US Particle Accelerator School

University of New Mexico: Albuquerque, New Mexico Accelerator Power System Engineering June 2019

Paul Bellomo, P.E. and James Sebek, PhD

SLAC National Accelerator Laboratory (SLAC)

Sections

1. Introduction
2. Purpose, Goals and Intended Audience
3. Mathematical Preliminaries
4. Typical Load Types
5. Power Lines
6. DC Power Supplies and AC Controllers
7. Superconducting Magnet Power Systems
8. Pulsed Power Supplies
9. Magnetics
10. Controls
11. Personnel and Equipment Safety
12. Reliability, Availability, Maintainability
13. Power Supply Specifications
14. References
15. Homework Problems

Section 1

- Introduction

Section 2

- Purpose
- Goals
- Intended Audience
- Civil, Mechanical Designers
- Control Engineers
- Electrical Distribution System Designers
- Maintenance Personnel
- Magnet Designers
- Operators
- Physicists
- Power Conversion / Power Supply Designers
- Project Engineers / Managers
- Safety Engineers / Designers

Purpose

- Provide an overview of Accelerator Power Electronics Engineering with an emphasis on DC and an overview of pulsed power supplies

Goals

- Provide a historical overview of Accelerator Power Supplies from early designs, to presently employed technology, to some promising future developments now in incubation
- Survey the most pertinent power supply topologies from the perspectives of accelerators, load type and rating
-Give other, non-power conversion disciplines a glimpse of, and a better understanding of, Power Electronics Engineering
- Define the information needed for the power supply designer, or user, to make appropriate choices for power supply type, design, and rating

Intended Audience

- Civil, Mechanical Designers - interest in facility space, weight, mounting, cooling

- Control Engineers - an insight into some interface requirements

- Electrical Distribution System Designers - AC distribution requirements, address and reduce harmonics and EMI
- Maintenance Personnel - power system reliability and maintainability
- Magnet Designers - tradeoffs between power supply output voltage, current and stability limitations and the magnet design. The power supply role in magnet protection via cooling interlocks and ground fault detection and protection

Intended Audience

- Accelerator Operators - Power supply control and operating characteristics

- Physicists - Power system rating limitations, magnet configuration options vs. physics tradeoffs, long and short-term current stability limitations
- Power Conversion / Power Supply Designers - power systems from another point of view

- Project Engineers and Managers - Power conversion system costs

- Safety Engineers / Designers - Personnel and equipment safety in an electrical power environment. General power safety provisions

Section 3

- Mathematical Preliminaries
- Why Mathematical Preliminaries
- Average and RMS Values
- Complex Exponentials
- Differential Equations
- Linear Systems
- Impulse and Step Functions
- System Transfer Function
- Fourier Series and Transforms
- Laplace Transforms
- Exponential Approximations
- Simple Circuit Equations
- We need to use circuits and understand their behavior
- Power supply loads
- Filter circuits
- Pulse shaping circuits
- Feedback and control circuits
- Many important circuits are passive, consisting of
- Resistors
- Capacitors
- Inductors

Why Mathematical Preliminaries?

- For these circuits we the voltage-current relations for each element

$$
\because v_{R}=R i_{R}
$$

$* v_{L}=L \frac{d i_{L}}{d t}$
$* i_{C}=C \frac{d v_{C}}{d t}$

- And

Kirchoff's Voltage Law for each loop:
$\sum_{n=1}^{N} v_{n}=0$

Kirchoff's Current Law for each node
$\sum_{n=1}^{N} i_{n}=0$ Why Mathematical Preliminaries?

- Solving circuit equations involves calculus,, which includes solving differential equations, integration, and convolution
- Fortunately circuits containing only passive elements can be wellapproximated by linear systems
- If we learn the mathematics behind linear systems
- Fourier and Laplace transforms and their inverses
- Impulse and step functions
- We can trade
- Calculus for algebra
- Convolution for multiplication

ISMathematical Preliminaries - Average, Rectified, and RMS Values - Sine Waves

 Average value:$<F>=\frac{1}{T} \int_{0}^{T} f(t) d t \quad f(t)=A \sin \frac{2 \pi}{T} t \Rightarrow<F>=\frac{1}{T} A \int_{0}^{T} \sin \frac{2 \pi}{T} t d t=0$ Average Rectified Value: DC value of rectified sine wave
$f(t)=A\left|\sin \frac{2 \pi}{T} t\right| \Rightarrow<F>=\frac{2}{T} A \int_{0}^{\frac{T}{2}} \sin \frac{2 \pi}{T} t d t=\frac{2}{\pi} A \approx 0.6366 \cdot A$
RMS value: Used for average power
$F_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} f^{2}(t) d t}$
$f(t)=A \sin \frac{2 \pi}{T} t$
$F_{r m s}=\sqrt{\frac{A^{2}}{T} \int_{0}^{T} \frac{1}{2}\left(1-\cos \frac{4 \pi}{T}\right) d t}$
$F_{r m s}=\frac{A}{\sqrt{2}} \approx 0.707 \cdot A$

Mathematical Preliminaries - Average and Average Rectified Values

- Often we will encounter symmetric signals that have an average value of zero, but whose RMS value is non-zero.
- In such cases the average rectified value is also non-zero and of interest.
- Often in power systems terminology, the term "average value" is a shorthand notation used to mean "average rectified value".
- When working with power systems, including in this course, when asked for an "average value" of a voltage or current, it is therefore good practice to calculate both the "average" (arithmetic average) and the "average rectified value" of these quantities and label the quantities accordingly.

Average value:

$$
<F>=\frac{1}{T} \int_{0}^{T} f(t) d t
$$

Average Rectified Value:

$$
<|F|>=\frac{1}{T} \int_{t=0}^{t=T}|f(t)| d t
$$

$1 \measuredangle$ Mathematical Preliminaries - Average and RMS Values - Rectangular Pulses

$$
\begin{gathered}
\text { Duty Factor }=D F=\frac{T_{o n}}{T_{o n}+T_{o f f}}=\frac{T_{o n}}{T} \\
F_{\text {ave }}=\frac{1}{T} \int_{t=0}^{t=T} f(t) d t \\
\text { If } f(t)=F_{m}, 0 \leq t \leq T_{o n} ; f(t)=0, T_{o n} \leq t \leq T \\
F_{\text {ave }}=\frac{1}{T} \int_{t=0}^{t=T_{o n}} F_{m} d t=\frac{T_{o n}}{T} F_{m}=D F \cdot F_{m} \\
F_{r m s}=\sqrt{\frac{1}{T} \int_{t=0}^{t=T} f^{2}(t) d t} \\
\text { If } f(t)=F_{m}, 0 \leq t \leq T_{o n} ; f(t)=0, T_{o n} \leq t \leq T \\
F_{r m s}=\sqrt{\frac{1}{T} \int_{t=0}^{t=T_{o n}} F_{m}^{2} d t}=\sqrt{\frac{T_{o n}}{T} F_{m}^{2}}=\sqrt{\frac{T_{o n}}{T}} \cdot F_{m}=\sqrt{D F} \cdot F_{m}
\end{gathered}
$$

14 Mathematical Preliminaries - Average and RMS Values - Rectangular Pulses
Duty Factor $=D F=\frac{T_{o n}}{T}$

Given $\omega=2 \pi f\left(\frac{\mathrm{rad}}{\mathrm{sec}}\right), t=$ time $(\sec), V=|V| \cdot \angle(\omega t \pm \emptyset)$

$$
\begin{aligned}
& V_{1}(\omega t)=\left|V_{1}\right| \cdot \cos \omega t, \text { Real, in-phase component only } \\
& V_{1}(\omega t)=\left|V_{1}\right| \cdot \angle(\omega t+0)=\left|V_{1}\right| \cdot \angle 0 \quad \text { phasor form } \\
& V_{2}(\omega t)=\left|V_{2}\right| \cdot \cos (\omega t-\emptyset), \text { in-phase and out-of-phase components } \\
& V_{2}(\omega t)=\left|V_{2}\right| \cdot \angle(\omega t-\emptyset), \quad \text { or } \quad V_{2}=\left|V_{2}\right| \cdot \angle-\emptyset \quad \text { phasor form }
\end{aligned}
$$

14 Mathematical Preliminaries - Complex Exponentials - Exponential Form

$$
V_{2}(\omega t)=\left|V_{2}\right| \cdot \cos (\omega t-\emptyset)
$$

$$
\operatorname{Re} V_{2}=\left|V_{2}\right| \cos \emptyset
$$

$$
V_{2}=\left|V_{2}\right| e^{j \varnothing}
$$

Mathematical Preliminaries - Complex Exponentials

$$
\begin{aligned}
& V_{2}(\omega t)=\left|V_{2}\right| e^{j(\omega t \pm \phi)}=\left|V_{2}\right| e^{ \pm j \phi} \text { (exponential form: } e^{j \omega t} \text { understood) } \\
& \left|V_{2}\right|=\left|V_{2}\right| \cdot \sqrt{\cos \emptyset^{2}+\sin \emptyset^{2}}=\left|V_{2}\right| \cdot 1
\end{aligned}
$$

Since the magnitude of the complex exponential is always 1, this function gives us a steady state eigenfunction of the constant, differential and integral operators we will later need to analyze circuits

I Mathematical Preliminaries - Eigenfunction (of a Differential Equation, D) An eigenfunction is a function that, when operated on by the differential equation, returns itself multiplied by a constant, possibly complex

$$
D \cdot f(t)=\left(\frac{d^{n}}{d t^{n}}+a_{n-1} \frac{d^{n-1}}{d t^{n-1}}+\cdots+a_{1} \frac{d}{d t}+a_{0}\right) f(t)=\alpha f(t)
$$

α is the eigenvalue of this function with respect to the differential equation

- Ex: $D=\frac{d}{d t} ; f(t)=e^{j \omega t} ; D \cdot f(t)=\frac{d}{d t} e^{j \omega t}=j \omega e^{j \omega t}=\alpha f(t) ; \alpha=j \omega$
- For example if the behavior of a system is determined by the equation

$$
\left(a \frac{d^{2}}{d t^{2}}+b \frac{d}{d t}+c\right) e^{s t}=0
$$

one finds $\left(a s^{2}+b s+c\right) e^{s t}=0 \Rightarrow\left(a s^{2}+b s+c\right)=0$
The roots given by the quadratic formula $s=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ are the eigenvalues, or the roots, of the system.

Differential equations (diffeq) describe dynamic systems that change with time For a system with time-varying quantities, $u(t), y(t)$ that satisfy the diffeq

$$
\frac{d y(t)}{d t}=a u(t)
$$

$y(t)$ depends on its past values as well as those of $u(t)$

$$
\begin{gathered}
\frac{d y(t)}{d t}=\lim _{\Delta t \rightarrow 0} \frac{y(t+\Delta t)-y(t)}{\Delta t}=a u(t) \\
y(t+\Delta t) \approx y(t)+\Delta t \cdot a u(t) \\
y(t+2 \Delta t) \approx y(t+\Delta t)+\Delta t \cdot a u(t+\Delta t) \approx y(t)+\Delta t \cdot a(u(t)+u(t+\Delta t))
\end{gathered}
$$

Continuing this for arbitrary times in the past

$$
y(t+N \Delta t) \approx y(t)+a \sum_{n=0}^{N-1} \Delta t \cdot u(t+n \Delta t)
$$

As $\Delta t \rightarrow 0$, the sum becomes infinite and turns into the integral equation

$$
y(t)=y\left(t_{0}\right)+a \int_{t_{0}}^{t} u(\tau) d \tau
$$

In general, given a driving term $u(t)$ and a driven term $y(t)$, one can define a differential equation for the evolution of $y(t)$

$$
\frac{d y(t)}{d t}+a y(t)=b u(t)
$$

$y(t)$ depends on the past and current values of itself and $u(t)$
The derivative is defined as

$$
\frac{d y(t)}{d t}=\lim _{\Delta t \rightarrow 0} \frac{y(t)-y(t-\Delta t)}{\Delta t}=-a y(t)+b u(t)
$$

so that

$$
\begin{aligned}
y(t) & \approx y(t-\Delta t)+\Delta t[-a y(t)+b u(t)] \\
& \approx \frac{1}{1+a \Delta t} y(t-\Delta t)+\frac{b \Delta t}{1+a \Delta t} u(t)
\end{aligned}
$$

If we continue this construction

$$
\begin{aligned}
& y(t+\Delta t) \approx y(t)+\Delta t[-a y(t+\Delta t)+b u(t+\Delta t)] \\
& (1+a \Delta t) y(t+\Delta t) \approx \frac{1}{1+a \Delta t} y(t-\Delta t)+\frac{b \Delta t u(t)}{1+a \Delta t}+b \Delta t u(t+\Delta t) \\
& y(t+\Delta t) \approx \frac{1}{(1+a \Delta t)^{2}} y(t-\Delta t)+b \Delta t\left[\frac{u(t)}{(1+a \Delta t)^{2}}+\frac{u(t+\Delta t)}{1+a \Delta t}\right] \\
& y(t+(N+1) \Delta t) \approx \frac{1}{(1+a \Delta t)^{N}} y(t-\Delta t)+b \sum_{n=0}^{N+1} \frac{u(t+\mathrm{n} \Delta t)}{(1+a \Delta t)^{N-n}}
\end{aligned}
$$

From this we can continue on to obtain the exact solution

$$
y(t)=e^{-a t}\left[y\left(t_{0}\right)+\int_{t_{0}}^{t} e^{a \tau} u(\tau) d \tau\right]
$$

as obtained from the method of variation of parameters.
Note that the ay term in the differential equation gives rise to a term

$$
e^{-a t}
$$

that acts to damp out initial conditions and past inputs.

