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LANL’s 56 Years in Space
• LANL operational space systems 

monitor the nuclear test ban treaties
– 1400 sensors, 400 instruments, 74 

satellites
• Here are some other things we’ve 

done in 56 years:
– Detected the first gamma-ray burst
– Collected 56 years of space weather 

data in the magnetosphere
– Used lasers to shoot rocks on Mars to 

learn that Mars once had water
– Flew the first Xilinx Virtex field-

programmable gate arrays (FPGAs) in 
space

• …And now we are trying to find 
sharks on Europa, Jupiter’s icy moon 
(…or radiation-resistant bacteria)

https://en.wikipedia.org/wiki/Van_Allen_radiation_belt#/
media/File:Van_Allen_radiation_belt.svg
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…But We Also Have Giant Supercomputers
• Our supercomputers are larger than 

our satellites by orders of magnitude
• From the early 2000s (130-150nm):

– The Q supercomputer had 24.0 
radiation-induced faults per week in the 
BTAG memory [1] 

– The Cibola Flight Experiment satellite 
had 3.5 radiation-induced faults per 
week in the FPGAs [2] 

• Turns out to be an old problem:
– We determined recently the first 

radiation-induced fault in occurred at 
LANL in a Cray-2 supercomputer

• But it is a current problem, too
– The designers and the programmers are 

adjusting to the reality that the nodes 
crash and hardware needs replacement

https://en.wikipedia.org/wiki/Cray#/media/File:Cray2.jpeg

[1] https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1545893
[2] https://dl.acm.org/citation.cfm?id=2629556

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1545893
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…And Giant Particle Accelerators
• We accelerate protons to 800 

MeV to smash into a tungsten 
plug to make neutrons

• Around the tungsten is a harsh 
radiation environment of neutrons 
and protons

• The entire system is surrounded 
in a scourge of low-energy 
neutrons and radio frequency 
emissions that make it a horrible 
environment for electronics, 
which are needed for diagnostic 
and beam control

https://en.wikipedia.org/wiki/Los_Alamos_Neutron_Science_Center#
/media/File:Los_Alamos_Neutron_Science_Center_01.jpg
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Here Is What We Have Learned From These Missions
• Science and national security concerns move at a rapid pace, and 

even satellites need to be flexible  
– While this fact seems obvious now, it was not obvious in 1998
– People yelled at us that we were “destroying space as we know it” by 

putting all of the sensor data through the FPGA
– In 2012 we proved that we were right – the FPGA would not destroy the 

data and increasing compute speeds 100x
– So maybe we did destroy space as it was known

• The supercomputers and particle accelerators are more accessible, 
but not necessarily easier to fix
– The accelerator is radioactive and a destructive failure means turning the 

system off
– The supercomputers are large, and destructive failures means humans 

tracking down and swapping out hardware
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Outline

• The case for using commercial microprocessors in harsh radiation 
environments

• What’s the catch?  It’s a challenge to test microprocessors!
– The old way of testing: time-consuming programming in assembly
– The new way of testing: high-level languages

• We are concerned about the results are getting, and I have 21 open 
questions for anyone looking for a project



The Case for Using Commercial Microprocessors in 
Harsh Radiation Environments

3/27/2019   |   7Los Alamos National Laboratory



3/27/2019   |   8Los Alamos National Laboratory

The Rad Hard Market is Not Sleeping

• In the 1970s, the 
market share for 
government and 
military was 1/3-
1/2

• It has been 
consistently <1% 
for 20 years

• The only 
economically 
feasible solution: 
fly cell phone 
hardware

Cumulative 
Annual Growth 
Rate (CAGR)

Rad hard 
market

https://semiengineering.com/foundry-challenges-in-2018/
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The Current Approach to Radiation-Hardened Compute 
is Inadequate
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Radiation-Hardened Compute is Four Generations 
Behind…Right Now…And Not Catching Up
• The BAE RAD750 is the most commonly used radiation-hardened 

microprocessor in space
– It is based on the Power PC 750, which was designed in 1997 and used as 

the original iMAC processor in 1998
– BAE recently released the RAD750 replacement, which is the RAD5545

• It is a 45nm 4-core microprocessor, which is four generations behind the state of 
the art

• It is better than all of its competitors, which are shown in the lower left corner of the 
previous graph but still worse than any current commercial microprocessor

• The dynamic tension:
– Radiation-hardened microprocessors are necessary for mission processing
– Radiation-hardened microprocessors are not fast enough for other types of 

processing



What’s the Catch?
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Three Ways to Destroy a Deployed System

• Total ionizing dose (TID): 
– Accumulation of ionizing radiation causes the 

transistors’ parametrics to prematurely age
• Displacement damage (DD):

– Accumulation of radiation destroys the 
transistors through knock-on effects

• Single-event effects (SEEs):
– An umbrella category of destructive and non-

destructive effects caused by single particles

Displacement Cascade Damage in Silicon 
["Space Radiation Effects on 
Microelectronics," NASA Jet Propulsion 
Laboratory]

To insert commercial microprocessors into 
satellites and accelerators, need to determine 

how radiation affects the part.

http://parts.jpl.nasa.gov/docs/Radcrs_Final.pdf
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How Bad Could It Be?
• TID and SEE are known issues with microprocessors that could cause a 

destructive failure to the system
– While we can swap out parts in the supercomputer and the accelerator, you 

might not want to
– As for satellites…good luck explaining why your hand-picked compute system 

on your $100M artisanal payload that took a decade to design is dead
• Even non-destructive failures are messy in microprocessors

– We were able to determine, quantify, and mitigate most of the major non-
destructive failure modes in FPGAs in seven years with a team of 20

