocessor system
– Even if the flight software is not completed in

time to test, testing the operating system
with some reasonable software analog to
the flight software will prepare the designers
for satellite operations

Start

Initialize
test

Turn on
beam

Execute
test

Turn off
beam

Stop

The Devil Is in the Details

Prediction of the
untested application

Model of untested
application

Database of operation
cross sections

Test data from several
test codes/applications

This piece is
largely not well
defined at this

point. The
sensitivities of
the operations
is not enough.
We also need
to understand
the timing of
operations in

the application
and faults.

Testing Issues: Fault Simulation and Emulation

Fault Simulation and Emulation

• The part of this talk that is missing is a robust discussion of fault
emulation and simulation techniques
– Fault simulation methodologies model the fault’s behavior in the hardware,
– Fault emulation methodologies mimic the fault’s behavior in the hardware,
– Fault injection: where fault emulation and fault simulation can be used

interchangeably.
• Fault emulation has been enormously useful for FPGA testing:

– Better prepared for the actual radiation test
– Can test faults uniformly
– Can test on the bench

• So why not do more fault injection on microprocessors?

Timing, Timing, Timing!

• Microprocessors have very complex operations
– Not all sub-components are active at all times
– Resources like the caches and TLB are shared causing values and faults to

be overwritten, causing masking of faults
– All of these sub-components are working at MHz-GHz speeds

• The radiation effects community needs tools that mimic the radiation
environment, but this can be difficult
– Challenging to inject faults that are not on clock boundaries
– Challenging to inject faults into sub-components that are not well

understood or visible
– Challenging to validate tools

With These Challenges Should We Give Up?

• No.

• The community needs methods for:
– Slowing down tests so that we can see the propagation of a fault into an

error
– Determining how timing affects masking
– Providing non-radiation methods for exploring faults
– Predicting the behavior of untested applications. Even if we have to test

them later, at least you should be able to test the best version of the
application

• Let’s cover the current state of the art

Architectural Vulnerability Factors

• AVF is a simulation method for determining what part of the
architecture is important or not
– It is built on top of a model of the architecture
– It is heavily used by the manufacturers

• AVF can determine at the architectural level the timing in which a fault
is important

• After all, it is not just a matter of what you are doing but when you are
doing it
– An SEU after the last read has no consequence
– An overwritten SEU has no consequence

• AVF culls the part of the architecture not used from the cross section

S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,” in Int. Symp. Microarchitecture (MICRO-36), 2003, pp. 29–40.

Program Vulnerability Factors

• PVF is a simulation method for determining what part of the program
is important or not
– It is essentially an improvement of AVF that focuses on the program

• PVF is an important improvement, because the program determines a
less conservative estimate of what is being used in the architecture

• It also takes into account all of the issues with timing

• It could be that some combination of AVF and PVF can help us model
the untested applications so that we can translate from the test codes
to the untested application

V. Sridharan and D. R. Kaeli, “Eliminating microarchitectural dependency from architectural vulnerability,” in Proc.
15th Int. Symp. High-Perform. Comput. Architect. (HPCA-15), 2009, pp. 117–128.

Fault Emulation Through Code Modification
• The most common method of inserting faults is by modifying the code to

insert SEUs directly into the code or microprocessor
– This process has the advantages of changing areas of the computation that are

likely to trigger errors
– This process cannot usually get into the non-user areas of the microprocessor,

which makes it hard to determine how to scale the results
• Only of the early examples of this technique is the Code Emulated

Upsets (CEU)
• CEU inserts the fault through this process:

– Interrupting the software
– Saving the context
– Injects the fault directly into memory by XORing the SEU value
– Restoring the context
– Restarting the computation

• Most current code modification tools essentially follow the same process

R. Velazco, S. Rezgui, and R. Ecoffet, “Predicting error rate for microprocessor-based digital architectures through CEU
(code emulating upsets) injection,” IEEE Trans. Nucl. Sci., vol. 47, pp. 2405–2411, Dec. 2000.

Fault Emulation Through Boundary Scan

• Boundary scan ports, including the JTAG interface or the SWD debug
port, have also been used to insert faults directly into microprocessors
– This technique has the advantage of being able to insert faults through a

secondary mechanism that does not affect current computation
– This technique has the disadvantage of inserting all faults on a clock edge,

which does not mimic all radiation faults, and still might not be able to inject
into non-user areas

• The process is straightforward:
– Stop the microprocessor clock
– Using the boundary scan clock shift in the SEU
– Restart the microprocessor clock

• As a test of the test fixture, you can often do a “poor person” version
of this fault emulation technique using the debugger:
– Stop at a breakpoint
– Insert the fault through the memory viewer into a variable

Mitigating Microprocessors

Increasing Software Resilience

• Several years ago LANL was able to determine that modifications of
the software could mask the errors caused by SEUs and SETs
– Redundancy and majority voters are added to the program so that errors

can be detected and corrected
• Programs could operate functionally through the SEU without causing

computational errors or possibly crashing

DWCF Technique

• The Trikaya technique is based on spatial and temporal redundancy.
– Spatial redundancy: replicating the sub-routine’s input and output variables
– Temporal redundancy: replicating the execution of the mitigated sub-routine

• For microprocessors that are dominated by SEUs in the data
variables or SETs in the calculation, the redundancy should mask
SEUs and SETs

• If there are no faults, the replicated sub-routine is executed twice with
two independent data replicas
– Comparison between outputs detects errors (duplication with compare)
– If the two outputs do not match, then the sub-routine is executed a third time

with the third replica of the data variables and a voter corrects the error
(failover to TMR)

• Peripheral scrubbing is also added as part of the process to reduce
issues with SEUs in the peripherals.