A linear system, $h[x]$ is defined such that for inputs x_{1} and x_{2}, if
$y_{1}=h\left[x_{1}\right]$ and $y_{2}=h\left[x_{2}\right]$
then

$$
a y_{1}+b y_{2}=h\left[a x_{1}+b x_{2}\right]
$$

This is the principle of linear superposition.
Examples of linear systems:

Constant gain system
Sum of two constant gains
Derivatives

Integrals

$$
\begin{array}{ll}
h_{1}[x]=A_{1} x & V=R_{1} I \\
h_{2}[x]=A_{2} x+A_{3} x & V=R_{2} I+R_{3} I
\end{array}
$$

$h_{3}[x]=A_{4} \frac{d x}{d t}$

$$
V=L_{4} \frac{d I}{d t}
$$

$$
h_{4}[x]=A_{5} \int x d t \quad V=\frac{1}{C_{5}} \int I d t
$$

We are interested in linear systems because there are many mathematical tools available for use on linear systems and because many common physical systems and components are linear: Resistors, Inductors, Capacitors
$h(x)=e^{x}$ is a nonlinear system.
Proof:

$$
e^{a x+b y}=e^{a x} e^{b y} \neq a e^{x}+b e^{y}
$$

We note that non-linear systems can often be approximated by linear systems. As we will show later, slow exponentials are well approximated by linear systems

Mathematical Preliminaries - Impulse and Step Functions

- The problems we investigate involve a control signal acting on a system
- We simplify the solution by representing the control signal as a sequence of elementary functions
- Then we need to characterize the response of our system to these elementary functions
- Finally, we use the properties of linear systems to obtain the response of the system with the control signal acting on it
- Two such commonly used elementary functions are the impulse function and the step function

14 Mathematical Preliminaries - Impulse Functions - Discrete and Continuous
Continuous impulse (Dirac delta) function, $\delta(t)$ Properties:

$$
\begin{gathered}
\delta(t)=0, \quad t \neq 0 \\
\delta(t)=\infty, \quad t=0 \\
\int_{-\infty}^{\infty} \delta(t) d t=1
\end{gathered}
$$

Shifting property: $f\left(t_{0}\right)=\int_{-\infty}^{\infty} f(t) \delta\left(t_{0}-t\right) d t$

Discrete impulse function, $\delta[n]$
Properties:

$$
\begin{array}{cc}
\delta[n]=0, & n \neq 0 \\
\delta[n]=1, & n=0 \\
\sum_{n=-\infty}^{\infty} \delta[n]=1
\end{array}
$$

Shifting property: $f[k]=\sum_{n=-\infty}^{\infty} f[n] \delta[k-n]$

Mathematical Preliminaries - Function as Sum of Delta Functions

Properties
Height $=1$

$$
\begin{array}{ll}
U(t)=0, & t<0 \\
U(t)=1, & t \geq 0
\end{array}
$$

Relation to Impulse

$$
\delta(t)=\frac{d}{d t} U(t)
$$

Functional Representation
$f\left(t_{0}\right)=\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) d t$
$=\int_{-\infty}^{\infty} f(t)\left(\frac{d}{d t} U\left(t-t_{0}\right)\right) d t$
$=\left.f(t) U\left(t-t_{0}\right)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} U\left(t-t_{0}\right) \frac{d f(t)}{d t} d t$
$=f(\infty)-\int_{t_{0}}^{\infty} \frac{d f(t)}{d t} d t=f(\infty)-\left(f(\infty)-f\left(t_{0}\right)\right)=f\left(t_{0}\right)$

Heaviside step function
$\begin{array}{ll}U[n]=0, & \\ U<0 \\ U[n]=1, & \\ n \geq 0\end{array}$
Relation to impulse

$$
\delta[n]=U[n]-U[n-1]
$$

Functional representation

$$
\begin{aligned}
& f[n]=\sum_{k=-\infty}^{\infty} f[k] \delta[n-k]=\sum_{k=-\infty}^{\infty} f[k] \delta[k-n] \\
& =\sum_{k=-\infty}^{\infty} f[k](U[k-n]-U[k-n-1]) \\
& =\sum_{k=-\infty}^{\infty}(f[k]-f[k+1]) U[k-n] \\
& =\sum_{k=n}^{\infty}(f[k]-f[k+1])=f[n]
\end{aligned}
$$

Mathematical Preliminaries - Function Approximation with Steps

The impulse response of a general system is causal
There is no response before the impulse occurs
The impulse response, in general, also lasts after the impulse ends

Mathematical Preliminaries - System Transfer Function

The input to the system can be represented as a series of impulses, $x[k]$.
For each impulse, the output at any later time is the system response to that impulse

$$
y[n]=h[n-k] x[k]
$$

The total system output for the total system input is

$$
y[n]=\sum_{k=-\infty}^{\infty} h[n-k] x[k]
$$

where $h[n]$ is causal, so vanishes for $n<0$.

For continuous systems, this is

$$
y(t)=\int_{-\infty}^{\infty} h(t-u) x(u) d u
$$

These are convolution integrals and sums. If one Fourier-transforms this integral relationship, the convolution integral in the time domain becomes a product in the frequency domain

14 Mathematical Preliminaries - Fourier Transforms and Delta Function
Definition of the Fourier transform pair $f(t), F(\omega)$

$$
\begin{aligned}
& F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \\
& f(t)=\int_{-\infty}^{\infty} F(\omega) e^{j \omega t} \frac{d \omega}{2 \pi}
\end{aligned}
$$

Representation of the Dirac delta function

$$
\delta(t-\tau)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{j \omega(t-\tau)} d \omega
$$

Intuition:
For $\omega \neq \omega_{0}$, the integrand oscillates, so the average value vanishes For $\omega=\omega_{0}$, the integrand is unity, and the integral is infinite

$$
\begin{aligned}
& f(t)=\int_{-\infty}^{\infty} f(\tau) \delta(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty} F(\omega) e^{j \omega t} \frac{d \omega}{2 \pi}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau) e^{-j \omega \tau} d \tau e^{j \omega t} \frac{d \omega}{2 \pi} \\
& =\int_{-\infty}^{\infty} f(\tau) \int_{-\infty}^{\infty} e^{j \omega(t-\tau)} \frac{d \omega}{2 \pi} d \tau \Rightarrow \delta(t-\tau)=\int_{-\infty}^{\infty} e^{j \omega(t-\tau)} \frac{d \omega}{2 \pi}
\end{aligned}
$$

Transform the convolution of the input with the impulse response
Starting with the convolution integral
$y(t)=\int_{-\infty}^{\infty} h(t-u) x(u) d u$
insert the Fourier transforms for $h(t-u)$ and $x(u)$
$y(t)=\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H(\omega) e^{j \omega(t-u)} X\left(\omega_{1}\right) e^{j \omega_{1} u} d u d \omega_{1} d \omega$
$=\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H(\omega) X\left(\omega_{1}\right) e^{j \omega t} e^{j\left(\omega_{1}-\omega\right) u} d u d \omega_{1} d \omega$
$=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H(\omega) X\left(\omega_{1}\right) e^{j \omega t} \delta\left(\omega_{1}-\omega\right) d \omega_{1} d \omega$
$=\frac{1}{2 \pi} \int_{-\infty}^{\infty} H(\omega) X(\omega) e^{j \omega t} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} Y(\omega) e^{j \omega t} d \omega$
Therefore

$$
Y(\omega)=H(\omega) X(\omega)
$$

The transform of the output equals the product of the transform of the input multiplied by the transform of the impulse response.

Given an input $x(t)$, a system $h(t)$, and an output $y(t)$, the Transfer Function of the system is the Fourier Transform of $h(t)$

$$
H(\omega)=\int_{-\infty}^{\infty} h(t) e^{-j \omega t} d t
$$

and $H(\omega)=\frac{Y(\omega)}{X(\omega)}$
where $Y(\omega)=\int_{-\infty}^{\infty} y(t) e^{-j \omega t} d t$ and $X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$

- Fourier transforms represent functions as combinations (sums/integrals) of complex exponentials.
- When working with aperiodic continuous functions, we need the standard Fourier transform pair $(f(t), F(\omega))$

$$
f(t)=\int_{-\infty}^{\infty} F(\omega) e^{j \omega t} \frac{d \omega}{2 \pi} ; \quad F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t
$$

- For periodic systems, with a period, T, the only complex eigenvectors that can be used to represent the signals are those whose frequencies are multiples of the "fundamental harmonic", $\omega=2 \pi / T$ (including $\omega=0$).
- Periodic functions are represented by the infinite sums of the appropriately weighted discrete harmonics. In this case the Fourier transforms between the pair $\left(f(t), F_{n}\right)$ are

$$
f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j\left(\frac{2 \pi n}{T}\right) t} ; \quad F_{n}=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-j\left(\frac{2 \pi n}{T}\right) t}
$$

- We will work with many periodic systems and often will concentrate on just one harmonic, either DC or the fundamental

Mathematical Preliminaries - Fourier Series

Using Euler's formula, $e^{j x}=\cos x+j \sin x$, we can also represent these relations as

$$
f(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{2 \pi n}{T} t+\sum_{n=1}^{\infty} b_{n} \sin \frac{2 \pi n}{T} t
$$

where the coefficients a_{n}, b_{n} are defined as

$$
\begin{gathered}
a_{0}=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) d t \\
a_{n}=\frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos \frac{2 \pi n}{T} t d t, \quad n \neq 0 \\
b_{n}=\frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin \frac{2 \pi n}{T} t d t
\end{gathered}
$$

Both the exponential and trigonometric series are complete. That is, they can faithfully represent any function.
Also the individual terms in the series are orthogonal to each other.
The representation of any function in terms of the Fourier series is unique.

Mathematical Preliminaries - Fourier Series Properties

- The DC term is orthogonal to all others

$$
\int_{-T / 2}^{T / 2} \cos \frac{2 \pi n t}{T} d t=\int_{-T / 2}^{T / 2} \sin \frac{2 \pi n t}{T} d t=0
$$

- The sinusoidal terms are periodic, so the integral over one period vanishes.
- All cosine terms are orthogonal to all sine terms. Using

$$
\begin{aligned}
& \sin A \cos B=1 / 2[\sin (A+B)+\sin (A-B)] \\
& \int_{-T / 2}^{T / 2} \cos \frac{2 \pi n t}{T} \sin \frac{2 \pi m t}{T} d t \\
& =\frac{1}{2}\left[\int_{-T / 2}^{T / 2} \sin \frac{2 \pi(m+n) t}{T} d t+\int_{-T / 2}^{T / 2} \sin \frac{2 \pi(m-n) t}{T} d t\right]=0
\end{aligned}
$$

Mathematical Preliminaries - Fourier Series Properties

- Cosine terms are orthogonal to other cosine terms. Using $\cos A \cos B=1 / 2[\cos (A+B)+\cos (A-B)]$ we get

$$
\begin{aligned}
& \int_{-T / 2}^{T / 2} \cos \frac{2 \pi n t}{T} \cos \frac{2 \pi m t}{T} d t \\
& =\frac{1}{2}\left[\int_{-T / 2}^{T / 2} \cos \frac{2 \pi(n+m) t}{T} d t+\int_{-T / 2}^{T / 2} \cos \frac{2 \pi(n-m) t}{T} d t\right] \\
& =\left\{\begin{array}{c}
1 / 2 n=m \\
0 n \neq m
\end{array}\right.
\end{aligned}
$$

- Using $\sin A \sin B=1 / 2[\cos (A-B)-\cos (A+B)]$, we find the same relationship for products of sine terms.

Mathematical Preliminaries - Fourier Series Definition

- Using the calculations above, we represent the Fourier series of the periodic function $f(t)$

$$
f(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{2 \pi n t}{T}+b_{n} \sin \frac{2 \pi n t}{T}\right)
$$

where

$$
\begin{aligned}
& a_{0}=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) d t \\
& a_{n}=\frac{2}{T} \int_{T / 2}^{T / 2} f(t) \cos \frac{2 \pi n t}{T} d T \\
& b_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) \sin \frac{2 \pi n t}{T} d T
\end{aligned}
$$

Mathematical Preliminaries - Fourier Square Wave Expansion

$$
\begin{aligned}
& f(t)= \begin{cases}0 & -T / 2 \leq t<0 \\
1 & 0 \leq t<T / 2\end{cases} \\
& a_{0}=\frac{1}{T} \int_{0}^{T / 2} d t=\frac{1}{2} \\
& a_{n}=\frac{2}{T} \int_{0}^{T / 2} \cos \frac{2 \pi n t}{T} d t=\left.\frac{2}{T} \frac{T}{2 \pi n} \sin \frac{2 \pi n t}{T}\right|_{0} ^{T / 2}=\frac{1}{\pi n} \sin n \pi=0 \\
& b_{n}=\frac{2}{T} \int_{0}^{T / 2} \sin \frac{2 \pi n t}{T} d t=-\left.\frac{1}{\pi n} \cos \frac{2 \pi n t}{T}\right|_{0} ^{T / 2}=\frac{1}{\pi n}(1-\cos n \pi) \\
& =\frac{1}{\pi n}\left(1-(-1)^{n}\right) \\
& f(t)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{1}{\pi n}\left(1-(-1)^{n}\right) \sin \frac{2 \pi n t}{T} \\
& f(t)=\frac{1}{2}+\frac{2}{\pi} \sum_{n=0}^{\infty} \frac{1}{2 n+1} \sin \frac{2 \pi(2 n+1) t}{T}
\end{aligned}
$$

Mathematical Preliminaries - Fourier Square Wave Expansion
square wave harmonic decomposition

- Fundamental term dominates
- Harmonic terms mainly contribute to sharp transition at edge
- Since the square wave function is discontinuous, the edges have "Gibbs ears"

$$
\begin{aligned}
& f(t)= \begin{cases}1+2 t / T & -T / 2 \leq t<0 \\
-2 t / T & 0 \leq t<\mathrm{T} / 2\end{cases} \\
& a_{0}=\frac{1}{T}\left[\int_{-T / 2}^{0}(1+2 t / T) d t+\int_{0}^{T / 2}(1-2 t / T) d t\right] \\
& =\frac{1}{T}\left[\left.\left(t+\frac{2}{T} \frac{t^{2}}{2}\right)\right|_{-T / 2} ^{0}+\left.\left(t-\frac{2}{T} \frac{t^{2}}{2}\right)\right|_{0} ^{T / 2}\right] \\
& =\frac{1}{T}\left[\left(\frac{T}{2}-\frac{1}{T}\left(\frac{T}{2}\right)^{2}\right)+\left(\frac{T}{2}-\frac{1}{T}\left(\frac{T}{2}\right)^{2}\right)\right]=\frac{1}{2}
\end{aligned}
$$

Mathematical Preliminaries - Fourier Triangle Wave Expansion

$$
a_{n}=\frac{2}{T}\left[\int_{-T / 2}^{0}\left(1+\frac{2 t}{T}\right) \cos \frac{2 \pi n t}{T} d t+\int_{0}^{T / 2}\left(1-\frac{2 t}{T}\right) \cos \frac{2 \pi n t}{T} d t\right]
$$

$$
=\frac{2}{T}\left[\int_{-T / 2}^{T / 2} \cos \frac{2 \pi n t}{T} d t+\frac{2}{T} \int_{-T / 2}^{0} t \cos \frac{2 \pi n t}{T} d t-\frac{2}{T} \int_{0}^{T / 2} t \cos \frac{2 \pi n t}{T} d t\right]
$$

$$
=\left(\frac{2}{T}\right)^{2}\left[\int_{-T / 2}^{0} t \cos \frac{2 \pi n t}{T} d t-\int_{0}^{T / 2} t \cos \frac{2 \pi n t}{T} d t\right]
$$

$$
=-2\left(\frac{2}{T}\right)^{2} \int_{0}^{T / 2} t \cos \frac{2 \pi n t}{T} d t
$$

$$
=-2\left(\frac{2}{\mathrm{~T}}\right)^{2}\left[\left.\frac{\mathrm{~T}}{2 \pi n} \mathrm{t} \sin \frac{2 \pi n t}{T}\right|_{0} ^{T / 2}-\frac{T}{2 \pi n} \int_{0}^{T / 2} \sin \frac{2 \pi n t}{T} d t\right]
$$

$$
=2\left(\frac{2}{T}\right)^{2}\left(\frac{T}{2 \pi n}\right)^{2}(1-\cos n \pi)=\frac{2}{(\pi n)^{2}}\left(1-(-1)^{n}\right)
$$

Mathematical Preliminaries - Fourier Triangle Wave Expansion

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{n}}=\frac{2}{T}\left[\int_{-T / 2}^{T / 2} \sin \frac{2 \pi n t}{T} d t+\frac{2}{T} \int_{-T / 2}^{0} t \sin \frac{2 \pi n t}{T} d t-\frac{2}{T} \int_{0}^{T / 2} t \sin \frac{2 \pi n t}{T} d t\right] \\
& =\frac{2}{T}\left[\int_{-T / 2}^{T / 2} \sin \frac{2 \pi n t}{T} d t-\frac{4}{T} \int_{0}^{T / 2} t \sin \frac{2 \pi n t}{T} d t\right] \\
& =\left(\frac{2}{T}\right)^{2}\left[\left.\frac{T}{\pi n} t \cos \frac{2 \pi n t}{T}\right|_{0} ^{T / 2}-\frac{T}{\pi n} \int_{0}^{T / 2} \cos \frac{2 \pi n t}{T} d t\right] \\
& =\left(\frac{2}{T}\right)^{2}\left[\frac{T}{\pi n} \frac{T}{2} \cos (n \pi)-\frac{1}{2}\left(\frac{T}{\pi n}\right)^{2} \sin n \pi\right]=0
\end{aligned}
$$

where we have used the symmetry of the terms in the first step and integration by parts to go from the second to third step.
We are left with the Fourier expansion of the triangle wave

$$
\begin{aligned}
& f(t)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{(n \pi)^{2}}\left(1-(-1)^{n}\right) \cos \frac{2 \pi n t}{T} \\
& f(t)=\frac{1}{2}+\left(\frac{2}{\pi}\right)^{2} \sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}} \cos \frac{2 \pi(2 n+1) t}{T}
\end{aligned}
$$

Mathematical Preliminaries - Fourier Triangle Wave Expansion triangle wave harmonic decomposition

- Fundamental term again dominates
- Now harmonics mainly contribute to peaks
- Sharp corners require high harmonics
- Triangle wave is continuous, so expansion approaches waveform everywhere

Mathematical Preliminaries - Advantages of the Frequency Domain

- When working with linear, time-invariant systems, there are several advantages to moving from the time domain to the frequency domain.
- If $x_{1} \rightarrow y_{1}$ and $x_{2} \rightarrow y_{2}$ and if $a x_{1}+b x_{2} \rightarrow a y_{1}+b y_{2}$ then the system is linear.
- If $x(t) \rightarrow y(t)$ and if $x\left(t-t_{0}\right) \rightarrow y\left(t-t_{0}\right)$ then the system is time-invariant.
- Each frequency corresponds to a unique eigenfunction of the system and the system response for each frequency can be calculated independently.
- There is another transform often used in system analysis, the Laplace transform.
- It is closely related to the Fourier transform in that it is also based on system eigenfunctions.
- In addition to "real" frequencies, it also uses complex frequencies that allow it to also study decaying solutions.
- As with Fourier transform, integral must converge in order for transform to exist.
- It is convenient to use Laplace transforms for the study of solutions to problems with initial conditions.
- The variable used in Laplace transforms is often $s=j \omega$
- The Laplace transform is used for analysis of systems with given initial conditions
- For a given function of time, $f(t)$, its Laplace transform, $F(s)$, is defined as

$$
\mathcal{L}(f(t))=F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

- $f(t)$ has to grow less quickly than $e^{-s t}$ descreases as $t \rightarrow \infty$
- When working in the frequency (s) domain, we express transfer functions in terms of known Laplace transforms and take the inverse transform, $\mathcal{L}^{-1}(F(s))$, to obtain the time domain solution.