– We are still documenting and quantifying the microprocessor problems, and only 
have a single solution after a decade of research
• Bad News: there are really only about fifteen people working on this problem worldwide
• Good News: for the last five years all of us get together twice a month to discuss our 

progress
• Even Better News: we’re satellite people, so we are used to being patient
• Best News: we have at least 21 open questions for grad students to pursue
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Why Is This Taking So Long?

http://www.spindrift-racing.com/jules-verne/drupal/en/out-of-the-classroom/sfs-otc-icebergs-en

What we know 
about the actual 
microprocessor 

architecture

The information 
deficit: what we 

do not know 
about that is 

going to affect 
the test

Manufacturers 
unwilling to help



Preparing Commercial Microprocessors for Harsh 
Radiation Environments
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Qualification of Parts for Harsh Environments
• The part is characterized for how it works in the expected radiation environment
• The idea is to test additively under the assumption that the performance of the full 

microprocessor system can be partitioned into sub-systems
– Memory
– Logic
– Control
– Operating System
– System Software

• This assumption is arguably incorrect:
– There is no known method for deconstructing or partitioning a system into tractable sub-

systems
– There is no known method of modeling microprocessor systems
– There is no known method for predicting untested microprocessor systems or software 

using test results from known microprocessors or software
• On the other hand, this type of testing is the only known method for testing 

complex systems so until someone develops a better methodology….

3/27/2019   |   16Los Alamos National Laboratory
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Taxonomy of Memory Failure Modes in Microprocessors

H. Quinn, et al, "Software resilience and the effectiveness of software mitigation in microcontrollers", TNS., vol. 62, no. 6, pp. 2532-2538, Dec. 2015.
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Taxonomy of Logic Failure Modes in Microprocessors
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Single-Event Latchup (SEL)
• Can naturally occur in any CMOS 

circuits, due to the parasitic thyristors
in the layout
– Cannot avoid inserting the thyristor
– Resistors can keep the thyristor from 

turning on, but not used anymore
• Once ON the thyristor can experience 

snap back and try to pull an infinite 
current.  

• Many microprocessors have single-
event latchup (SEL) sensitivities
– Low-end microcontrollers often very 

sensitive to SEL
– Most of the time we are weeding out 

these parts, and not trying to remediate

http://www.ece.drexel.edu/courses/ECE-E431/latch-up/latch-up.html



Issues in Testing Microprocessors and Open 
Questions

3/27/2019   |   20Los Alamos National Laboratory
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The Foundational Questions: 

1. What is the underlying sensitivity to radiation in the hardware?
– Are we testing correctly?
– Could modeling help us?

2. How does software translate hardware faults into silent data 
corruption and crashes?

– It is all how the software uses the architecture? 
– Do the unused parts of the architecture affect either silent data corruption or 

crashes?
– How does the full system stack affect errors?
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Evolution of Radiation Testing Microprocessors

Unclocked
Tests of Single 

Microprocessors 
in Assembly

Clocked but 
Simple Tests of 

Single 
Microprocessors 
in Embedded C

Tests of 
Instrumented 

Supercomputers

Full System 
Tests of Single 

Microprocessors 
with Embedded 

C

Clocked but 
Simple Tests of 

Multi-core 
Microrocessors

in Assembly

Full System 
Tests of Single 
and Multi-core 

Microprocessors 
with Full 

Operating 
Systems and C

Did this rapid evolution of testing methodology improve the quality of test results?
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Benchmarking and Test Standards for Repeatable, 
Comparable Test Results
• We have been working toward standardized test circuits and codes 

for testing mitigation for awhile: FPGA benchmark done, software 
benchmark limping along

• Can we develop a standard set of codes for characterizing all 
microprocessors or groups of microprocessors?



Predicting the Unpredictable: Modeling Untested Codes
• How do we accurately predict 

untested codes using information 
about the hardware sensitivity?

• Additive testing
– Already discussed

• Use machine learning to extract 
information about individual 
operations from existing codes
– Determine the cross section for 

different applications
– Determine which operations are used 

via profiling
– Use machine learning to extract cross 

sections for different operations
• And then a miracle occurs on the 

modeling side…

Prediction of the 
untested application

Model of untested 
application 

Database of operation 
cross sections

Test data from several 
test codes/applications
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Fault Injection Tools for Microprocessors
• All the testing is occurring in the beam right now
• The community of microprocessor testers (all fifteen of us) needs a 

good fault injection tool that allows us to insert faults in a manner that 
is:
– Fast
– Uniform
– Validated

• The problems:
– The information deficient affects the ability to do complete fault injection
– The lack of fault categorization affects the validity of doing fault-type-specific 

fault injection
• If you have a good idea on how to design one, we will help you 

validate it!
– We also promise to love you for the rest of your life

3/27/2019   |   25Los Alamos National Laboratory
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Is There a Correct Way to Test Upper Caches?
• Data moves from upper to lower 

caches, lower caches to registers, 
and registers to ALU
– Even if the caches are turned off, the 

data will move through this datapath.  
• Data are overwritten constantly, instead 

of being cached
• If the tests gradually build from 

registers only to registers and L1 
cache and so on, it is possible to 
disentangle the results?

• Maybe best to mimic the system 
software’s memory usage to 
determine whether there is an issue 
with how data movement occurs in 
the flight software?

http://hardware89.blogspot.com/2015/11/hardware-prefetcher.html



Measuring Failure Modes in Multi-core Microprocessors

• Multi-core microprocessors have
– Shared failure modes
– Intra-core interferences 

• What knowledge from single-core 
tests is useful in multi-core 
systems?