Software Modifications

• We are currently focused on sub-
routine mitigation, including these
insertions:
– Replicated input and output variables;
– Comparison code;
– Majority voter code;
– Peripheral scrubbing code; and
– Code to trigger the DWCF algorithm

and peripheral scrubbing
• Issues with code structure are not

addressed when mitigating full sub-
routines

Automating Software Redundancy and Voter Insertion
• Automating the insertion of the redundant

code and variables; and the voters is ideal
– Can insert the extra code after the software

has been parsed and optimized
– Can avoid the inserted code being removed

during optimization
• The LLVM compiler supports these types

of modifications
– There this a bytecode representation of the

code that has been used extensively for
compiler extensions

– Can represent the bytecode as a data and
control flow graph

• LLVM supports nearly all modern
languages, so the automated tool can
support several languages

Limitations to the DWCF technique

• Latent faults:
– On average a third of all SEUs in

the replicated data variables will
affect the third replica

• MIUs
– Two upsets in multiple copies of

the same variable accumulate
before the first upset is corrected

Root Causes for Failures

• Reporting shows the variety of faults possible from the software codes
• Many faults are less extensive than previously thought
• Quicksort allow us to measure whether sorting a sorted array would

have a different probability of failure than sorting an unsorted array
– The algorithm does two forward sorts followed by two reverse sorts
– All four sorts have approximately the same number of errors
– The location of the SEU within the affected word (MSB, LSB) determines

the effect
– MSB: could affect entire array
– LSB: could affect a few values

Root Causes for Failures (2)

• Matrix multiply: similar results
– Each SEU could cause the resultant matrix to have an entire row or column

of faults, but only happens about half of the time
– Rest of SEUs occur in the resultant matrix :
– Resultant matrix is the same size as the two input matrices combined
– SEUs are equally likely in the output than the input
– Some cases where the SEU occurs during the calculation, causing partial

failures of a column or row in the resultant matrix
• The piFFT code:

– Malloc failures when the input variables are being instantiated on the stack
causes the code to crash

– The code is an iterative code: a number of tests did not converge

	Complications in the Integration of Commercial Microprocessors in Harsh Radiation Environments
	LANL’s 56 Years in Space
	…But We Also Have Giant Supercomputers
	…And Giant Particle Accelerators
	Here Is What We Have Learned From These Missions
	Outline
	The Case for Using Commercial Microprocessors in Harsh Radiation Environments
	The Rad Hard Market is Not Sleeping
	The Current Approach to Radiation-Hardened Compute is Inadequate
	Radiation-Hardened Compute is Four Generations Behind…Right Now…And Not Catching Up
	What’s the Catch?
	Three Ways to Destroy a Deployed System
	How Bad Could It Be?
	Why Is This Taking So Long?
	Preparing Commercial Microprocessors for Harsh Radiation Environments
	Qualification of Parts for Harsh Environments
	Taxonomy of Memory Failure Modes in Microprocessors
	Taxonomy of Logic Failure Modes in Microprocessors
	Single-Event Latchup (SEL)
	Issues in Testing Microprocessors and Open Questions
	The Foundational Questions:
	Evolution of Radiation Testing Microprocessors
	Benchmarking and Test Standards for Repeatable, Comparable Test Results
	Predicting the Unpredictable: Modeling Untested Codes
	Fault Injection Tools for Microprocessors
	Is There a Correct Way to Test Upper Caches?
	Measuring Failure Modes in Multi-core Microprocessors
	Measuring Failure Modes in Fault-Tolerant Circuitry
	Compilers and Interpreters
	Programming Languages
	Operating Systems
	File Systems
	Measuring the Effect of Faults in Software
	Algorithm Design
	Exception Handling
	Categorization of Faults
	Summary
	A Guide for the Perplexed
	The Most Perplexing of the Open Questions
	Backup Slides
	Another View of Executing of Instructions
	MSP430 Architecture
	Cortex A9 Architecture
	Caches
	Register File
	Pipeline Registers and Other Flip-Flops
	Potential Radiation-induced Failures in Mathematical Units/Logic
	Single-Event Upsets (SEUs)
	Potential Radiation-induced Failures in the Memory/Datapath
	Potential Radiation-induced Failures in Control Units
	Original Focus: Creating Benchmarks Tests for Mitigation Studies
	MSP430F2619 Radiation Test Results
	Zynq ARM Radiation Test Results
	Remaining Issue for the Original Benchmark: Inputs
	Issues with the Microprocessor Benchmark
	Pros and Cons of These Ideas
	What Is the Plan?
	The Basics of Characterizing Microprocessors
	Characterizing Microprocessors
	Microprocessor Test Standards
	Hardware Test Setups
	Test Boards
	Monitoring Internal State
	Monitoring Functionality
	Monitoring Functionality and Internal State Simultaneously
	Test Control and Monitoring
	Handling SEFIs
	Test Methodologies
	Test Methodologies
	Static Testing
	Semi-static Testing
	Dynamic Testing
	The Devil Is in the Details
	Testing Issues: Fault Simulation and Emulation
	Fault Simulation and Emulation
	Timing, Timing, Timing!
	With These Challenges Should We Give Up?
	Architectural Vulnerability Factors
	Program Vulnerability Factors
	Fault Emulation Through Code Modification
	Fault Emulation Through Boundary Scan
	Mitigating Microprocessors
	Increasing Software Resilience
	DWCF Technique
	Software Modifications
	Automating Software Redundancy and Voter Insertion
	Limitations to the DWCF technique
	Root Causes for Failures
	Root Causes for Failures (2)