Mathematical Preliminaries - Laplace Transforms

- Delta function: $f(t)=\delta(t)$

$$
F(s)=\int_{-\epsilon}^{\infty} \delta(t) e^{-s t} d t=1
$$

- Delta function with delay: $f(t)=\delta\left(t-t_{0}\right), t_{0} \geq 0$

$$
F(s)=\int_{0}^{\infty} \delta\left(t-t_{0}\right) e^{-s t} d t=e^{-s t_{0}}
$$

- Step function: $f(t)=U(t)$

$$
F(s)=\int_{0}^{\infty} U(t) e^{-s t} d t=\int_{0}^{\infty} e^{-s t} d t=-\left.\frac{1}{s} e^{-s t}\right|_{0} ^{\infty}=\frac{1}{s}
$$

- Step function with delay: $f(t)=U\left(t-t_{0}\right), t \geq 0$

$$
F(s)=\int_{0}^{\infty} U\left(t-t_{0}\right) e^{-s t} d t=\int_{t_{0}}^{\infty} e^{-s t} d t=-\left.\frac{1}{s} e^{-s t}\right|_{t_{0}} ^{\infty}=\frac{e^{-s t_{0}}}{s}
$$

Mathematical Preliminaries - Laplace Transforms

- Ramp function: $f(t)=t$

Use integration by parts (IBP)
$\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u$
$u=t ; d u=d t ; d v=e^{-s t} d t ; v=-e^{-s t} / s$
$F(s)=\int_{0}^{\infty} t e^{-s t} d t=-\left.\frac{t}{s} e^{-s t}\right|_{0} ^{\infty}+\frac{1}{s} \int_{0}^{\infty} e^{-s t} d t=\frac{1}{s^{2}}$

- Exponential function: $f(t)=e^{a t}$ with a an arbitrary complex number

$$
F(s)=\int_{0}^{\infty} e^{a t} e^{-s t} d t=\int_{0}^{\infty} e^{-(s-a) t} d t
$$

$F(s)=-\left.\frac{1}{s-a} e^{-(s-a) t}\right|_{0} ^{\infty}=\frac{1}{s-a}$
Only if $\lim _{t \rightarrow \infty} e^{-(s-a) t}$ exists does $F(s)$ exist. Therefore $R e(a) \leq 0$. Note that a can be imaginary.

- Sinusoidal functions: $f(t)=\cos \omega t \quad f(t)=\sin \omega t$ We could do this from the definition and IBP, but instead we use Euler's formula, exponential transforms, and the linearity of the Laplace transform

$$
\begin{aligned}
F(s) & =\int_{0}^{\infty} \cos \omega t e^{-s t} d t=\frac{1}{2} \int_{0}^{\infty}\left(e^{j \omega t}+e^{-j \omega t}\right) e^{-s t} d t \\
& =\frac{1}{2}\left(\int_{0}^{\infty} e^{-(s-j \omega) t} d t+\int_{0}^{\infty} e^{-(s+j \omega) t} d t\right)=\frac{1}{2}\left(\frac{1}{s-j \omega}+\frac{1}{s+j \omega}\right) \\
F(s) & =\frac{s}{s^{2}+\omega^{2}} \\
F(s) & =\int_{0}^{\infty} \sin \omega t e^{-s t} d t=\frac{\omega}{s^{2}+\omega^{2}}
\end{aligned}
$$

Mathematical Preliminaries - Laplace Transforms

- Transform of a derivative: $f(t)=\frac{d g(t)}{d t}$

$$
\begin{aligned}
& F(s)=\int_{0}^{\infty} \frac{d g(t)}{d t} e^{-s t} d t \\
& =\left.g(t) e^{-s t}\right|_{0} ^{\infty}+\int_{0}^{\infty} s g(t) e^{-s t} d t \\
& =\left.g(t) e^{-s t}\right|_{0} ^{\infty}+s \int_{0}^{\infty} g(t) e^{-s t} d t
\end{aligned}
$$

$$
F(s)=s G(s)-g(0)
$$

where we have used integration by parts and $G(s)=\int_{0}^{\infty} g(t) e^{-s t} d t$

Mathematical Preliminaries - Laplace Transforms

- Transform of an integral: $f(t)=\int_{0}^{t} g(\tau) d \tau$

$$
\begin{aligned}
& F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty}\left[\int_{0}^{t} g(\tau) d \tau\right] e^{-s t} d t \\
& =\left.e^{-s t} \int_{0}^{t} g(\tau) d \tau\right|_{0} ^{\infty}+\frac{1}{s} \int_{0}^{\infty} g(t) e^{-s t} d t \\
& =\frac{1}{s} \int_{0}^{\infty} g(t) e^{-s t} d t \\
& F(s)=\frac{1}{s} G(s)
\end{aligned}
$$

where we have used integration by parts and $G(s)=\int_{0}^{\infty} g(t) e^{-s t} d t$

Mathematical Preliminaries - Laplace Transforms

$\boldsymbol{f}(\boldsymbol{t})=\mathcal{L}^{-1}(F(s))$	$F(s)=\mathcal{L}(f(t))$
$\delta(t)$	1
$U(t)$	$1 / s$
t	$\frac{1 / s^{2}}{s(s+a)}$
$e^{-a t}$	$\frac{1 /(s+a)}{s^{2}+\omega^{2}, \frac{\omega}{s^{2}+\omega^{2}}}$
$1-e^{-a t}$	$\frac{s+a}{(s+a)^{2}+\omega^{2}}$
$\cos \omega t, \sin \omega t$	$\frac{\omega}{(s+a)^{2}+\omega^{2}}$
$e^{-a t} \cos \omega t$	$s G(s)-g(0)$
$e^{-a t} \sin \omega t$	$\frac{1}{s} G(s)$
$\frac{d g(t)}{d t}$	$e^{-s t_{0} F(s)}$
$\int_{0}^{t} g(\tau) d \tau$	$f\left(t-t_{0}\right)$

Mathematical Preliminaries - Inverting Laplace Transforms

- Laplace Transforms simplify the calculations of system behavior, but these calculations are performed in the complex frequency (s) domain.
- In order to return to a time domain function, the s domain function must be inverted.
- Inversion of these functions can be performed via complex variable techniques.
- Much more commonly, one uses readily available tables of functions and their Laplace transform pairs
- There also exist such transform tables for Fourier transforms.
> "ne
> http://www.vibrationdata.com/Laplace.htm http://en.wikipedia.org/wiki/Laplace transform http://mathworld.wolfram.com/FourierTransform.html http://en.wikipedia.org/wiki/Fourier transform

Mathematical Preliminaries - Inverting Laplace Transforms

- Response of a single pole low pass filter to an impulse Want unity gain at DC $(s=0)$ and 3 dB rolloff at $\omega=a$ $H(s)=\frac{a}{s+a}$
$\left(H(j \omega)=\frac{a}{j \omega+a}\right)$
$(H(0)=1 ; 3 \mathrm{~dB}$ rolloff at $\omega=a)$
$X(s)=1$
$Y(s)=H(s) X(s)=\frac{a}{s+a}$
$y(t)=\mathcal{L}^{-1}(Y(s))=\mathcal{L}^{-1}\left(\frac{a}{s+a}\right)$
$y(t)=e^{-a t}$
- Response to a step:

$$
\begin{aligned}
& Y(s)=H(s) X(s)=\frac{a}{s+a} \frac{1}{s} \\
& y(t)=\mathcal{L}^{-1}\left(\frac{a}{s+a} \frac{1}{s}\right)
\end{aligned}
$$

Use partial fractions to expand argument and then linearity of \mathcal{L}

$$
\begin{aligned}
& \frac{a}{s(s+a)}=\frac{A}{s}+\frac{B}{s+a} \\
& s=0 \Rightarrow A=1 \\
& s=-a \Rightarrow B=-1
\end{aligned}
$$

$$
y(t)=\mathcal{L}^{-1}\left(\frac{a}{s+a} \frac{1}{s}\right)=\mathcal{L}^{-1}\left(\frac{1}{s}-\frac{1}{s+a}\right)=\mathcal{L}^{-1}\left(\frac{1}{s}\right)-\mathcal{L}^{-1}\left(\frac{1}{s+a}\right)
$$

$$
=1-e^{-a t}
$$

- Response to an exponential:

$$
\begin{aligned}
& x(t)=e^{-b t} \\
& X(s)=\mathcal{L}\left(e^{-b t}\right)=\frac{1}{s+b} \\
& Y(s)=H(s) X(s)=\frac{a}{s+a} \frac{1}{s+b} \\
& y(t)=\mathcal{L}^{-1}\left(\frac{\mathrm{a}}{s+\mathrm{a}} \frac{1}{s+\mathrm{b}}\right)=\frac{a}{b-a} \mathcal{L}^{-1}\left(\frac{1}{s+a}-\frac{1}{s+b}\right) \\
& \quad=\frac{a}{b-a}\left(e^{-a t}-e^{-b t}\right)
\end{aligned}
$$

Many of our circuits will have signals with widely separated frequencies

- Switching element of a fast frequency will control the amplitude of the output voltage or current
- The output voltage/current will be much slower than the switching frequency
- We will use filtering elements to separate the frequencies.

We want to find good approximations for these "fast" signals through the "slow" filter elements
Behavior is exponential
$x(t)=e^{-\frac{t}{\tau}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}\left(\frac{t}{\tau}\right)^{n}$
$x(t) \approx 1-\frac{t}{\tau}+\frac{1}{2}\left(\frac{t}{\tau}\right)^{2}$
Linear approximation accurate to 1% for $t<\frac{\tau}{10}, 2.4 \%$ for $t<\frac{\tau}{5}$

Energy in inductor $\quad \mathcal{E}_{L}=\frac{1}{2} L I^{2}$
Cannot supply infinite power to the circuit element \Rightarrow no step change in I
Voltage-current relation $\quad V_{L}=L \frac{d I}{d t}$

$$
\int_{0}^{t} V_{L} d \tau=L \int_{0}^{t} d I=L[I(t)-I(0)]
$$

Can have a step change in voltage across an inductor
For a constant voltage applied across the inductor

$$
I(t)=\frac{V}{L} t
$$

the inductor current increases linearly with time
For a system with a periodic current across the inductor $I(t+T)=I(t)$

$$
\int_{t}^{t+T} V_{L} d \tau=L \int_{t}^{t+T} d I=L[I(t+T)-I(t)]=0
$$

The average voltage across the inductor is zero. $<V_{L}>=0$

Mathematical Preliminaries - Circuit Equations for a Capacitor

Energy in capacitor $\quad \mathcal{E}_{C}=\frac{1}{2} C V^{2}$
Cannot supply infinite power to the circuit element \Rightarrow no step change in V
Voltage-current relation $\quad I_{C}=C \frac{d V}{d t}$

$$
\int_{0}^{t} I_{C} d \tau=C \int_{0}^{t} d V=C[V(t)-V(0)]
$$

Can have a step change in current across a capacitor
For a constant current applied across the capacitor

$$
V(t)=\frac{I}{C} t
$$

the capacitor voltage increases linearly with time
For a system with a periodic voltage across the capacitor $V(t+T)=V(t)$

$$
\int_{t}^{t+T} I_{C} d \tau=C \int_{t}^{t+T} d V=C[V(t+T)-V(t)]=0
$$

The average current across the capacitor is zero. $\left\langle I_{C}\right\rangle=0$

Circuit equations:
$u(t)=L \frac{d i_{1}}{d t}+R i_{1}+v_{2}$
$C \frac{d v_{2}}{d t}=i_{1}$
$\left[\begin{array}{l}\left.i_{1} \dot{(} t\right) \\ v_{2}(t)\end{array}\right]=\left[\begin{array}{cc}-R / L & -1 / L \\ 1 / C & 0\end{array}\right]\left[\begin{array}{l}i_{1}(t) \\ v_{2}(t)\end{array}\right]+\frac{1}{L}\left[\begin{array}{l}1 \\ 0\end{array}\right] u(t)$
Take the Laplace transform of both sides

$$
\begin{aligned}
& s \boldsymbol{I} X(s)-x(0)=\boldsymbol{A} X(x)+\boldsymbol{B} U(s) \\
& X(s)=(s \boldsymbol{I}-\boldsymbol{A})^{-1} x(0)+(s \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B} U(s)
\end{aligned}
$$

where $X(s)=\left[\begin{array}{l}I_{1}(s) \\ V_{2}(s)\end{array}\right] ;(s \boldsymbol{I}-\boldsymbol{A})=\left[\begin{array}{cc}s+R / L & 1 / L \\ -1 / C & s\end{array}\right] ; \boldsymbol{B}=\left[\begin{array}{c}1 / L \\ 0\end{array}\right]$
For most cases of interest, there is negligible resistance $R=0$. Then

$$
(s \boldsymbol{I}-\boldsymbol{A})=\left[\begin{array}{cc}
s & 1 / L \\
-1 / C & s
\end{array}\right] ;(s \boldsymbol{I}-\boldsymbol{A})^{-1}=\left[\begin{array}{cc}
\frac{s}{s^{2}+\omega_{0}^{2}} & -\frac{1}{L} \frac{1}{s^{2}+\omega_{0}^{2}} \\
\frac{1}{C} \frac{1}{s^{2}+\omega_{0}^{2}} & \frac{s}{s^{2}+\omega_{0}^{2}}
\end{array}\right]
$$

where $\omega_{0} \equiv 1 / \sqrt{L C}$
For a constant voltage source, $u(t)=V_{0}$ (series inductor prohibits the use of a current source) we need to make a partial fraction decomposition of

$$
\frac{1}{s^{2}+\omega_{0}^{2}} \frac{1}{s}=\frac{1}{\omega_{0}^{2}}\left[\frac{1}{s}-\frac{s}{s^{2}+\omega_{0}^{2}}\right]
$$

The equations for the series LC circuit in the Laplace domain are

$$
\begin{aligned}
I_{1}(s) & =\frac{s}{s^{2}+\omega_{0}^{2}} i_{1}(0)-\frac{1}{\omega_{0} L} \frac{\omega_{0}}{s^{2}+\omega_{0}^{2}} v_{2}(0)+\frac{1}{\omega_{0} L} \frac{\omega_{0}}{s^{2}+\omega_{0}^{2}} V_{0} \\
V_{2}(s) & =\frac{1}{\omega_{0} C} \frac{\omega_{0}}{s^{2}+\omega_{0}^{2}} i_{1}(0)+\frac{s}{s^{2}+\omega_{0}^{2}} v_{2}(0)+\left(\frac{1}{s}-\frac{s}{s^{2}+\omega_{0}^{2}}\right) V_{0}
\end{aligned}
$$

Transforming to the time domain, we obtain

$$
\begin{gathered}
i_{1}(t)=\mathrm{i}_{1}(0) \cos \omega_{0} t-\frac{v_{2}(0)}{\omega_{0} L} \sin \omega_{0} t+\frac{V_{0}}{\omega_{0} L} \sin \omega_{0} t \\
v_{2}(t)=\frac{i_{1}(0)}{\omega_{0} C} \sin \omega_{0} t+v_{2}(0) \cos \omega_{0} t+V_{0}\left(1-\cos \omega_{0} t\right)
\end{gathered}
$$

We express this equation in its "natural" parameters, rather than in L and C.
We have already defined $\omega_{0} \equiv 1 / \sqrt{L C}$. This is the frequency of the sinusoidal oscillation.