• Need work on test standards

Stev en M. Guertin, Brian Wie, Michael K. Plante, Antwong Berkley, Lonnie S. 
Walling, and Manuel Cabanas-Holmen. SEE Test Results for Maestro 
Microprocessor.  RADECS 2012.
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Measuring Failure Modes in Fault-Tolerant Circuitry

• A fault-tolerant circuit should be 
tested to assure it is more fault 
tolerant than the unmitigated 
circuit
– Corrects increased fault rate
– Corrects the types of faults that 

occur in the circuit
– Corrects the deployed fault rate

• There are a lot of details that have 
to be right to make certain the 
mitigation technique will work
– Everyone gets it wrong occasionally, 

and testing keeps everyone honest

S. M. Guertin, "SOC SEE Test Guideline Development," presented at the Single-Event 
Effects Symposium, San Deigo, CA, 2013.

3/27/2019   |   28Los Alamos National Laboratory
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Compilers and Interpreters
• Side effect of testing software: compilers 

and interpreters
• Compilers have a first order effect on the 

test executable.  
– Optimization steps can remove and reorder 

code: make certain the test, the mitigation or 
the checker are not removed

– The effect of compiler optimization on the 
code’s resilience needs quantification

– The effect of different compilers and compiler 
versions needs quantification

– The effect of how the compiler uses the 
architecture needs quantification

– The difference between assembly and 
compiled code needs quantification

• The effect of interpreters needs 
quantification and study
– Guidelines are needed for use during tests
– Older test protocols might need modification

https://courses.cs.vt.edu/~cs1104/Compilers/Compilers.020.html
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Programming Languages
• Historically: assembly
• Currently: C, CUDA, and OpenCL

– C is a luxury: easier to develop and 
maintain than assembly

– Flight software development is likely also 
done in high-level languages, so the effect 
of the programming language is important

• The programming languages affect 
compilers and interpreters
– Might need to be studied alongside the 

programming language
• Language differences is not 

understood and needs quantification
– The effect of C vs. assembly needs 

quantification
– Similar comparison between the GPU 

programing languages need quantification
– The effect of the programming language 

choice on system stability, vulnerability, 
and robustness needs quantification

https://sdtimes.com/msft/sd-times-news-digest-redmonks-
programming-rankings-vs-code-1-21-apache-cordova-6-0/

Questions vs. Projects
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Operating Systems
• The operating system as “big software”

– Sits between the test code and the hardware
– Controls what executes when

• Widely believed that the operating system 
sets the crash rate for the system
– Farokh Irom: “The hang rate was so high that 

it was not possible to determine the error rate 
for registers in those tests”

– Mike Wirthlin (BYU): “The OS increases the 
crashing by 10x”

– LANL research: 100,000x increase in crashing 
• All operating systems are problematic

– A solution is needed so we can stabilize 
deployed system

– BYU is looking at doing a small, radiation-
resistant OS using their automated software 
mitigation tool (COAST)

https://pbalasundar.wordpress.com/2012/06/11/introduction-to-operating-systems/

F. Irom, "Guideline f or Ground Radiation Testing of Microprocessors in the Space 
Radiation Env ironment," 2008.
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File Systems
• A sub-problem with operating systems

– LANL has experienced a number of problems 
with file systems during tests, because we did 
not know that the ancillary hardware should 
be protected from radiation during tests

– We now have the same issues in our 
cubesats, which are our first satellites with file 
systems

– Other testers are now seeing at LANSCE
• Eventually figured out radiation changes 

files open in memory
– Operating system writes out the changed file 

to permanent storage
– Once enough critical files are changed, the 

secondary machine will crash and not reboot 
properly

– Can fix by reformatting the hard drive, but 
loss of data and time is problematic

• The problem does not need quantification, 
but it does need a solution

http://www.shreddersandshredding.net/heavy-shredders.html



Measuring the Effect of Faults in Software

• The software sensitivity is 
dependent on how the logic and 
memory are used: 
– The sensitivity from memory is usually

smaller than the full architecture
– Currently no way to compare the 

sensitivity of the full architecture 
versus how software uses it

• Need a method to translate the sub-
component testing into knowledge 
about the software sensitivity F. Irom, "Guideline f or Ground Radiation Testing of Microprocessors in the Space 

Radiation Env ironment," 2008.
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Algorithm Design
• Algorithm performance: 

– Faster algorithms are exposed to less 
radiation per execution, therefore fewer 
errors.  Right?  Not always.  

• Need to determine what makes resilient 
algorithms: 
– Is where the model of how the architecture 

is used comes in?
• In the mid-2000s: iterative algorithms are 

resilient!
– Assumption: iterative algorithms keep 

running until the algorithm converged
– Assumption: recursion is bad
– Test data: faults cause issues with 

convergence
– In the future, lets agree on this principle: 

In god we trust, all others must bring 
data

[H. Quinn, T. Fairbanks, J. L. Tripp, and A. Manuzzato, "The Reliability of Software Algorithms and 
Software-Based Mitigation Techniques in Digital Signal Processors," presented at the NSREC, 2013.]

Correct Slow But 
Correct

Broken But 
Fixable

Huh?
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Exception Handling
• Many researchers believe that one 

of the causes underlying crashes is 
unhandled exceptions
– Error correction codes cause some 

crashes, due to uncorrectable faults
– JPL has been able to catch exceptions 

and roll back the fault before the 
crash…but it only works in assembly

• The effect of exception handling on 
system resilience needs 
quantification
– Exception handling in high-level 

languages need quantification
– Better exception handling in the 

operating system is needed
http://tutorials.jenkov.com/exception-handling-strategies/overview.htm
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Categorization of Faults

• The percentage of faults that are from data vs. logic vs. control have 
not been quantized

• Assumption: the breakdown changes with software
– Does Quicksort have more control flow errors due to context switching?
– Does Advanced Encryption Standard (AES) have more logic faults because 

it takes very little memory and does a lot of bitwise math?
– Or is it all just memory faults, because there is so much memory?
– Worst thought ever: how many faults are caused by unused portions of the 

architecture?