The other parameter is $Z_{0} \equiv \sqrt{L / C}$, the coupling between $i_{1}(t)$ and $v_{2}(t)$
The series resonant equations, expressed in L and C are

$$
\binom{i_{1}(t)}{v_{2}(t)}=\left(\begin{array}{cc}
\cos \frac{t}{\sqrt{L C}} & -\frac{\sin \frac{t}{\sqrt{L C}}}{\sqrt{L / C}} \\
\sqrt{\frac{L}{C}} \sin \frac{t}{\sqrt{L C}} & \cos \frac{t}{\sqrt{L C}}
\end{array}\right)\binom{i_{1}(0)}{v_{2}(0)}+\binom{\frac{\sin \frac{t}{\sqrt{L C}}}{\sqrt{L / C}}}{\left(1-\cos \frac{t}{\sqrt{L C}}\right)} V_{0}
$$

and in natural parameters as

$$
\binom{i_{1}(t)}{v_{2}(t)}=\left(\begin{array}{cc}
\cos \omega_{0} t & -\frac{\sin \omega_{0} t}{Z_{0}} \\
Z_{0} \sin \omega_{0} t & \cos \omega_{0} t
\end{array}\right)\binom{i_{1}(0)}{v_{2}(0)}+\binom{\frac{\sin \omega_{0} t}{Z_{0}}}{\left(1-\cos \omega_{0} t\right)} V_{0}
$$

As expected, all of the waveforms are sinusoidal with the frequency determined by $\omega_{0}=1 / \sqrt{L C}$

The initial current and voltage contribute in-phase, $\cos \omega_{0} t$, terms to the subsequent current and voltage.

The initial current and voltage contribute quadrature, $\sin \omega_{0} t$, terms to the subsequent voltage and current.

In many applications, either the initial current or voltage is zero and solutions simplify

For small values of $R, R \ll \omega_{0} L, R \ll 1 / \omega_{0} C$, the results are about the same as when $R=0$

- Sinusoids damp slightly with time $\left(e^{-R / 2 L t}\right)$
- Frequency decreases slightly $\left(\omega_{R}=\omega_{0} \sqrt{1-\left(R / 2 Z_{0}\right)^{2}} ; Z_{0}=\sqrt{L / C}\right.$
- Terms experience a slight phase shift

For large values of $R \gg Z_{0}$ solutions are damped with time constants $L / R, R C$

Circuit equations:
$u(t)=C \frac{d v_{1}}{d t}+\frac{1}{R} v_{1}+i_{2}$
$L \frac{d i_{2}}{d t}=v_{1}$

$\left[\begin{array}{l}v_{1}(t) \\ i_{2}(t)\end{array}\right]=\left[\begin{array}{cc}-1 / R C & -1 / C \\ 1 / L & 0\end{array}\right]\left[\begin{array}{l}v_{1}(t) \\ i_{2}(t)\end{array}\right]+\frac{1}{C}\left[\begin{array}{l}1 \\ 0\end{array}\right] u(t)$
These equations are the "dual" of the series circuit.

- The equations are exactly the same
- Only the coefficients change $v(t) \leftrightarrow i(t)$ and $L \leftrightarrow C$
- Source is a current source; the shunt capacitor prohibits a voltage source By interchanging $v(t) \leftrightarrow i(t)$ and $L \leftrightarrow C$ we write down the circuit equations

$$
\begin{gathered}
v_{1}(t)=\mathrm{v}_{1}(0) \cos \omega_{0} t-\frac{i_{2}(0)}{\omega_{0} C} \sin \omega_{0} t+\frac{I_{0}}{\omega_{0} C} \sin \omega_{0} t \\
i_{2}(t)=\frac{v_{1}(0)}{\omega_{0} L} \sin \omega_{0} t+i_{2}(0) \cos \omega_{0} t+I_{0}\left(1-\cos \omega_{0} t\right)
\end{gathered}
$$

The parallel resonant equations, expressed in terms of ω_{0} and Z_{0} are

$$
\binom{v_{1}(t)}{i_{2}(t)}=\left(\begin{array}{cc}
\cos \omega_{0} t & -\mathrm{Z}_{0} \sin \omega_{0} t \\
\frac{\sin \omega_{0} t}{Z_{0}} & \cos \omega_{0} t
\end{array}\right)\binom{v_{1}(0)}{i_{2}(0)}+\binom{\mathrm{Z}_{0} \sin \omega_{0} t}{\left(1-\cos \omega_{0} t\right)} I_{0}
$$

Would have looked even more symmetrical had we used, instead of Z_{0},

$$
Y_{0}=Z_{0}^{-1}=\sqrt{C / L}
$$

We point out several features common to the series and parallel resonant equations.

- The two variables, (i, v), are in quadrature.
- They oscillate with the same frequency but $\pi / 2$ out of phase
- The frequency of oscillation and coupling between voltage and current are the same in both cases
- The systems are continuous at $t=0$
- $i(t)(v(t))$ can only couple to $v(t)(i(t))$ in quadrature, via $\sin \omega_{0} t$

Section 4

- Typical Load Types
- Resistive - Electron Beam Filament
- Resistive - Titanium Sublimation Pumps (TSPs)
- DC Magnets
- Klystrons
- Electron Beam Gun
- Pulsed Magnets

Electron Beam Guns (Filament) / Titanium Sublimation Pump Heaters

- High temperature - 1,500 ${ }^{\circ}$ C not uncommon
- High current - 10 to 100s of amperes, low voltage, typically $<50 \mathrm{~V}$
- Short thermal time-constants - 100s of milliseconds, power stability needed to keep temperature constant
- Resistive with (+) metal or (-) carbon temperature coefficient of resistance
- Power with constant voltage, current or power. Might have to avoid DC (more later in AC Controllers) depending upon circumstances
- Heat gradually to avoid thermally shocking and breaking brittle loads
- Usually linear V-I and R-T characteristics, but sometimes non-linear

Resistive Load Characteristics

Electron Beam Gun Filaments / Titanium Sublimation Pump Heaters

Ideal Characteristics

- Low potential barrier (work function)
- High melting point
- Chemical stability at high temperatures
- Long life

Work function - the minimum energy which must be supplied to extract an electron from a solid; symbol ϕ, units J (joule), or more often eV (electron-volt). It is a measure of how tightly electrons are bound to a material. The work function of several metals is given below:

Material	Work function (eV)
Sodium	2.75
Silver	4.26
Titanium	4.33
Silicon	4.60
Gold	5.31
Graphite	5.37
Tungsten	5.40

- Titanium Sublimation Pumps (TSPs) are used to pump chemically reactive, getterable gases, such as $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{CO}_{2}$ from vacuum vessels. Titanium is effective, easily sublimed, and inexpensive.
- TSPs filaments are 85% titanium and 15% molybdenum, a combination which prevents premature filament "burnout" and have high pumping speeds, typically $10 \mathrm{l} / \mathrm{sec} / \mathrm{cm}^{2}$

Sublimate - To transform directly from the solid to the gaseous state. Deposition is the passing from the gaseous to the solid state without becoming a liquid.

- Linear and inductive with long (mS to sec) electrical time-constants ($\tau=L / R$)
- Families include dipole steering, quadrupole and sextupole focusing / defocusing, corrector / trims
- Driven by constant current and require high current stability (\triangle I in PPM)
- Correctors / trims frequently require current modulation for beam-based alignment / diagnostic systems, orbit correction and stabilization
- Air-cooled or water-cooled (temperature or flow interlocks to power supply)
- Occasionally series-connected in strings and powered from a common power supply to reduce power system cost

DC Magnet Loads - Characteristics

DC Magnet Loads - Characteristics

Using Kirchoff's voltage law (KVL):
$-v(t)+\left(R_{\text {cable }}+R_{\text {magnet }}\right) i(t)+L \frac{d i(t)}{d t}=0$
$R i(t)+L \frac{d i(t)}{d t}=v(t)$
Converting to the s domain
$R I(s)+\operatorname{LsI}(s)-L i(0)=V(s), \quad$ But $i(0)=0$ and $V(s)=\frac{V}{s}$

Rearranging gives
$I(s) \frac{L}{R}\left(s+\frac{R}{L}\right)=\frac{V}{R} \frac{1}{s}$

$$
\text { let } \frac{R}{L}=\alpha \text { and } \frac{L}{R}=\frac{1}{\alpha}=\tau
$$

$I(s)=\frac{V}{R} \frac{\alpha}{s(s+\alpha)}$
$i(t)=\frac{V}{R}\left(1-e^{-\frac{t}{\tau}}\right)$
$v_{L}(t)=V e^{-t / \tau}$

DC Magnet Loads - Characteristics

DC V-I Characteristic

DC Magnet Loads - Characteristics

DC Magnet Loads - Characteristics

String (series-connect) magnets for economy when there are no special optics requirements. The current in each series-connected magnet is the same.
:-insertion device (ID) is a component in modern synchrotron light sources. They are periodic magnetic structures that stimulate highly brilliant, forwarddirected synchrotron radiation emission by forcing a stored charged particle beam to perform wiggles, or undulations, as they pass through the device. This motion is caused by the Lorentz force, and it is from this oscillatory motion that we get the names for the two classes of device, which are known as wigglers and undulators

Klystron Load

- Klystrons in RF and microwave systems accelerate particle beams. They need a power supply and an RF source.
- Their transfer function is called perveance (k) which expresses the klystron beam current and accelerating voltage relation. It is usually expressed as μ p.
- In LINACs they operate in a pulsed mode to accelerate particle beams
- In boosters and storage rings they operate in continuous-mode to supply make-up energy to the particle beam to compensate for energy losses or for beam bunching

Klystron Load

Section 4 - Types of Loads

- Electrons and positrons may be accelerated by injecting them into structures with traveling electromagnetic waves
- The microwaves from klystrons are fed into the accelerator structure via waveguides. This creates a pattern of electric and magnetic fields, which form an electromagnetic wave traveling down the accelerator. The beam energy is a function of the energy boost per klystron and the total number of klystrons.

- Electron gun exhibits non-linear V-I characteristics
- Capacitive loading
- High voltage, low DC current
- High peak pulsed current
- Subject to arcing
- Limited fault energy capability - arc protection (crowbar) needed

If work surface (anode) is difficult to insulate - put at ground potential. Float filament at HV.

If work surface (anode) is easy to insulate - float at HV. Put filament at ground potential.

Pulsed Loads - Beam Separators and Deflectors

Characteristics

- Capacitive loading
- High voltage, low DC current
- High peak pulsed current
- Subject to arcing
- Limited energy capability - arc protection (crowbar) needed

Fig. 2 Separator chamber.

- Kicker magnets interact with positively or negatively charged particle beams which, in most cases, are grouped into bunches
- The purpose of an injection kicker is to fully deflect (kick) bunches, without disturbance to the preceding or following bunches, from a beamline into a storage ring
- An ejection kicker will do the inverse, that is,
 kick a particle beam from a storage ring into a working beamline .
- Short time constants ($\tau=L / R$) $\ll 1 \mathrm{mS}$
- Characteristic impedance is like a transmission line
- High voltage, low impedance
- Fast pulse, match or terminating resistors
- Subject to reflection and breakdown

Fig. 5. SLAC-designed kicker magnet.

Top view

Fig. 6. SLAC-style kicker magnet.

Section 5

- Power Line and Other Considerations
- Fundamental Quantities
- Single Phase Systems
- Three Phase Systems
- Transformer Primer
- The Per Unit Calculation System
- Harmonics, Complex Waveforms and Fourier Series
- SCR Commutation as Distortion Cause
- Electromagnetic Compatibility and Interference (EMC/EMI)
- Power Factor
- Generation of sine waves

- Plotting of sine waves

- Sine wave equation

$$
\begin{aligned}
& v(t)=V_{\max } \sin (\omega t) \\
& \omega=2 \pi f
\end{aligned}
$$

Fundamental Quantities - Average and RMS Values

- Average value:

$$
V_{a v e}=\frac{1}{T} \int_{0}^{T} v(t) d t
$$

for $A C$ sine system

$$
v(t)=V_{m} \sin (\omega t), \text { then } \quad V_{\text {ave }}=\frac{2}{\omega T} \int_{0}^{\pi} V_{m} \sin (\omega t) d \omega t=0.636 V_{m}
$$

- RMS value:

$$
V_{r m s}=\sqrt{\frac{1}{T} \int_{O}^{T} v(t)^{2} d t}
$$

for $A C$ sine system

$$
V_{r m s}=\sqrt{\frac{1}{\omega T} \int_{0}^{2 \pi}\left(V_{m} \sin (\omega t)\right)^{2} d \omega t}=\frac{V_{m}}{\sqrt{2}}=0.707 * V_{m}
$$

Single Phase Systems

For 1ϕ AC input
$V_{\phi}=V_{L L}$
$I_{\phi}=I_{L} \quad$ where V_{ϕ} and I_{ϕ} are $R M S$ values

Power is, in general, complex $S=V I^{*}\left(I^{*}\right.$ is complex conjugate of I)
If the load is not a pure resistor, V and I are not in phase
The Apparent, Real, and Reactive "Powers" are:
Apparent: $\quad S_{1 \phi}=V_{L L} \cdot I_{L}^{*}=P_{1 \phi}+j Q_{1 \phi} \quad$ (VA)
Real (active): $P_{1 \phi}=V_{L L} \cdot I_{L} \cdot \cos \alpha$ (Watt)

Reactive: $\quad Q_{1 \phi}=V_{L L} \cdot I_{L} \cdot \sin \alpha$
α is the phase angle between $V_{L L}$ and I_{L} with voltage as the reference
When current lags (inductive load), $Q_{1 \phi}>0 \quad S_{1 \phi}=\frac{1}{T} \int_{0}^{T} v_{L L}(t) \cdot i_{L L}^{*}(t) d t$ All "powers" are average "powers"
$\mathrm{S}_{1 \phi}=\sqrt{\frac{1}{\mathrm{~T}} \int_{0}^{T} v_{L L}^{2}(t) d t} * \sqrt{\frac{1}{\mathrm{~T}} \int_{0}^{T} i_{L}^{2}(t) d t}=\frac{1}{T} \int_{0}^{T} v_{L L}(t) i_{L}(t) d t$

Lead and lag refer to the order of the waveforms
In a rectangular plot, (left figure), the waveform leads if it arrives first

- Orange leads Blue leads Yellow

In a polar plot of phasors, phasors rotate $C C W$ with time

- Red leads Blue leads Green

The rectangular plot is the projection of the phasor on the x-axis as it rotates

Single Phase Systems

Instantaneous power real $p(t)$ is the product of $v(t)$ and $i(t)$, both real functions
Derivation: $p(t)=v(t) \cdot i(t)$
Let $\quad v(t)=\sqrt{2} V \cos (\omega t) ; i(t)=\sqrt{2} I \cos (\omega t-\phi)$
then $\quad p(t)=2 V I \cos (\omega t) \cos (\omega t-\phi)$
Using the identity $\cos (a) \cos (b)=1 / 2[\cos (a-b)+\cos (a+b)]$

$$
\begin{aligned}
& p(t)=V I[\cos (\phi)+\cos (2 \omega t-\phi)] \\
& p(t)=V I \cos \phi+V I \cos (2 \omega t-\phi)
\end{aligned}
$$

Using the identity $\cos (u \pm v)=\cos (u) \cos (v) \mp \sin (u) \sin (v)$ $p(t)=V I \cos \phi+V I[\cos 2 \omega t \cos \phi+\sin 2 \omega t \sin \phi]$

Note that:

- $p(t)$ has a DC component and an AC component, at twice the frequency ω
- DC component is a maximum when voltage and current are in phase $(\phi=0)$
- Power is the product of the RMS, not peak, values of $V_{L L}$ and I_{L}
- Reactive power term not obvious

Instantaneous power $S(t)=V(t) \cdot I^{*}(t)$ using phasors
Derivation: $\quad S(t)=V(t) \cdot I^{*}(t)$
Let $\quad V(t)=V_{0} e^{j \omega t} ; I(t)=I_{0} e^{j(\omega t-\phi)}$
then $\quad S(t)=V(t) \cdot I^{*}(t)=V_{0} I_{0} e^{j \omega t} e^{-j(\omega t-\phi)}=V_{0} I_{0} e^{j \phi}$ $S=V_{0} I_{0}(\cos \phi+j \sin \phi)=V_{0} I_{0} \cos \phi+j V_{0} I_{0} \sin \phi=P+j Q$ $P=V_{0} I_{0} \cos \phi ; \quad Q=V_{0} I_{0} \sin \phi$

Note that:

- S, P, Q have no time dependence, due to $S=V \cdot I^{*}$
- Only have DC components; AC components have multiplied out
- Real and reactive power calculations both easily handled
- DC component is a maximum when voltage and current are in phase ($\phi=0$)
- Phasor amplitude now uses RMS values to get proper power

- Voltage and current are in phase at 60 Hz (resistive load)
- Power $=D C+120 \mathrm{~Hz}$ terms, both equal in amplitude

- Voltage leads current by 60° at 60 Hz (partially inductive load)
- Power $=D C+120 \mathrm{~Hz}$ terms, but now unequal in amplitude
- Power is + (delivered to load) and - (returned to the AC line) at 120 Hz
$\cdot+$ and - power are equal when current - voltage are 90° out of phase
- No net power delivered to the load

Example: Voltage, current across an inductor

$$
I_{L}=\frac{V_{0}}{\omega L} \sin \omega t ; \quad V_{L}=L \frac{d I_{L}}{d t}=V_{0} \cos \omega t ; \quad V_{L} I_{L}=\frac{V_{0}^{2}}{2 \omega L} \sin 2 \omega t
$$

$\cos \omega t$ leads $\sin \omega t$, inductor current lags the inductor voltage. No DC term
Example using phasors: $e^{j \omega t}=\cos \omega t+j \sin \omega t$

$$
V_{L}=V_{0} e^{j \omega t} ; I_{L}=\frac{V_{0}}{j \omega L} e^{j \omega t} ; S_{L}=V_{L} I_{L}^{*}=V_{0} e^{j \omega t} \frac{j V_{0}}{\omega L} e^{-j \omega t}=j \frac{V_{0}^{2}}{\omega L}=j Q
$$

Line-line voltage is just the phase voltage
Magnitudes of I_{ϕ} add vectorially

$$
\begin{aligned}
& V_{L L}=V_{\phi} ; I_{L}=\sqrt{3} I_{\phi} \\
& S_{3 \phi}=3 V_{\phi} I_{\phi} \\
& S_{3 \phi}=\sqrt{3} V_{L L} I_{L}
\end{aligned}
$$

$$
V_{B-C}
$$

For both Wye and Delta configurations: $S_{3 \phi}=\sqrt{3} V_{L L} I_{L}$

- $V_{A B}=\left|V_{A B}\right| e^{j 0}$
- $V_{B C}=\left|V_{B C}\right| e^{-j 2 \pi / 3}$
phasor notation of ϕ to ϕ voltages
- $V_{C A}=\left|V_{C A}\right| e^{-j 4 \pi / 3}$

$$
\begin{aligned}
p(t)= & v_{A B}(t) \cdot i_{A}(t)+v_{B C}(t) \cdot i_{B}(t)+v_{B C}(t) \cdot i_{C}(t) \\
= & \frac{\left|V_{A B}\right|}{\sqrt{2}} \cos (\omega t) \frac{\left|I_{A}\right|}{\sqrt{2}} \cos (\omega t-\phi) \\
& +\frac{\left|V_{B C}\right|}{\sqrt{2}} \cos (\omega t-2 \pi / 3) \frac{\left|I_{B}\right|}{\sqrt{2}} \cos (\omega t-2 \pi / 3-\phi) \\
& +\frac{\left|V_{C A}\right|}{\sqrt{2}} \cos (\omega t-4 \pi / 3) \frac{\left|I_{C}\right|}{\sqrt{2}} \cos (\omega t-4 \pi / 3-\phi)
\end{aligned}
$$

For balanced source $\left|V_{A B}\right|=\left|V_{B C}\right|=\left|V_{C A}\right|=V$ and load $\left|I_{A}\right|=\left|I_{B}\right|=\left|I_{C}\right|=I$
Using $\quad \cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)]$ we express $p(t)$ as
$p(t)=V I[\cos (2 \omega t-\phi)+\cos \phi]+V I[\cos (2 \omega t-4 \pi / 3-\phi)+\cos \phi]$ $+V I[\cos (2 \omega t-8 \pi / 3-\phi)+\cos \phi]$

We can show by symmetry that

$$
\cos (2 \omega t-\phi)+\cos (2 \omega t-4 \pi / 3-\phi)+\cos (2 \omega t-8 \pi / 3-\phi)=0
$$

So $\quad p(t)=3 V I \cos \phi$
Power delivered in this balanced system is constant, maximum when $\phi=0$

Three Phase Systems

- 3 times the single phase power with only 3 conductors, not 6
- For balanced load, $p(t)$ is constant

$$
\begin{aligned}
& s(t)= v_{A B}(t) \cdot i_{A}^{*}(t)+v_{B C}(t) \cdot i_{B}^{*}(t)+v_{B C}(t) \cdot i_{C}^{*}(t) \\
&=\left|V_{A B}\right| e^{j \omega t}\left|I_{A}\right| e^{-j(\omega t-\phi)}+\left|V_{B C}\right| e^{j(\omega t-2 \pi / 3)}\left|I_{B}\right| e^{-j(\omega t-2 \pi / 3-\phi)} \\
& \quad+\left|V_{C A}\right| e^{j(\omega t-4 \pi / 3)}\left|I_{C}\right| e^{-j(\omega t-4 \pi / 3-\phi)}
\end{aligned}
$$

For balanced source $\left|V_{A B}\right|=\left|V_{B C}\right|=\left|V_{C A}\right|=V$ and load $\left|I_{A}\right|=\left|I_{B}\right|=\left|I_{C}\right|=I$
All common phase terms in the exponentials multiply out, leaving

$$
S=3 V I e^{j \phi}=P+j Q=3 V I \cos \phi+j 3 V I \sin \phi
$$

Note, from the figure below, that the three symmetric phasors add to zero.
Since $e^{j \theta}=\cos \theta+j \sin \theta$, if the sum of the complex exponentials vanishes, so do the sums of the cosines and sines.

- Needed to transform the load voltage to the line voltage
-Utility power is efficiently transported at high voltage and low current
-Transmission loss due to $I^{2} R$ losses in the conductors
- Transmission lines have large distances between lines to support high voltage isolation
-High voltage may be difficult to handle at the load side
- Clearances
-Devices - semiconductors, resistors, capacitors
- Insulation
- Personnel safety
- Needed to isolate the load from the line for better ground fault immunity and to reduce the magnitude of fault currents
- We want a "perfect" transformer
- Transform line voltage to load voltage
- All input power is transformed to be output power - no losses
- Use magnetic coupling
- Ampere's law: a current, I, generates a magnetic induction, \boldsymbol{B}

$$
\nabla \times \boldsymbol{H}=\boldsymbol{j}+\epsilon_{0} \frac{\partial D}{\partial t} ; \oint \boldsymbol{H} \cdot \boldsymbol{d} \boldsymbol{l}=\iint \boldsymbol{j} \cdot \boldsymbol{d} \boldsymbol{A}=I
$$

(For this discussion, the last term in the first eqn is small and can be neglected)

- Faraday's law of induction: the change in \boldsymbol{B} generates an electric field

$$
\nabla \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t} ;-V_{0}=\oint \boldsymbol{E} \cdot \boldsymbol{d} \boldsymbol{l}=-\frac{d}{d t} \iint \boldsymbol{B} \cdot \boldsymbol{d} \boldsymbol{A}=-\frac{d \Phi}{d t}
$$

- If we put a loop around the changing \boldsymbol{B} we generate a voltage V_{0} (volt/turn)
- N turns generates $N V_{0} ; V=N \frac{d \Phi}{d t}$
- $I \Rightarrow \boldsymbol{H} ; \quad \boldsymbol{B}=\mu \boldsymbol{H} ; d \boldsymbol{B} / d t \Rightarrow V$
- We relate V to I with a quantity, L, called the inductance
- $V=L \frac{d I}{d t}$
- L depends on the system geometrical and material properties
- In objects made from material with large magnet moments

- An external induction field, B, causes the moments to align, generates \boldsymbol{H}
- Energetically favorable for the flux lines to be contained in the object
- $\mu=\mu_{R} \mu_{0} ; \mu_{R} \gg 1\left(\approx 10^{4}-10^{5}\right)$ in iron
- This principle is used in the design of "iron-dominated" magnets to shape the fields generated by the magnets
- B field is always in loops; it has to close on itself $(\boldsymbol{\nabla} \cdot \boldsymbol{B}=0)$
- We want an inductor that contains all of the field loops
- In an iron core, picture frame structure
- \boldsymbol{H} is heavily concentrated and uniform in the core
- $\oint \boldsymbol{H} \cdot \boldsymbol{d l} \simeq H l=N_{1} I_{1}$ where l is the average core circumference
- $\Phi=\iint \boldsymbol{B} \cdot \boldsymbol{d} \boldsymbol{A} \simeq \mu H A$ where A the is typical core cross-section
- $I=N_{1} I_{1}$ where I is total current enclosed in core
- I_{1} is the input current and N_{1} is number of turns
- The voltage generated across each turn is
- $V_{0}=\frac{d \Phi}{d t}=\mu A \frac{d H}{d t}=\mu A \frac{d}{d t}\left(\frac{N_{1} I_{1}}{l}\right)=\frac{\mu A}{l} N_{1} \frac{d I_{1}}{d t}$
- The voltage generated across the N_{1} turn coil is
- $V_{1}=N_{1} V_{0}=\frac{\mu A}{l} N_{1}^{2} \frac{d I_{1}}{d t}=L_{11} \frac{d I_{1}}{d t}$
- $L_{11}=\frac{\mu A}{l} N_{1}^{2}$

Transformer Primer

Transformers (xfmrs) are inductors with linked flux Φ

- The same flux exists in all of the iron
- It generates the same voltage across any conductor loop
- Add a "secondary" coil of N_{2} turns and use that to "transform" the voltage
of the system from V_{1} to $V_{2}=N_{2} V_{0}=\frac{N_{2}}{N_{1}} V_{1}$ with an output current I_{2}
Cannot create power, so loss-less system requires $S_{I N}=V_{1} I_{1}^{*}=S_{\text {OUT }}=V_{2} I_{2}^{*}$
- $I_{2}=\frac{N_{1}}{N_{2}} I_{1} \Rightarrow N_{1} I_{1}=N_{2} I_{2}$ Ampere-turns in equal ampere-turns out

This is the definition of an "ideal" transformer

- $\binom{V_{2}}{I_{2}}=\left(\begin{array}{cc}N_{2} / N_{1} & 0 \\ 0 & N_{1} / N_{2}\end{array}\right)\binom{V_{1}}{I_{1}}$
- All input power transferred to output

Expressing the equations differently

$\binom{v_{1}}{v_{2}}=\left(\begin{array}{ll}L_{11} & L_{12} \\ L_{21} & L_{22}\end{array}\right)\binom{\dot{i_{1}}}{\dot{i_{2}}}=\left(\begin{array}{cc}L_{11} & M \\ M & L_{22}\end{array}\right)\binom{\dot{i_{1}}}{\dot{i_{2}}}$
where M is the mutual inductance between the coils. M is also defined as

$$
M=k \sqrt{L_{11} L_{22}}
$$

Transformer Primer

- An ideal transformer is only a mathematical construct
- The best we can build is a "perfect" transformer
- The transformer still has the "magnetizing" inductance $L_{11}=\frac{\mu A}{l} N_{1}^{2}$
- This inductance is in parallel with the ideal transformer
- Ideal transformer is the limit of the perfect transformer as $\mu \rightarrow \infty$
- In all practical cases the magnetizing inductance is very large
- Its typical current draw on the system is $\approx 1 \%$ of that of the rated transformer load and usually can be neglected for most calculations
- A perfect transformer requires all of the flux from coil 1 couple to coil 2
- But space exists between coils and core and $\mu \neq \infty$
- "Leakage" inductance around each winding; $\Rightarrow k \neq \pm 1$
- Leakage inductance defines an impedance
- Impedance in series with transformer
- Iron core transformers typically used $f \leq 1 \mathrm{kHz}$
- Less lossy ferrites for $f>1 \mathrm{kHz}$

Transformer Primer

Equivalent Transformer Circuit

- The current required to magnetize the core with flux is called the magnetizing current and is made up of two parts:

1. A component out of phase with the induced voltage due to the magnetizing inductance.
2. A component in phase with the induced voltage from losses due to eddy current and hysteresis losses. These losses generate heat in the core.

- The magnetizing inductance is obtained by driving the transformer with the secondary open circuited $\left(I_{2}=0\right)$ and measuring the Primary voltage and current.

$$
L_{m}=\left.\frac{V_{1}}{\omega I_{1}}\right|_{I_{2}=0} \quad\left(L_{m} \gg L_{11}\right)
$$

Transformer Primer - Turns / Voltage / Current Ratios

- As discussed above, the common flux in the transformer core couples the secondary to the primary.
- For each turn in each coil, the flux produces a common Volts/turn

$$
\frac{d \Phi}{d t}=\frac{V_{1}}{N_{1}}=\frac{V_{2}}{N_{2}} \Rightarrow \frac{V_{2}}{V_{1}}=\frac{N_{2}}{N_{1}}
$$

- Because of the magnetizing current
- The input to our ideal transformer is $I_{1}-I_{m}$ and not I_{1}, therefore

$$
\frac{I_{2}}{I_{1}-I_{m}}=\frac{N_{1}}{N_{2}} ; \text { but if } I_{m} \ll I_{1}, \frac{I_{2}}{I_{1}}=\frac{N_{1}}{N_{2}}
$$

We are usually given the impedance R_{2} on the secondary side of the transformer. In order to determine the loading on the source, we want to transform that impedance to the primary, that is, create an equivalent circuit without the transformer. Given

$$
\begin{gathered}
R_{2}=\frac{V_{2}}{I_{2}} \\
R_{1}=\frac{V_{1}}{I_{1}}=\frac{\left(\frac{N_{1}}{N_{2}}\right) V_{2}}{\left(\frac{N_{2}}{N_{1}}\right) I_{2}}=\left(\frac{N_{1}}{N_{2}}\right)^{2} \frac{V_{2}}{I_{2}}=\left(\frac{N_{1}}{N_{2}}\right)^{2} R_{2} \\
\frac{R_{1}}{R_{2}}=\left(\frac{N_{1}}{N_{2}}\right)^{2}
\end{gathered}
$$

Transformer Primer - Impedance Ratios and Reflected Impedances

Example: If $R_{2}=4 \Omega$, what is the value of the reflected resistance as seen on the primary side?