Summary

Los Alamos National Laboratory 3/27/2019   |   37



A Guide for the Perplexed

• It’s a challenge to test microprocessors!
• We had an older way of testing in assembly, but it is time-consuming 

to design tests and hard to scale results
• We have newer ways to test using higher level languages, but we are 

still concerned about the results are getting
• There is a benchmark for testing mitigated codes, but that might not 

be enough
– The benchmark group is looking at new methods of testing: you should join 

the effort!
– Take one of our 21 open questions.  We cannot answer all of them.

3/27/2019   |   38Los Alamos National Laboratory



The Most Perplexing of the Open Questions
• Compilers and interpreters: (1) How does compiler optimization affect the code?  (2) 

How do different compilers and compiler versions affect the code?  (3) What is the 
difference between assembly and compiled code?

• Programming languages: (4) Does the language matter?
• Operating system: (5) Is it just large software?  (6)  Does it make software crash more 

or less frequent?  (7)  Are all operating systems equal? (8) Can we design a better 
operating system?

• File systems: (9) Can we design a robust file system that does not lose or corrupt your 
files?

• Algorithm design: (10) Does the actual algorithm matter?  (11) Does the design of the 
algorithm matter?  (12) Are iterative algorithms better?  (13) Are recursive algorithms 
worse?  

• Exception handling: (14) Is exception handling in high-level languages?  (15) Can we 
build a universal exception handler as a middleware?

• Categorization of faults: (16) Can we predict the percentage of data vs. logic vs. control 
faults?

• Testing: (17) Is there a way to standardize characterization of microprocessors?  (18) Is 
there a better way to test than additively?  (19) Is there a way to determine if we are 
testing correctly?

• Modeling: (20) Is there a way to model untested systems using tested systems?
• Fault injection: (21) Is it really feasible?

3/27/2019   |   39Los Alamos National Laboratory



Backup Slides



Another View of Executing of Instructions

From Joel Emer’s Computer Architecture Slides:
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/
6-823-computer-system-architecture-fall-2005/lecture-notes/l15_micro_evlutn.pdf

Start and 
end in 

memory

Control 
operations

Needed for 
OOO only

ALU 
operation

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/


MSP430 Architecture

http://www.ti.com/product/MSP430F2619

Several 
peripherals 

with memory 
mapped 

functionality

Instruction 
cache

Data 
cache



Cortex A9 Architecture

http://www.embeddedinsights.com/epd/arm/arm-cortex-a9.php

Multiple cores with separate 
or shared caches

Logic for handling cache 
coherence
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Caches

• Most microprocessors have on-chip managed caches, or unmanaged 
static random access memory (SRAM) blocks. 

• Caches for general-purpose microprocessors: 
– Stage the data variables and instructions for quick execution
– Can include multiple levels of cache
– The control circuitry around a managed cache is immense

• Unmanaged SRAM for microcontrollers:
– Compiler and the linker determine where memory values are stored
– Memory is not staged for computation
– Less control circuitry
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Register File
• The set of memory closest to the ALU in a microprocessor

– The fastest to access due to cell design and locality
– The design of the memory cell is often the same, but functionality differs

• Two types of main registers: general-purpose registers for integers, and 
floating-point registers for floating point
– These registers store 

• Input values before processing
• Output data before moving back into the cache and permanent memory
• Branch/jump location before the program moves

– Register assignments determined by the machine code
• The special-purpose registers store the program state

– The program counter stores the location of the next instruction to be executed  
– The instruction register stores the instruction being executed
– The accumulator register stores the output of the ALU before it is stored in a 

general-purpose register
– These registers are not part of the user-defined memory and are controlled by 

the microprocessor during operation of the program



6/28/2019 |   46Los Alamos National Laboratory

Pipeline Registers and Other Flip-Flops
• Pipeline registers is the most 

common other form of memory:
– Break the execution phases of the 

microprocessor into distinct phases 
(instruction fetch and decode)

– Adders and multipliers can have 
registers for pipelining

• In both cases the registers play the 
same role: store the intermediate of 
the calculation so that the inputs can 
be changed every clock cycle

• The memory cell design for all of 
these registers is a latch design. 

• Microprocessor could have 10-20 
pipeline stages 
– Pipelining registers are used 

throughout the architecture, including 
the control logic

https://en.wikipedia.org/wiki/Computer_architecture
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Potential Radiation-induced Failures in Mathematical Units/Logic

• The second largest set of units are 
mathematical operations
– ALU/FPU,
– Combinational logic

• Logic units are sensitive to single-
event transients (SETs) in 
combinational circuitry, and single-
event upsets (SEUs) in the 
pipelining registers

• SETs are the basis of all other 
SEEs
– SETs have to be separated from 

SEUs by frequency
– Also the microprocessor has to be 

operating to measure SETs at all
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7004596&tag=1



Single-Event Upsets (SEUs)

• An SEU is essentially an SET 
that is immediately latched

• The most common design for 
static memory is a cross-
coupled set of inverters:
– An SET across one inverter only 

needs to last long enough for the 
second inverter to change its 
output value

– Once the second inverter 
changes, the SET will self-refresh 
until overwritten

https://en.w ikipedia.org/wiki/Static_random-
access_memory#/media/File:SRAM_Cell_(6_Transistors).svg



Potential Radiation-induced Failures in the Memory/Datapath

• Microprocessor memory units abound:
– Managed caches or static memory,
– Register file,
– Pipeline registers,
– Buffers, and
– Flip flops.