- Flux that does not couple both windings is called the leakage flux and acts like a series inductor called the leakage inductance
- If the secondary is shorted and the magnetizing current is small $\left(I_{m} \ll I_{1}\right)$, then the leakage inductance is proportional to the primary voltage divided by the primary current (or secondary current referred to the primary side)

Leakage inductances on pri. and sec.

- Choose appropriate transformer approximation, convert real transformer to ideal transformer plus associated impedances, then use ideal transformer equations to "transform" impedances across transformer.
- The transformer "percent impedance" is the ratio of $V_{I N} / V_{R A T E D}$ required to obtain full load $I_{\text {OUT }}$ flowing into a shorted secondary

$$
Z_{\%}=\left.100 \cdot \frac{V_{I N}}{V_{\text {RATED }}}\right|_{\text {IOUT }, Z_{L}=0}
$$

- Transformer is rated for
- Voltage rating
- Turns ratio: $V_{2} / V_{1}=N_{2} / N_{1}$
- Voltage isolation requirements
- Power rating: $S=V_{1} I_{1}=V_{2} I_{2}$
- Current rating, resistance of conductors
- Core size
- Cooling
- Impedance
- Inrush current
- Available short circuit current
- Inductive impedance dominates; resistance typically neglected
- Frequency
- Core material
- Coil winding thickness
- Example: Single phase: 12470:480; $500 \mathrm{kVA} ; 6.00 \% ; 60 \mathrm{~Hz}$
- Voltage rating
- Turns ratio: $V_{1} / V_{2}=12470 / 480=25.98 \approx 26 / 1$
- Voltage isolation requirements; Primary must hold off 12.47 kV
- Power rating: $S=V_{1} I_{1}=V_{2} I_{2}=500 \times 10^{3}$
- Full load current: $I_{F}=S / V$
- Primary: $I_{F 1}=500 / 12.47=40.10 \mathrm{~A}$
- Secondary: $I_{F 2}=500 / 0.48=1042 \mathrm{~A}$
- Impedance
- Full load (inductive): $Z_{F}=V / I_{F}=V /(S / V)=V^{2} / S$
- Primary referenced: $Z_{F 1}=12470^{2} / 500 \times 10^{3}=j 311.0 \Omega$
- Secondary referenced: $Z_{F 2}=480^{2} / 500 \times 10^{3}=j 0.4608 \Omega$
- Transformer impedance
- Primary referenced: $Z_{1}=0.06 \cdot Z_{F 1}=j 18.66 \Omega$
- Secondary referenced: $Z_{2}=0.06 \cdot Z_{F 2}=j 0.0276 \Omega$

transformer model

An air gap is undesirable in a transformer because:

- It reduces L_{m}, and a large L_{m} is desired to reduce the magnetizing and inrush current
- It increases L_{l}, and a small L_{l} is desired to lower energy and other losses

Transformer Primer - Homework Problem \# 1

Calculate the output voltage in the circuit shown below.

- Low frequency, 60 Hz , transformers almost always use laminated iron cores to reduce Eddy Current and hysteresis losses
- For low power applications $<2.5 \mathrm{~kW}$ single phase transformers are used to eliminate the need for costly 3 phase input power lines.
- 3 phase lines and transformers are used to reduce the cost of higher power systems (usually $>2.5 \mathrm{~kW}$)
- 3 phase lines allow the use of phase shifting transformers to generate any number of output phases

Transformer Primer - Three Phase Most Common Types

Single core and 3 core three phase transformers

Wye-Wye Transformer

Three phase Transformers

- A three phase transformer can be constructed with 1 core or 2 or 3 independent cores
- Independent core transformers are more expensive (use more steel) and can result in line imbalances

Wye-Wye Transformer

Delta - Delta Transformer

EXTENDED DELTA 13.8 kV to $480 \mathrm{~V} 7.5^{0}$

Extended Delta-Wye Transformer 3 core

PRIMARY VOLTAGE RELATIONSHIP

SECONDARY VOLTAGE RELATIONSHIP

Standards for Power Rectifier Transformers

1) Practice for Semiconductor Power Rectifiers ANSI C34.2-1973
2) IEEE standards for Transformer and Inductors for Electronic Power Conversion Equipment ANSI/IEEE std 388-1992

Insulation Class Recommendations for Rectifier Transformers

1) Oil filled, $65^{\circ} \mathrm{C}$ rise over ambient (paper oil insulation)
2) Dry type, Class $B 80^{\circ} \mathrm{C}$ rise over ambient, (paper, varnish)
3) Dry type, Class H $150^{\circ} \mathrm{C}$ over ambient (fiberglass, epoxy)

Phase Relationship and labeling

1) General Requirements for Distribution Power and Regulating Transformers ANSI C57.12.00-1973

Low Frequency Transformers have been around a long time and designs are well established. There are a few problems related to rectifier operation that should be considered when using transformers;

1) Harmonic currents in the core and coils can result in excessive losses.
2) Presence of DC and/or second harmonic currents/ voltage can saturate the core resulting in more harmonics and excessive core hysteresis loss.
3) Short circuits are common in rectifiers resulting in high forces on the coils and the coil bracing resulting in coil faults.
4) Connection to the center of a wye can generate excessive third harmonic current resulting in voltage distortion and overheating.
5) The fast switching voltages of rectifiers under commutation can produce nonuniform voltage distribution on coil windings resulting in insulation failure.

14 Three Phase Systems - Delta - Wye Configuration - The Preferred Choice

$$
\begin{aligned}
& I_{A}=\left|I_{A}\right| e^{-j 30} \quad I_{B}=\left|I_{B}\right| e^{-j 150} \quad I_{C}=\left|I_{C}\right| e^{-j 270} \\
& \left|I_{A}\right|=\left|I_{B}\right|=\left|I_{C}\right| \\
& I_{N}=I_{A}+I_{B}+I_{C} \\
& I_{N}=\left|I_{A}\right|[(0.87-j 0.5)+(-0.87-j 0.5)+(0+j 1)]=0
\end{aligned}
$$

There is no neutral current flow if load is balanced and linear

14Three Phase Systems - Neutral Wire Size - Unbalanced and/or Non-linear Loads

For balanced non-linear loads

$$
\left|I_{A}\right|=\left|I_{B}\right|=\left|I_{C}\right|=\left|I_{L}\right|
$$

$\left|I_{N}\right|=\sqrt{\left|I_{A}\right|^{2}+\left|I_{B}\right|^{2}+\left|I_{C}\right|^{2}}=\sqrt{3} I_{L}$

For unbalanced linear or non-linear loads

$$
\left|I_{A}\right| \neq\left|I_{B}\right| \neq\left|I_{C}\right|
$$

$\left|I_{N}\right|=\sqrt{\left|I_{A}\right|^{2}+\left|I_{B}\right|^{2}+\left|I_{C}\right|^{2}}$
The neutral conductor can safely be sized for $\sqrt{3} * \operatorname{MAX}\left(I_{A}, I_{B}, I_{C}\right)$

Fundamental Quantities American Commercial and Residential AC Voltages

Class	Voltage	Type	Derivatives
High Voltage	138 kV	3ϕ	None
	12.47 kV	3ϕ	None
	4.16 kV	3ϕ	None
Low Voltage	480 V	3ϕ	None
	240 V	1ϕ	None
	1208 V	3ϕ	$120 \mathrm{~V}, 1 \phi$
	1ϕ	$120 \mathrm{~V}, 1 \phi$	

$$
V_{L L}(R M S)=\sqrt{\frac{1}{T} \int_{0}^{T} v_{L L}^{2}(t) d t}
$$

The Per Unit Calculation System

Why Mentioned Here

- Because the power supplies will interface to the AC line
- Because all AC power equipment (generators, motors, transformers and chokes) impedances are expressed in \%
- Because line limitations (short-circuit currents, arc flash, V droop, transients, harmonics) must be considered. These effects are usually calculated in the per unit system

Why Used

- To make quantities and values convenient and manageable
- To put quantities on a single per phase or 3-phase basis
- To avoid having to remember to correct for transformer turns ratios, reflected voltages, current and impedances
- No worries about delta or wye configurations

The Per Unit Calculation System

Example - various locations on one-line diagram

Single phase:

- Power base: $\left(S_{1 \phi}, P_{1 \phi}, Q_{1 \phi}\right) \sim \mathrm{kVA}$
- Voltage base: $V_{1 \phi}=V_{L N} \sim \mathrm{kV}$
- Current base: $I_{1 \phi}=S_{1 \phi} / V_{1 \phi} \sim A$
- Impedance base: $Z_{1 \phi}=V_{1 \phi} / I_{1 \phi}=V_{1 \phi} /\left(S_{1 \phi} / V_{1 \phi}\right)=V_{1 \phi}^{2} / S_{1 \phi} \sim \mathrm{k} \Omega$ Three phase:
- Power base: $S_{3 \phi}=3 S_{1 \phi}$
- Voltage base: $V_{3 \phi}=V_{L L}=\sqrt{3} V_{L N}=\sqrt{3} V_{1 \phi} \sim \mathrm{kV}$
- Current base: $I_{1 \phi}=S_{3 \phi} / 3 V_{L N}=S_{3 \phi} /\left(\sqrt{3} V_{L L}\right)=S_{3 \phi} /\left(\sqrt{3} V_{3 \phi}\right)$
- Impedance base: $Z_{3 \phi}=V_{3 \phi}^{2} / S_{3 \phi}=3 V_{1 \phi}^{2} /\left(3 S_{1 \phi}\right)=V_{1 \phi}^{2} / S_{1 \phi}=Z_{1 \phi}$

A transformer impedance of 5\% means:

- The short circuit current is $20 X$ rated full load input / output
- The voltage drop across the transformer at full load is 5\% of rated

The Per Unit Calculation System

- The bases of all devices in a system may not be all the same
- If you design a new system, they likely will be
- However, if a $124.7 \mathrm{kV}: 12.47 \mathrm{kV}, 10000 \mathrm{kVA}$ transformer fails you can replace it with a spare $139 \mathrm{kV}: 13.9 \mathrm{kV}, 15000 \mathrm{kVA}$ transformer
- Has the same turns ratio
- Will support the required voltage and power requirements
- If the bases of the devices change, one needs to transform the given p.u. in the original basis to the p.u. in the new basis.
- p.u. = actual value / Base value
- Requirements on bases:
- Turns ratios across transformers must be preserved
- Actual impedances must be preserved
- Voltage, current relation in Per Unit: $I=S / V$
- Since we need to maintain the turns ratio for both V and I at each transformer, and they are inverses of each other, we need a single, uniform power base (S) throughout the system.
- Impedance transformation:

$$
\begin{aligned}
& Z_{p u}=\frac{Z_{\text {actual }}}{Z_{\text {base }}} \Rightarrow Z_{\text {actual }}=Z_{p u} Z_{\text {base }} \\
& Z_{\text {pu-new }} Z_{\text {base-new }}=Z_{\text {pu-given }} Z_{\text {base-given }} \\
& Z_{\text {pu-new }}=Z_{\text {pu-given }} \frac{Z_{\text {base-given }}}{Z_{\text {base-new }}} \\
& Z_{p u-n e w}=Z_{p u-\text { given }} \frac{\left(\text { Base } \mathrm{kV}_{\text {given }}\right)^{2}}{\text { Base } \mathrm{kVA}_{\text {given }}} \frac{\text { Base } \mathrm{kVA}}{\text { new }} \text { } \\
& Z_{\text {pu-new }}=Z_{\text {pu-given }}\left(\frac{\text { Base } \mathrm{kV}_{\text {given }}}{\text { Base } \mathrm{kV} V_{\text {new }}}\right)^{2} \frac{\text { Base } \mathrm{kVA}}{\text { new }} \text { }{\text { Base } \mathrm{kVA}_{\text {given }}}^{\text {Bas }}
\end{aligned}
$$

Choose the system and base that yield the most convenient numbers and calculations!

The Per Unit Calculation System

Establish Configuration, then Power, Voltage, Current and Impedance Bases			
Base	Per ϕ Phase	3 Phase	Notes
S, P, Q	$=$ Base kVA	$\begin{aligned} & =\text { Base } k V A \\ & =3^{*} \text { per } \phi \text { Base } k V A \end{aligned}$	One power base must be used throughout
V	$=$ Base kV (L-N)	$=$ Base kV (L-L)	V Base location dependent
I	= Base kVA / Base kV	= Base $\mathrm{kVA} / \sqrt{3}$ Base kV	I Base location dependent
Z	$=(\text { Base kV })^{2} /$ Base $k V A$	$=(\text { Base kV })^{2} /$ Base kVA	Z Base location dependent Z Base phase independent per ϕZ Base $=3 \phi Z$ Base

Calculate the impedances of each transformer (referred to their primaries)

- $T 1: X_{1 P}=0.10 \cdot V_{1 P}^{2} / S_{1 P}=0.10 \cdot 13.8^{2} / 15=j 1.270 \Omega$
- T2: $X_{2 P}=0.05 \cdot V_{2 P}^{2} / S_{2 P}=0.05 \cdot 138^{2} / 10=j 95.22 \Omega$

Transform all of the impedances upstream to section A

$$
Z_{A}=j 1.270+j\left(\frac{13.8}{138}\right)^{2} 95.22+\left(\frac{13.8}{138} \frac{138}{69}\right)^{2} 300=(12+j 2.222) \Omega
$$

Calculate currents

$$
I_{A}=\frac{13800}{12+j 2.222}=1131 \angle-10.5^{\circ} ; \quad\left|I_{B}\right|=113.1 ; \quad\left|I_{C}\right|=226.2
$$

14 The Per Unit Calculation System - 1ф Example to Calculate Line Currents

Establish Bases - S constant throughout; V^{\prime} s preserve turns ratios

Section A
Base $S=10000 \mathrm{kVA}$
Base $V=13.8 \mathrm{kV}$
Base $I=\frac{S}{V}=\frac{10000 \mathrm{kVA}}{13.8 \mathrm{kV}}$

$$
=725 \mathrm{~A}
$$

Base $Z=\frac{V^{2}}{S}=\frac{(13.8 \mathrm{kV})^{2}}{10000 \mathrm{kVA}}$
$=19 \Omega$

Section B
Base $S=10000 \mathrm{kVA}$
Base $V=138 \mathrm{kV}$
Base $I=\frac{S}{V}=\frac{10000 \mathrm{kVA}}{138 \mathrm{kV}}$
$=72.5 \mathrm{~A}$
Base $Z=\frac{V^{2}}{S}=\frac{(138 \mathrm{kV})^{2}}{10000 \mathrm{kVA}}$
$=1900 \Omega$

Section C
Base $S=10000 \mathrm{kVA}$
Base $V=69 \mathrm{kV}$
Base $I=\frac{S}{V}=\frac{10000 \mathrm{kVA}}{69 \mathrm{kV}}$
$=145 \mathrm{~A}$
Base $\begin{aligned} Z & =\frac{V^{2}}{S}=\frac{(69 \mathrm{kV})^{2}}{10000 \mathrm{kVA}} \\ & =476 \Omega\end{aligned}$
$=476 \Omega$

The Per Unit Calculation System - 1 $\boldsymbol{\phi}$ Example (Continued)

Obtain pu values

Combine impedances - Solve for I

Referring to the one-line diagram below, determine the line currents in the:
A. Generator
B. Transmission Line
C. M1
D. M2

Per Unit System - Homework Problem \#3

A 1000kVA, 12.47 kV to $480 \mathrm{~V}, 60 \mathrm{~Hz}$ three-phase transformer has an impedance of 5%. Calculate:
a. The actual impedance and leakage inductance referred to the primary winding
b. The actual impedance and leakage inductance referred to the secondary winding
c. The magnetizing inductance referred to the primary winding

- Non-sinusoidal waves are complex and are composed of sine and cosine harmonics
- The harmonics are integral multiples of the fundamental frequency (1 ${ }^{\text {st }}$ harmonic) of the wave. The second harmonic is twice the fundamental frequency, the third harmonic is $3 X$ the fundamental frequency, etc.

Harmonics, Complex Waveforms and Fourier Series

Trigonometric forms of the Fourier Series
$a_{0}=\frac{1}{T} \int_{0}^{T} f(t) d t \quad a_{k}=\frac{2}{T} \int_{0}^{T} f(t) \cos k \omega t d t \quad b_{k}=\frac{2}{T} \int_{0}^{T} f(t) \sin k \omega t d t$
$f(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \frac{2 \pi k t}{T}+b_{k} \sin \frac{2 \pi k t}{T}$

14 Harmonics, Complex Waveforms and Fourier Series - Coefficient Facilitators

No symmetries		a_{k} cosines, b_{k} sines, for all k	May or may not have DC component
Even function symmetry	$f(t)=f(-t)$	Only a_{k} cosines for all $k\left(b_{k}=0\right)$	Has DC component if no half-wave symmetry
Odd function symmetry	$f(t)=-f(-t)$	Only b_{k} sines for all $k\left(a_{k}=0\right)$	No DC component
Half-wave symmetry	$f(t)=-f\left(t-\frac{T}{2}\right)$	a_{k} cosines, b_{k} sines, for odd k	No DC component
Half-wave, even function symmetry	$\begin{aligned} & f(t)=-f\left(t-\frac{T}{2}\right) \\ & f(t)=f(-t) \end{aligned}$	Only a_{k} cosines for odd $k\left(b_{k}=0\right)$	No DC component
Half-wave, odd function symmetry	$\begin{aligned} & f(t)=-f\left(t-\frac{T}{2}\right) \\ & f(t)=-f(-t) \end{aligned}$	Only b_{k} sines for odd $k\left(a_{k}=0\right)$	No DC component

Fourier Series - Examples of Periodic Waveforms

- $f(t)=f(-t)$ even function
- $f(t) \neq-f(t-T / 2)$
- No half-wave symmetry
- DC component, a_{o}
- No sine terms, only cosines, all ks
- $a_{k}=\frac{2}{T} \int_{0}^{T} f(t) \cos k \omega_{0} t d t$

- No even or odd function symmetry
- No half-wave symmetry
- Have sine and cosine terms, all k
- DC component, a_{o}
- a_{o}, a_{k}, b_{k} terms

Fourier Series - Examples of Periodic Waveforms

Fourier Series - Examples of Periodic Waveforms

- $f(t)=f(-t)$ even function
- Half-wave symmetry
- No DC component
- Have a_{k} for odd ks
- $f(t)=-f(-t)$
- Half wave symmetry
- No DC component
- Have b for odd ks
- No even or odd symmetry
- Half wave symmetry
- No DC component
- Have a_{k}, b_{k} for odd $k s$

Fourier Series - Distorted (Complex) Waveforms

A waveform $v(t)$ was analyzed and found to consist of 6 components as shown here.

a. Write the mathematical expression for each component in terms of $\omega=\left(2^{*} \pi\right) / T$
b. Show the harmonic content graphically by plotting the frequency spectrum
c. Give the numerical result of

$$
\begin{array}{ll}
b_{3}=\frac{2}{T} \int_{0}^{T} v(t) \sin 3 \omega t d t ; & \text { Hint: } \int \sin ^{2}(3 \omega t) d t=\frac{t}{2}-\frac{\sin (6 \omega t)}{12 \omega} \\
b_{4}=\frac{2}{T} \int_{0}^{T} v(t) \sin 4 \omega t d t ; & \text { Hint: } \int \cos (4 \omega t) \sin (4 \omega t) d t=\frac{\sin ^{2}(4 \omega t)}{8 \omega}
\end{array}
$$

Where b_{3} and b_{4} are from the results of Part a, above.

Each waveform below can be written as a Fourier series. The result depends upon the choice of origin. For each of the 6 cases, state the type of symmetry present, non-zero coefficients and the expected harmonics.

Signal Total Harmonic Distortion (THD): The ratio of the square root of the summed squares of the amplitudes of all harmonic frequencies above the fundamental frequency to the fundamental frequency for voltage and/or current

$$
\begin{aligned}
\mathrm{THD}_{V} & =\frac{\sqrt{\sum_{i=2}^{\infty} V_{i}^{2}}}{V_{1}} \times 100 \% \\
\mathrm{THD}_{I} & =\frac{\sqrt{\sum_{i=2}^{\infty} I_{i}^{2}}}{I_{1}} \times 100 \%
\end{aligned}
$$

- SCR or diode commutation
- Unbalanced 3-phase, non-linear loads

SCR Commutation as Distortion Cause

State 1: A-B (+) SCR s 1-5 On

State 2 : A-C (+), 5 off, 4 on, SCR s 1 - 4 On

$$
\begin{aligned}
& V_{d}=V_{d o}-V_{u} \\
& V_{L s}=L_{S} \frac{d i}{d t} \\
& V_{u}=\frac{q}{\omega T} \int_{\alpha}^{\alpha+\mu} V_{L S} d(\omega t)=\frac{q}{2 \pi} \omega L_{S} \int_{0}^{I_{d}} d i=\frac{q}{2 \pi} \omega L_{S} I_{d}=q f L_{S} I_{d} \\
& V_{d}=\frac{q \sqrt{2}}{2 \pi} V_{L L} \operatorname{cosmutation} \begin{array}{l}
\text { voltage drop }
\end{array} \\
& V_{d}=\text { reduced output, } V_{d o}=\text { Theoretical output, } V_{u}=\text { commutation drop } \\
& V_{L s}=\text { Voltage drop due to line impedance, } i=\text { phase current } \\
& q=\text { number of rectifier states, } \alpha=S C R \text { gate trigger retard angle, } \mu=\text { commutation overlap angle } \\
& \omega=\text { operating frequency in radians, } f=\text { frequency in } H z, I_{d}=\text { Load current }
\end{aligned}
$$

Conclusions

- The current commutation takes a finite commutation interval u.
- During the commutation interval, three SCRs conduct.
-Vu (and line voltage distortion) is directly proportional to the inductance of the input $A C$ line or transformer and the DC current flowing in the load

SCR / diode commutation line notches:

- Are a source of line voltage distortion
- If deep enough, they cause extra zero crossovers in the line voltage. In 3 phase systems, instead of 2 zero crossovers per cycle, 6 zero crossovers can be experienced
- The extra zero crossovers can upset equipment timing. This can cause SCRs to trigger at the wrong time, damaging the power supply or cause false turn-on and damage to other equipment.

line notch

Reducing SCR commutation effects

- Commutation notches (voltage drops) are directly proportional to system Z and DC load current. To reduce commutation notch depth, use a stiff (large, low Z) line.

Reducing SCR commutation effects on other equipment

- Isolate other equipment by placing them on another line

Australia	AS/NZS 61000.3.6, replaces AS 2279 - "Disturbances in Mains Supply Networks" and is compatible with IEEE 519 recommendations
Britain	G5/4-1 "Standard for Harmonic Control in Power Systems" which is compatible with IEEE 519-1992
Europe	International Electrotechnical Commission IEC 555 Series for harmonic current distortion limits for small devices (extended by IEC 1000 standards) Larger devices IEC61000-3-2, EN61000-3-2
United States	IEEE 519 - 1992 "Standard Practices and Requirements for Harmonic Control in Electrical Power Systems".

SCR Commutation Effects - IEEE 519-1992 Voltage Distortion Limits
Table 10.2 Low Voltage System Classification And Distortion Limits

	Special Applications ${ }^{1}$	General Systems	Dedicated Systems 2
THD (Voltage)	3%	5%	10%
Notch Depth	10%	20%	50%
Notch Area 3	$16,400 V-\mu \mathrm{S}$	$22,800 \mathrm{~V}-\mu \mathrm{S}$	$36,500 \mathrm{~V}-\mu \mathrm{S}$

1. Airports and hospitals
2. Exclusive use converters
3. Multiply by V/480 for other than 480 V systems

$$
\begin{aligned}
& \text { Example : } 480 \mathrm{~V} * \sqrt{2}=678.8 \mathrm{~V} \quad 20 \% \text { notch depth }=135.8 \mathrm{~V} \\
& \frac{22,800 \mathrm{~V}^{*} \mu \mathrm{~S}}{135.8 \mathrm{~V}}=168 \mu \mathrm{~S} \quad \frac{168 \mu \mathrm{~S}}{16.6 \mathrm{mS}} \sim 1 \% \text { of } 60 \mathrm{~Hz} \text { period }
\end{aligned}
$$

14 SCR Commutation Effects-IEEE 519-1992 Load Current Distortion Limits

IS Electromagnetic Compatibility and Interference - Glossary of EMC/EMI Terms
Electromagnetic Interference (EMI) is any electromagnetic disturbance that interrupts, obstructs, or otherwise degrades or limits the effective performance of electronics/electrical devices, equipment or systems. Sometimes also referred to as radio frequency interference (RFI)

Electromagnetic Compatibility (EMC) describes how an electronic device will behave in a "real world" setting of EMI

Broadband Interference This type of interference usually exhibits energy over a wide frequency range and is generally a result of sudden changes in voltage or current. It is normally measured in decibels above one micro-volt (or micro-ampere) per megahertz $d B \mu V / M H z$ or $d B \mu A / M H z$

Narrowband Interference has its spectral energy confined to a specific frequency or frequencies. This type of interference is usually produced by a circuit which contains energy only at the frequency of oscillation and harmonics of that frequency. It is normally measured in "decibels above one micro-volt (or micro-ampere)", e.g., $d B \mu V$ or $d B \mu A$.

Five Types of EMI

- Conducted Emissions (CE) - the EMI emitted into lines and connections by an electronic device. Of particular interest is the EMI conducted onto the AC input power lines
- Conducted Susceptibility (CS) - the EMI present on lines and connections (e.g. power lines) and its effect on a connected electronic device.
- Radiated Emissions (RE) - the EMI radiated by an electronic device
- Radiated Susceptibility (RS) - radiated EMI effect on an electronic device
- Electromagnetic Pulse (EMP) - radiated EMI by lightning or atomic blast

Culprits and Victims

- Culprits are devices, equipment or systems that emit EMI
- Victims are devices, equipment or systems that are susceptible to EMI

USA

- MIL-STD-461E Emissions \& Susceptibility Standard for Defense Electronics This standard sets the Emissions \& Susceptibility (Immunity) noise limits and test levels for electrical / electronic and electromechanical equipment
- MIL-STD-462E is the companion standard that describes the methods and test procedures for certification under MIL-STD-461.
- The object of the standards is to maximize safety and reliability and to minimize downtime and breakdowns of equipment essential for defense.
- The worldwide defense electronics and aerospace community recognizes and generally accepts MIL-STD-461.

USA

Federal Communications Commission (FCC) under the Code of Federal Regulations CFR, Part 15, Sub-Part J, for Class A and B devices and equipment.

Germany

Verband Deutscher Elektrotechniker (VDE) has developed VDE 0871 for Level A and Level B.

European Community

EMC Directives of 1996
The FCC and VDE specifications are similar in that Class A and Level A describe industrial equipment, while Class B and Level B are applicable to consumer equipment.

Conducted emissions

- EMI conducted onto $A C$ Lines by the power supply.
- Typically 10 kHz to 30 MHz
- Measured in $\mu \mathrm{V}$ or $\mathrm{dB}-\mu \mathrm{V}$ (Reference value: $1 \mu \mathrm{~V}=0 \mathrm{~dB}$)

$$
\mathrm{dB}=20 \cdot \log _{10} \frac{\text { measured } \mu \mathrm{V}}{1 \mu \mathrm{~V}}
$$

Example: Measured noise $=100 \mu \mathrm{~V}$

$$
\mathrm{dB}=20 \cdot \log _{10}\left(\frac{100 \mu \mathrm{~V}}{1 \mu \mathrm{~V}}\right)=40 \mathrm{~dB}
$$

Electromagnetic Compatibility and Interference - Conducted Limits

Electromagnetic Compatibility and Interference - Conducted Emissions Test equipment used - Spectrum analyzers with Line Impedance Stabilization Networks (LISNs) that

- Filter and divert external AC line intrinsic noise from the EMI measurements
- Isolate and decouple the AC line high voltage and prevent line transients from damaging spectrum analyzers and other sensitive test equipment
- Present a known, fixed impedance at RF frequencies to the power supply undergoing test

14 Electromagnetic Compatibility and Interference Conducted Emissions - LISNs

LISN considerations:

- Desired impedance (typically 50Ω)
- Bandwidth (typically victims are susceptible to 10 kHz to 30 MHz)
- Line type (DC, Single phase, 3 ф delta, 3 phase wye)
- Line voltage (120 V, $208 \mathrm{~V}, 480 \mathrm{~V}$, etc)
- Power supply input current when under load

Spectrum Analyzers
Anritsu, Keysight, Rigol,
Rohde and Schwarz

14 Electromagnetic Compatibility and Interference - Differential Mode Noise

- Produced as a natural result of complex, high frequency switching V and I
- $V_{1}=-V_{2}$

- Magnitudes are equal
- Phase difference is 180°
- $V_{\text {Load }}=V_{1}-V_{2}=K V L$ unwanted signal
- $I_{D}=\left(\left|V_{1}\right|+\left|V_{2}\right|\right) / R_{\text {Load }}$

- Current flow in opposite directions so that the magnetic field is contained within the spirals
- The tighter the cable twist the greater the containment and noise attenuation
- Shielding the pair (and tying the shield to ground in one or more places) will also increase noise attenuation

EMC/EMI - Common Mode Noise

- Produced as a result of circuit imbalances, currents produced by simultaneous high frequency voltages on (+) and (-) lines capacitively coupled to ground
- $V_{1}=V_{2}=V_{C O M}$
- Magnitudes are equal
- Phase difference is 0^{O}
- $I_{\text {Load }}=\left(V_{1}-V_{2}\right) / R_{\text {Load }}$
- $V_{S U M}=V_{1}+V_{2}=0$

- Common mode current generated by common mode voltages impressed across parasitic capacitances to ground
- Current flows are the same magnitude and in the same direction so that the spirals have no effect on containing the magnetic fields
- The pair must be shielded and the shield tied to ground in one or more places for noise attenuation

- Configurations C, L, Pi, T
- Attenuation 20 to 70 dB
- Filters both differential and common mode noise
http://www.filterconcepts.com/three_phase/3v_series.html

- L and C are not good noise $\left(f>f_{s w}\right)$ filters
- L looks capacitive at $f>f_{s w}$, C looks inductive at $f>f_{s w}$
- $L_{d f}$ is a differential / common mode noise filter inductor and might be a real inductance or the intrinsic inductance of the bus
- $C_{d f}$ is a differential mode noise filter capacitor
- $C_{c f}$ are common mode noise filter capacitors

- C filters are the most common EMI filter, consisting of a 3 terminal feedthru capacitor, used to attenuate high frequency signals

- L filters consist of one inductive element and one capacitor. One disadvantage is that the inductor element in smaller filters consists of a ferrite bead that will saturate and lose effectiveness at larger load currents
- T filters consist of two inductive elements and one capacitor. This filter presents a high impedance to both the source and load of the circuit

- Pi filters consist of two capacitors and one inductor. They present a low impedance to both source and load. The additional capacitor element, provides better high frequency attenuation than the C or L filters

Center
conductor

EMC/EMI - Other Conducted Noise Filters

Plain Transformer

Electrostatic (Faraday) Shielded Transformer

Differential mode currents flow in opposite directions. Magnetic fields cancel, choke presents low impedance, low attenuation to noise

Common mode currents flow in same direction. Magnetic fields add, choke presents high impedance, high attenuation to noise