• Memory is sensitive to SEUs
– An SEU is essentially an SET that is immediately 

latched by the memory structure
– An SET across one inverter only needs to last long 

enough for the second inverter to change its output value
– Once the second inverter changes, the SET will self-

refresh until overwritten
• The total memory in a general-purpose 

processor (GPP) or graphics processing unit 
(GPU) is immense
– SEUs in memory dominant error rate
– Failure modes from SEUs are not only confined 

to changes in data variables

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7348804

https://en.wikipedia.org/wiki/Static_random-
access_memory #/media/File:SRAM_Cell_(6
_Transistors).sv g
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Potential Radiation-induced Failures in Control Units
• The control units are small, but the effect is 

immense, because they provide both timing 
and control signals to the microprocessor
– Precise timing of registers being loaded and 

stored; 
– Instructions being reordered and executed; 
– Transferring data into and out caches; 
– Determining whether a branch is taken or not; and 
– Clearing out the pipeline registers when a branch 

is taken. 
• All of the faults in these circuits are 

generically categorized as single-event 
functional interrupts (SEFIs).  
– SEFIs are caused by SEUs or SETs in control 

circuitry of a component
– Components are not “self-aware” and usually 

need external components to detect and correct 
SEFI states

• Problems
– Very little documentation on control logic
– Very difficult to observe failures in these circuits

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7004596&tag=1



Original Focus: Creating Benchmarks Tests for 
Mitigation Studies
• The number of mitigation methods for FPGAs and microprocessors 

has been increasing rapidly since 2000
– Need a method for comparing all of the mitigation methods
– Need metrics to determine differences between mitigation methods

• FPGA benchmark: ITC’99
• Microprocessor benchmark:

– AES
– Coremark
– LANL Cache Test
– piFFT
– Matrix Multiply
– Quicksort



MSP430F2619 Radiation Test Results

H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp and G. Duran, "Robust Duplication With 
Comparison Methods in Microcontrollers," in IEEE Transactions on Nuclear Science, 
vol. 64, no. 1, pp. 338-345, Jan. 2017.



Zynq ARM Radiation Test Results

H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp and G. Duran, "Robust Duplication With 
Comparison Methods in Microcontrollers," in IEEE Transactions on Nuclear Science, 
vol. 64, no. 1, pp. 338-345, Jan. 2017.



Remaining Issue for the Original Benchmark: Inputs

• It is clear that some of the codes are very sensitive to input variations
• Matrix Multiply can mask SEUs in the inputs by multiplying by zeros –

you can make Matrix Multiply appear “harder” by multiplying by lots of 
zeros
– We’re testing with all zeros, all ones, and random numbers to assess how 

much the cross section changes based on inputs
• Qsort can mask problems with the sorting code by sorting arrays with 

a widely varying set of values:
– For example, an input array of (0000, 1000, 2000, 3000, 4000) all SEUs in 

the lowest three nibbles will not affect the sort
– Sorting random numbers often creates an array of numbers with too much 

variation
– Sorting the input array of (0, 1, 2, 3, 4) is unrealistic
– We’re trying a combination of both sequential and random numbers



Issues with the Microprocessor Benchmark
• We have achieved our goals:

– Good for comparing results across architectures
– Good for comparing results across mitigation techniques
– Good for measuring results on common algorithms

• Besides the LANL Cache test, it was not designed for determining the 
basic characteristics of the microprocessor
– It is, in fact, a bad benchmark for characterizing microprocessors
– It cannot predict the cross section other codes
– In fact, we specifically avoided this originally
– Most benchmark codes are also very memory heavy, making it only good 

for predicting memory cross sections
• There is pressure inside and outside of the benchmark group to add 

codes for characterizing the microprocessor to predict how other 
codes behave in radiation environments



Pros and Cons of These Ideas

Operations
• Pros:

– Closer to what we are doing now

• Cons:
– What we are doing right now is not helpful
– Might not be able to instrument all of operations
– Likely a lot of assembly
– Hard to disambiguate SEUs in cache
– Might not be predictive for more complex systems

Machine Learning
• Pros:

– Not the same method we have been 
trying for a decade

– Might be more predictive for complex 
systems

• Cons:
– Not completely certain how this will 

work
– Can we use the data we already 

have?  Do not know.
– Will we need to test a lot of codes?  

Do not know.



What Is the Plan?

• Operations
• Heather is designing micro-

benchmarks that focus on 
reducing memory access and 
narrowing the focus to single 
operations:
– Multiply
– Add 
– Divide

• Looking to see if we can port the 
LANL Cache test into a TLB Test

Machine Learning
• Paolo and Steve are collecting 

information on a set of 
applications on a specific 
architecture

• The test data are used to create a 
model to estimate the FIT and 
SDC propagation behavior for 
untested applications 



The Basics of Characterizing Microprocessors



Characterizing Microprocessors
• Characterizing microprocessors 

often focuses on testing:
– Input/output data, 
– Multiple levels of memory, 
– Multiple processing cores, 
– Multiple processing modes, and
– Peripherals.

• To fully characterize a 
microprocessor it is necessary to 
test all of these different circuits  

• Testing focuses on hardware, but 
software and operating systems 
affect how faults present in the 
system, and determine how faults 
turn into errors

F. Irom, "Guideline f or Ground Radiation Testing of Microprocessors in the Space 
Radiation Env ironment," 2008.



Microprocessor Test Standards

• The Jet Propulsion Laboratory (JPL) Microprocessor Test Guideline 
recommends testing:
– Registers
– Cache
– Flight software

• The JPL System-on-a-chip (SOC) Test Guideline recommends 
testing:
– Peripherals
– Fault-tolerance circuitry
– Radiation-hardened circuitry

[1] https://nepp.nasa.gov/DocUploads/C288941E-C4DF-486A-9ADD317D00A26BC3/07-118%20Irom_JPL%20Guideline%20for%20Ground%20Rad%20test.pdf
[2] S. M. Guertin, B. Wie, M. K. Plante, A. Berkley, L. S. Walling, and M. Cabanas-Holmen, "SEE Test Results for Maestro Microprocessor," in RADECS, 2012.

https://nepp.nasa.gov/DocUploads/C288941E-C4DF-486A-9ADD317D00A26BC3/07-118%20Irom_JPL%20Guideline%20for%20Ground%20Rad%20test.pdf
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Hardware Test Setups

• Basic parts:
– Test boards
– Monitoring internal state
– Monitoring functionality
– Monitoring test conditions

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7004596&tag=1



Test Boards
• There are a wide range of test boards 

used to test microprocessors, 
including:
– Evaluation boards,
– Application boards,
– Custom test boards, and
– Desktop/laptop computers.

• Every option has advantages and 
disadvantages:
– Evaluation boards: inexpensive, but 

limited interfaces and capabilities
– Application boards: full stack, but 

complicated  
– Desktop/laptop: availability and full 

stack, but hard to test and complicated
– Custom: ideal, but expensive.

S. M. Guertin, B. Wie, M. K. Plante, A. Berkley , L. S. Walling, and M. Cabanas-
Holmen, "SEE Test Results for Maestro Microprocessor," in RADECS, 2012.



Monitoring Internal State

• Determines where faults are in the system
• Most commonly done through boundary scan:

– Most components have a boundary scan port
– Boundary scan provides access to some or all of the internal memory

• Joint Test Action Group (JTAG) standard is the most common 
boundary scan
– JTAG implementations vary widely

• Some ARM components have Serial Wire Debug (SWD) capabilities
– The data rate is much faster than JTAG

• Can transfer the microprocessor’s state to a secondary computer 
during the test: possibly need debugger hardware and/or software
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Monitoring Functionality
• Determines whether the output is 

erroneous
– Software is outputting errors
– Microprocessor is hung or crashed

• In theory, a secondary computer is 
monitoring for faulty operation

• In practice, detecting errors in real 
time is not simple  
– Detection process has to be fast
– Detecting errors in random inputs is 

challenging
• Simplification of error detection:

– BIBO systems
– Self-checking test codes
– Analyze the data offline to find the 

errors after the test (last resort)

---
hw: TMS570LS1224
test: qsort_no_ecc
mit: none
printing: 1
Array size: 2000
ver: 0.1
fac: LANSCE Aug 2018
start_time: 2018 Sep 04 06:38:35
end_time: 2018 Sep 04 06:48:35
count: 43884
LANSCE_conversion_factor: 21601
distance: 35.0
d:
# 0, 0
- i: 134231096

E: {9141: 949,}
- i: 134231088

E: {768: 512,}
# 10000, 2
- i: 134231096

E: {1592: 1593,1593: 1594,1594: 1595,1595: 1596,…
- i: 134231096

E: {1741: 9933,}
# 20000, 67
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Monitoring Functionality and Internal State Simultaneously

• Ideally want to correlate errors to faults simultaneously
• Right now, independent researchers have not been able to fully 

correlate all of the faults with errors
• Full functionality monitoring is impractical for three reasons:

– Often the boundary scan ports have been disabled
– Transferring all the internal state in real-time to the test control computer 

might not be possible, making real-time monitoring difficult
– Most microprocessor have hidden state, so a full accounting of the internal 

state is not possible
• Most microprocessor characterization monitors the functionality only
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Test Control and Monitoring
• Test control and monitoring make the test.  
• Test control provides the ability to interact with the test fixture to 

change the test conditions:
– Resetting the test board when the test crashes or hangs,
– Loading, reloading, and changing test software,
– Changing inputs, and 
– Changing power supply conditions.

• Test monitoring provides the ability to collect results from the test 
fixture:
– Collecting outputs,
– Logging outputs to the hard drive,
– Determining functional errors, 
– Monitoring power supply conditions, and
– Plotting results in real-time.
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Handling SEFIs

• Most microprocessors crash when exposed to radiation, which 
complicates test control  

• The test can be resurrected by:
– Reloading a program into the microprocessor, 
– Issuing a reset to a power-on-reset pin, 
– Power cycling, or 
– A combination of these options.  

• Good test control allows these commands to be issued easily (or 
automatically), and quickly during the test.  



Test Methodologies



Test Methodologies
• There are three basic test 

methods:
– Static
– Semi-static
– Dynamic

• The differences depend on:
– Whether the part is clocked or not 

clocked while the beam is on, 
– Whether the microprocessor is 

executing instructions or not in the 
beam, and

– If the microprocessor is executing 
instructions, whether the software 
being executed is meant to provide 
full or characteristic coverage.



Static Testing
• Commonly used for 

cache/register tests in the last 
decade
– Pro: Simple, great for 

measuring SEUs in memory, 
should be able to get end-to-
end memory coverage, no 
interference from software or 
OS

– Con: bad for measuring SETs, 
unlike normal operating 
conditions, unable to 
discriminate multiple-cell upsets 
(MCUs) from single-bit upsets, 
might need boundary scan to 
be implemented for the memory

Start

Initialize 
test

Stop 
clock

Turn on 
beam

Wait

Turn off 
beam

Start 
clock

Log 
results

Stop



Semi-static Testing
• Forms of semi-static testing have 

become fairly standard in recent years
– Pro: Simple, good for SEUs in memory, can 

be done in assembly, might not need JTAG, 
more accurate accounting of behavior, able 
to handle MCUs, beam will be on the entire 
test

– Con: Might still not get SETs, needs to be 
done in assembly for registers, susceptible 
to crashes

• Irom notes for this particular register 
test: “Note that this test method 
assumes that the processor works 
properly nearly all of the time during the 
test. It will not work effectively unless 
the error rate is relatively low and 
dominated by register errors.”
– Likely works better as a cache test in 

modern architectures F. Irom, "Guideline f or Ground Radiation Testing of Microprocessors in the Space 
Radiation Env ironment," 2008.



Dynamic Testing
• Pros: capture full behavior of the system, 

beam on during entire test, measure 
complex operations, best option for 
measuring SETs

• Cons: hard to distinguish/categorize 
failure modes, crashes, full interference 
from software and  OS

• Dynamic testing is necessary.  
– Determine the on-orbit behavior for the 

microprocessor system
– Even if the flight software is not completed in 

time to test, testing the operating system 
with some reasonable software analog to 
the flight software will prepare the designers 
for satellite operations

Start

Initialize 
test

Turn on 
beam

Execute 
test

Turn off 
beam

Stop



The Devil Is in the Details

Prediction of the 
untested application

Model of untested 
application 

Database of operation 
cross sections

Test data from several 
test codes/applications

This piece is 
largely not well 
defined at this 

point.  The 
sensitivities of 
the operations 
is not enough.  
We also need 
to understand 
the timing of 
operations in 

the application 
and faults.



Testing Issues: Fault Simulation and Emulation



Fault Simulation and Emulation

• The part of this talk that is missing is a robust discussion of fault 
emulation and simulation techniques
– Fault simulation methodologies model the fault’s behavior in the hardware,
– Fault emulation methodologies mimic the fault’s behavior in the hardware,
– Fault injection: where fault emulation and fault simulation can be used 

interchangeably.
• Fault emulation has been enormously useful for FPGA testing:

– Better prepared for the actual radiation test
– Can test faults uniformly
– Can test on the bench

• So why not do more fault injection on microprocessors?



Timing, Timing, Timing!

• Microprocessors have very complex operations
– Not all sub-components are active at all times
– Resources like the caches and TLB are shared causing values and faults to 

be overwritten, causing masking of faults
– All of these sub-components are working at MHz-GHz speeds

• The radiation effects community needs tools that mimic the radiation 
environment, but this can be difficult
– Challenging to inject faults that are not on clock boundaries
– Challenging to inject faults into sub-components that are not well 

understood or visible
– Challenging to validate tools



With These Challenges Should We Give Up?

• No.  

• The community needs methods for:
– Slowing down tests so that we can see the propagation of a fault into an 

error
– Determining how timing affects masking
– Providing non-radiation methods for exploring faults
– Predicting the behavior of untested applications.  Even if we have to test 

them later, at least you should be able to test the best version of the 
application

• Let’s cover the current state of the art



Architectural Vulnerability Factors

• AVF is a simulation method for determining what part of the 
architecture is important or not 
– It is built on top of a model of the architecture
– It is heavily used by the manufacturers

• AVF can determine at the architectural level the timing in which a fault 
is important

• After all, it is not just a matter of what you are doing but when you are 
doing it
– An SEU after the last read has no consequence
– An overwritten SEU has no consequence

• AVF culls the part of the architecture not used from the cross section

S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,” in Int. Symp. Microarchitecture (MICRO-36), 2003, pp. 29–40.



Program Vulnerability Factors

• PVF is a simulation method for determining what part of the program 
is important or not
– It is essentially an improvement of AVF that focuses on the program

• PVF is an important improvement, because the program determines a 
less conservative estimate of what is being used in the architecture

• It also takes into account all of the issues with timing

• It could be that some combination of AVF and PVF can help us model 
the untested applications so that we can translate from the test codes 
to the untested application

V. Sridharan and D. R. Kaeli, “Eliminating microarchitectural dependency from architectural vulnerability,” in Proc. 
15th Int. Symp. High-Perform. Comput. Architect. (HPCA-15), 2009, pp. 117–128.



Fault Emulation Through Code Modification
• The most common method of inserting faults is by modifying the code to 

insert SEUs directly into the code or microprocessor
– This process has the advantages of changing areas of the computation that are 

likely to trigger errors
– This process cannot usually get into the non-user areas of the microprocessor, 

which makes it hard to determine how to scale the results
• Only of the early examples of this technique is the Code Emulated 

Upsets (CEU)
• CEU inserts the fault through this process:

– Interrupting the software
– Saving the context
– Injects the fault directly into memory by XORing the SEU value
– Restoring the context
– Restarting the computation

• Most current code modification tools essentially follow the same process

R. Velazco, S. Rezgui, and R. Ecoffet, “Predicting error rate for microprocessor-based digital architectures through CEU 
(code emulating upsets) injection,” IEEE Trans. Nucl. Sci., vol. 47, pp. 2405–2411, Dec. 2000.



Fault Emulation Through Boundary Scan

• Boundary scan ports, including the JTAG interface or the SWD debug 
port, have also been used to insert faults directly into microprocessors
– This technique has the advantage of being able to insert faults through a 

secondary mechanism that does not affect current computation
– This technique has the disadvantage of inserting all faults on a clock edge, 

which does not mimic all radiation faults, and still might not be able to inject 
into non-user areas

• The process is straightforward:
– Stop the microprocessor clock
– Using the boundary scan clock shift in the SEU
– Restart the microprocessor clock

• As a test of the test fixture, you can often do a “poor person” version 
of this fault emulation technique using the debugger:
– Stop at a breakpoint 
– Insert the fault through the memory viewer into a variable



Mitigating Microprocessors



Increasing Software Resilience

• Several years ago LANL was able to determine that modifications of 
the software could mask the errors caused by SEUs and SETs
– Redundancy and majority voters are added to the program so that errors 

can be detected and corrected
• Programs could operate functionally through the SEU without causing 

computational errors or possibly crashing



DWCF Technique

• The Trikaya technique is based on spatial and temporal redundancy.
– Spatial redundancy: replicating the sub-routine’s input and output variables
– Temporal redundancy: replicating the execution of the mitigated sub-routine

• For microprocessors that are dominated by SEUs in the data 
variables or SETs in the calculation, the redundancy should mask 
SEUs and SETs

• If there are no faults, the replicated sub-routine is executed twice with 
two independent data replicas
– Comparison between outputs detects errors (duplication with compare)
– If the two outputs do not match, then the sub-routine is executed a third time 

with the third replica of the data variables and a voter corrects the error 
(failover to TMR)

• Peripheral scrubbing is also added as part of the process to reduce 
issues with SEUs in the peripherals.



Software Modifications

• We are currently focused on sub-
routine mitigation, including these 
insertions:
– Replicated input and output variables;
– Comparison code;
– Majority voter code;
– Peripheral scrubbing code; and
– Code to trigger the DWCF algorithm 

and peripheral scrubbing
• Issues with code structure are not 

addressed when mitigating full sub-
routines



Automating Software Redundancy and Voter Insertion
• Automating the insertion of the redundant 

code and variables; and the voters is ideal
– Can insert the extra code after the software 

has been parsed and optimized
– Can avoid the inserted code being removed 

during optimization
• The LLVM compiler supports these types 

of modifications
– There this a bytecode representation of the 

code that has been used extensively for 
compiler extensions

– Can represent the bytecode as a data and 
control flow graph

• LLVM supports nearly all modern 
languages, so the automated tool can 
support several languages



Limitations to the DWCF technique

• Latent faults:
– On average a third of all SEUs in 

the replicated data variables will 
affect the third replica

• MIUs
– Two upsets in multiple copies of 

the same variable accumulate 
before the first upset is corrected



Root Causes for Failures

• Reporting shows the variety of faults possible from the software codes
• Many faults are less extensive than previously thought
• Quicksort allow us to measure whether sorting a sorted array would 

have a different probability of failure than sorting an unsorted array
– The algorithm does two forward sorts followed by two reverse sorts
– All four sorts have approximately the same number of errors
– The location of the SEU within the affected word (MSB, LSB) determines 

the effect
– MSB: could affect entire array
– LSB: could affect a few values



Root Causes for Failures (2)

• Matrix multiply: similar results
– Each SEU could cause the resultant matrix to have an entire row or column 

of faults, but only happens about half of the time
– Rest of SEUs occur in the resultant matrix :
– Resultant matrix is the same size as the two input matrices combined
– SEUs are equally likely in the output than the input
– Some cases where the SEU occurs during the calculation, causing partial 

failures of a column or row in the resultant matrix
• The piFFT code:

– Malloc failures when the input variables are being instantiated on the stack 
causes the code to crash

– The code is an iterative code: a number of tests did not converge


	Complications in the Integration of Commercial Microprocessors in Harsh Radiation Environments
	LANL’s 56 Years in Space
	…But We Also Have Giant Supercomputers
	…And Giant Particle Accelerators
	Here Is What We Have Learned From These Missions
	Outline
	The Case for Using Commercial Microprocessors in Harsh Radiation Environments
	The Rad Hard Market is Not Sleeping
	The Current Approach to Radiation-Hardened Compute is Inadequate
	Radiation-Hardened Compute is Four Generations Behind…Right Now…And Not Catching Up
	What’s the Catch?
	Three Ways to Destroy a Deployed System
	How Bad Could It Be?
	Why Is This Taking So Long?
	Preparing Commercial Microprocessors for Harsh Radiation Environments
	Qualification of Parts for Harsh Environments
	Taxonomy of Memory Failure Modes in Microprocessors
	Taxonomy of Logic Failure Modes in Microprocessors
	Single-Event Latchup (SEL)
	Issues in Testing Microprocessors and Open Questions
	The Foundational Questions: 
	Evolution of Radiation Testing Microprocessors
	Benchmarking and Test Standards for Repeatable, Comparable Test Results
	Predicting the Unpredictable: Modeling Untested Codes
	Fault Injection Tools for Microprocessors
	Is There a Correct Way to Test Upper Caches?
	Measuring Failure Modes in Multi-core Microprocessors
	Measuring Failure Modes in Fault-Tolerant Circuitry
	Compilers and Interpreters
	Programming Languages
	Operating Systems
	File Systems
	Measuring the Effect of Faults in Software
	Algorithm Design
	Exception Handling
	Categorization of Faults
	Summary
	A Guide for the Perplexed
	The Most Perplexing of the Open Questions
	Backup Slides
	Another View of Executing of Instructions
	MSP430 Architecture
	Cortex A9 Architecture
	Caches
	Register File
	Pipeline Registers and Other Flip-Flops
	Potential Radiation-induced Failures in Mathematical Units/Logic
	Single-Event Upsets (SEUs)
	Potential Radiation-induced Failures in the Memory/Datapath
	Potential Radiation-induced Failures in Control Units
	Original Focus: Creating Benchmarks Tests for Mitigation Studies
	MSP430F2619 Radiation Test Results
	Zynq ARM Radiation Test Results
	Remaining Issue for the Original Benchmark: Inputs
	Issues with the Microprocessor Benchmark
	Pros and Cons of These Ideas
	What Is the Plan?
	The Basics of Characterizing Microprocessors
	Characterizing Microprocessors
	Microprocessor Test Standards
	Hardware Test Setups
	Test Boards
	Monitoring Internal State
	Monitoring Functionality
	Monitoring Functionality and Internal State Simultaneously
	Test Control and Monitoring
	Handling SEFIs
	Test Methodologies
	Test Methodologies
	Static Testing
	Semi-static Testing
	Dynamic Testing
	The Devil Is in the Details
	Testing Issues: Fault Simulation and Emulation
	Fault Simulation and Emulation
	Timing, Timing, Timing!
	With These Challenges Should We Give Up?
	Architectural Vulnerability Factors
	Program Vulnerability Factors
	Fault Emulation Through Code Modification
	Fault Emulation Through Boundary Scan
	Mitigating Microprocessors
	Increasing Software Resilience
	DWCF Technique
	Software Modifications
	Automating Software Redundancy and Voter Insertion
	Limitations to the DWCF technique
	Root Causes for Failures
	Root Causes for Failures (2)