Main AC Bus

- Separate noisy power supplies from sensitive I \& C loads by Faradayshielded transformers to attenuate common mode noise

EMC/EMI - Radiated Emissions

Radiated emissions

- EMI radiated from cables, transformers, other components.
- Typically 30 MHz to $>1 \mathrm{GHz}$. 30 MHz start because cables and other equipment are effective radiators of frequencies above 30 MHz
- Measured in $\mu V / m$ or $d B-\mu V / m$ (Reference: $1 \mu V / m=0 d B$)
- Measured $3 m$ (residential) or $30 m$ (industrial) from the emitting equipment. TVs located within 3 m of computers in the home and within 30 m in the industrial setting. Limits 100 to $200 \mu \mathrm{~V} / \mathrm{m}$ are $1 / 10$ of TV reception signal
- Industrial FCC Class A limits of $200 \mu \mathrm{~V}$ / m are higher (less severe) than residential Class B because it is assumed that there will be an intervening wall between culprit and victim that will provide some shielding

Test equipment used

- Spectrum Analyzers, rotating tables, conical and/or log periodic antennas and anechoic chambers designed to minimize reflections and absorb external EMI

EMC/EMI - Radiated Emissions

Any component or cable > 1/2 wavelength (λ) will be an efficient radiating or receiving antenna

Cable Lengths Vs Wavelength

Frequency	$\boldsymbol{\lambda}$	$1 / 2 \boldsymbol{\lambda}$	$1 / 4 \boldsymbol{\lambda}$
10 kHz	30 km	15000 m	7500 m
100 kHz	3 km	1500 m	750 m
1 MHz	300 m	150 m	75 m
10 MHz	30 m	$15 \mathrm{~m}=50 \mathrm{ft}$	$7.5 \mathrm{~m}=25 \mathrm{ft}$
30 MHz	10 m	$500 \mathrm{~cm}=16 \mathrm{ft}$	$2.5 \mathrm{~m}=8 \mathrm{ft}$
100 MHz	3 m	$150 \mathrm{~cm}=5 \mathrm{ft}$	$75 \mathrm{~cm}=2.5 \mathrm{ft}$
1 GHz	30 cm	$15 \mathrm{~cm}=6 \mathrm{in}$	$7.5 \mathrm{~cm}=3 \mathrm{in}$

Anechoic Chamber

Biconical $<200 \mathrm{MHz}$ Log Periodic > 200 MHz

Table or turntable to rotate equipment

Faraday's Induced Voltage Law
$\cdot B=T=10,000$ gauss

- $A=m^{2}$
$\cdot(T / s)^{*} m^{2}=V$
$V=\oint \left\lvert\, \in d l=-\frac{d \varphi}{d t}=-\frac{d B}{d t} A \quad\right.$ Hint: Homework problem
$V \propto \frac{d B}{d t}$ the magnitude and rate of change of flux density with time
$V \propto A$ the area of the loop cut by flux

Moral - minimize loop areas by: running supply and return bus or cable conductors together twisting cables whenever possible

Radiated Noise Reduction By PCB Ground Planes

Use shielded cables
Use shielded enclosures (if necessary for interior controls)
22 Ga. Galvanized Steel/24 Oz. Copper Enclosure

http://www. lindgrenrf.com/ note - link no longer valid

$$
\delta=\frac{1}{\sqrt{\pi f \mu \sigma}}
$$

Shielding

- Use ground planes extensively to minimize E and H fields
- If ribbon cable is used, employ and spread ground conductors throughout to minimize loop areas
- Avoid air gaps in transformer/inductor cores.
- Use toroid windings for air core inductors
- If shielding is impractical, then filter

Filtering

- Use common mode chokes whenever practical
- Use EMI ferrites, not low-loss ferrites - useful frequency range 50 to 500 MHz . Be careful of DC or low-frequency current saturation
- Use capacitors and feed-through capacitors, separately or in conjunction with chokes/ferrites. Be mindful of capacitor ESR and inductance

Homework Problem \# 6

A uniform magnetic field B is normal to the plane of a circular ring 10 cm in diameter made of \#10 AWG copper wire having a diameter of 0.10 inches. At what rate must B change with time if an induced current of $10 A$ is to appear in the ring? The resistivity of copper is about $1.67 \mu \Omega * \mathrm{~cm}$.

Hints: $R=\frac{\rho * L}{A}$ and use the 10 cm dimension as the ring diameter

Power Factor - Calculation and Importance

Single Phase System

$$
\begin{aligned}
& S_{I \phi}=V_{\phi} I_{\phi}^{*}=P_{l \phi}+j Q_{l \phi} \\
& \left|S_{l \phi}\right|=\left|V_{\phi}\right|\left|I_{\phi}\right| e^{j \alpha_{V}} e^{-j \beta_{I}} \\
& \left|S_{1 \phi}\right|=\left|V_{\phi}\right|\left|I_{\phi}\right|\left[\cos \left(\alpha_{V}-\beta_{I}\right)+j \sin \left(\alpha_{V}-\beta_{I}\right)\right] \\
& P_{I \phi}=\left|V_{\phi}\right|\left|I_{\phi}\right| \cos \left(\alpha_{V}-\beta_{I}\right) \\
& Q_{l \phi}=\left|V_{\phi}\right|\left|I_{\phi}\right| \sin \left(\alpha_{V}-\beta_{I}\right) \\
& P F=\frac{\left|P_{I \phi}\right|}{\left|S_{I \phi}\right|}=\cos \left(\alpha_{V}-\beta_{I}\right)
\end{aligned}
$$

$0 \leq P F \leq 1$, leading or lagging, voltage is reference

PF is not efficiency

$$
E f f=\frac{P_{o}}{P_{i}}
$$

Balancedthree Phase
$S_{3 \varphi}=3 V_{\varphi} I_{\varphi}=\sqrt{3} V_{L L} I_{L}$
$P_{3 \varphi}=3 V_{\varphi} I_{\varphi} \cos \left(\alpha_{V \varphi}-\beta_{I_{\varphi}}\right)$
$P F_{3 \varphi}=\frac{P_{3 \varphi}}{S_{3 \varphi}}=\cos \left(\alpha_{V_{\varphi}}-\beta_{I_{\varphi}}\right)$

Unbalanced three phase power
$S_{3 \varphi}=V_{\varphi A} I_{\varphi A}+V_{\varphi B} I_{\varphi B}+V_{\varphi C} I_{\varphi C}$
$P_{3 \varphi}$
$=V_{\varphi A} I_{\varphi A} \cos \left(\alpha_{V_{\varphi A}}-\beta_{I_{\varphi} A}\right)+V_{\varphi B} I_{\varphi B}\left(\alpha_{V_{\varphi B}}-\beta_{I_{\varphi} B}\right)+V_{\varphi C} I_{\varphi C}\left(\alpha_{V_{\varphi} C}-\beta_{I_{\varphi} C}\right)$
$P F_{3 \varphi}=\frac{P_{3 \varphi}}{S_{3 \varphi}}$
Power Factor is Important - Capital Equipment Cost

$S=\frac{P}{P F}=\frac{500 \mathrm{~kW}}{0.65}=769 \mathrm{kVA}$
$I=\frac{769 \mathrm{kVA}}{\sqrt{3} * 480 \mathrm{~V}}=925 \mathrm{~A}$
$I_{C B}=925 A^{*} 1.25=1,156 A$, buy 1200 A
Buy 1000kVA switchgear/transformer
$S=\frac{P}{P F}=\frac{500 \mathrm{~kW}}{0.9}=555 \mathrm{kVA}$
$I=\frac{555 \mathrm{kVA}}{\sqrt{3} * 480 \mathrm{~V}}=667 \mathrm{~A}$

$I_{C B}=667 A^{*} 1.25=834 A$, buy $1000 A$
Buy 750kVA switchgear/transformer

$S=\frac{P}{P F}=\frac{5 \mathrm{MW}}{0.65}=7.7 \mathrm{MVA}$
Electric rate $=\frac{\$ 0.06}{k W-H r}$
9 months $* \frac{30 \text { days }}{\text { month }} * \frac{24 \mathrm{hr}}{\text { day }}=\frac{6480 \mathrm{hr}}{y r}$
$7.7 \mathrm{MVA} * \frac{\$ 0.06}{k W-H r} * \frac{6480 \mathrm{hr}}{y r}=\frac{\$ 3.0 \mathrm{M}}{y r}$
$\frac{\$ 3 M}{y r} * 20 y r=\$ 60 M$

Electric rate $=\frac{\$ 0.06}{k W-H r}$
9 months $* \frac{30 \text { days }}{\text { month }} * \frac{24 \mathrm{hr}}{\text { day }}=\frac{6480 \mathrm{hr}}{y r}$
$5.6 M V A * \frac{\$ 0.06}{k W-H r} * \frac{6480 h r}{y r}=\frac{\$ 2.2 M}{y r}$
$\frac{\$ 2.2 M}{y r} * 20 y r=\$ 44 M$

Power Factor Improvement

Higher Power Factor Translates to:

- Lower apparent power consumption
- Lower equipment electrical losses
- Electrically/physically smaller equipment
- Less expensive equipment
- Lower electric bill
- Implies lower distortion of the line voltage and current

Active Power Factor Correction, AC - DC Converter with PF Control

- Appropriate switches (s) are rapidly opened and closed to control charging and discharging of the capacitor ($I_{\text {acomp }}$)
- From KCL, $I_{\text {asin }}=I_{a}+I_{\text {acomp }}$

Homework Problem \# 7

A 10kW, 3 phase power supply has an efficiency of 90% and operates with a lagging power factor of 0.8. Determine the size of the inductor needed to improve the power factor to 1.0.

Section 6 - DC Power Supplies

- Power Supply Definition, Purpose, and Scope
- Rectifiers
- AC Controllers
- Voltage and Current Sources
- Linear Systems Disadvantage
- Switchmode DC Power Supplies
- Advantages
- Switch Candidates
- Converter Topologies
- Pulse Width Modulation
- Conducting and Switching Losses
- Resonant Switching
- High Frequency Transformers and Inductors
- Ripple Filters
- Other Design Considerations
- Power Supplies in Particle Accelerators

Definition

- A "DC power supply" is a device or system that draws uncontrolled, unregulated input AC or DC power at one voltage level and converts it to controlled and precisely regulated DC power at its output in a form required by the load

Purpose

- Change the output to a different level from the input (step-up or step-down)
- Rectify AC to DC
- Isolate the output from the input
- Provide for a means to vary the output
- Stabilize the output against input line, load, temperature and time (aging) changes

Example

- 120 VAC is available. The load is a logic circuit in a personal computer that requires regulated 5 V DC power. The power supply makes the 120 V $A C$ power source and $5 V$ DC load compatible

> Power Line EMI/EMC

Reliability

14 Power Supply Definition, Purpose, and Scope - A DC Magnet Power System

14 Power Supply Definition, Purpose, and Scope - A DC Magnet Power System

Some characteristics of the power supplies most often used in particle or synchrotron accelerators are:

- They are voltage or current sources that use the AC mains (off-line) as their source of energy.
-They can be DC-DC converters
-They are not $A C$ controllers.
- They are not computer power supplies or printed circuit board converters
-They have a single output.
- The output voltage or current is not fixed (such as those used by the telephone and communications industry), but are adjustable from zero to the full rating
-The DC output power ratings range from a few watts to several megawatts
-Typical loads are magnets or capacitor banks
-The bipolar power supplies discussed later are typically used for small corrector magnets are DC-DC converters fed from a common off-line power supply
- They can have pulsed outputs as discussed later

Rectifiers - Diode Characteristics CURRENT

In the reverse direction, there is a small
leakage current up until the reverse breakdown voltage is reached

Forward voltage drop, V_{f} : a small current conducts in forward direction up to a threshold voltage, 0.3 V for germanium and 0.7 V for silicon

Schematic representation

- Forward voltage drop, V_{F} or $V_{F(A V)}$
- Forward current, I_{F} or $I_{F(A V)}$
- Maximum reverse (blocking) voltage, V_{R}
- Average reverse (leakage) current, $I_{R(A V)}$
- Forward recovery time, $t_{f r}$
- Reverse recovery time, $t_{r r}$, usually much less than $t_{f r}$
- Peak surge current, $I_{\text {surge }}$
- Cooling (air, water, oil, other)
- Package style
-I $=I_{S}\left(e^{\frac{q V}{n k T}}-1\right)$ Shockley equation

Rectifiers - Thyristors - Silicon Controlled Rectifier (SCR)

Schematic representation

SCR properties

- It is simply a conventional rectifier with turn on controlled by a gate signal
- It is controlled from the off to on states by a signal applied to the gate-cathode
- It has a low forward resistance and a high reverse resistance
- It remains on once it is turned on even after removal of the gate signal
- The anode-cathode current must drop below the "holding" value in order to turn it off

Rectifiers - SCR Considerations

- Maximum average on-state current, $I_{T A V}$
- RMS on-state current, I IRMS
- Gate trigger current minimum, $I_{\text {Gmin }}$
- Gate current maximum, $I_{G \max }$
- Minimum latching current, I_{L}
- Minimum holding current, I_{H}
- Maximum forward di/dt
- Peak repetitive reverse voltage, $V_{R R M}$
- Peak forward voltage
- Maximum forward $d v / d t$
- Maximum reverse $d v / d t$
- Power dissipation, $P_{A V G}$
- Gate power dissipation, P_{G}
- Maximum junction temperature, $T_{\text {Jmax }}$

Rectifiers - General

- A rectifier converts ac voltage to dc voltage
- Classifications

Uncontrolled rectifiers (diodes)
Controlled rectifiers (all SCRs)
Semi-controlled rectifiers (SCRs and diodes)

Rectifiers - 1ϕ Full Wave ($q=2$ Pulse)

- $q \equiv$ the number of possible rectifier states
- SCR s are electronic switches

State 1: SCRs 1-3 On

Rectifiers - 1 ф Full Wave (q = 2 Pulse)

State 2: SCRs 2-4 On

Rectifiers - 1 фFull Wave ($q=2$ Pulse)

Rectifiers - 1ϕ Full Wave ($q=2$ Pulse)

Rectifier output voltage

$V_{d o}=\frac{1}{T} \int_{t}^{T} v_{L L}(t) d t=\frac{1}{T} \int_{t}^{T} \sqrt{2} V_{L L} \sin \omega t d t=\frac{1}{\omega T} \int_{\alpha}^{\omega T} \sqrt{2} V_{L L} \sin \omega t d \omega t$
the $S C R$ gate trigger retard angle range is $0 \leq \alpha \leq \pi$

$$
V_{d o}=\frac{\sqrt{2} V_{L L}}{\pi}(1+\cos \alpha) \text { for resistive load }
$$

- 2 pulse rectifier - low input power factor, high output ripple
- Ripple frequency is 120 Hz (if input is 60 Hz)
- Large filter needed
- Limited in use to power supplies $<2.5 \mathrm{~kW}$
$V_{d o}=\frac{1}{T} \int_{t}^{T} v_{L L}(t) d t=\frac{1}{T} \int_{t}^{T} \sqrt{2} V_{L L} \sin \omega t d t=\frac{1}{\omega T} \int_{\alpha}^{\omega T} \sqrt{2} V_{L L} \sin \omega t d \omega t$
the $S C R$ gate trigger retard angle range is $0 \leq \alpha \leq \pi$
$V_{d o}=\frac{\sqrt{2} V_{L L}}{\pi}(1+\cos \alpha)$ for resistive load

Assuming the American standard phase rotation of

$$
\begin{aligned}
& V_{A-B}=|V| e^{j 0} \quad V_{B-C}=|V| e^{-j 120} \quad V_{C-A}=|V| e^{-j 240} \\
& \text { The thyristor firing sequence is: } \\
& 1-5,1-4,2-4,2-6,3-6,3-5
\end{aligned}
$$

State 1: $A-B(+) S C R$ s $1-5$ On
Note: Phase SCRs from full retard to full forward slowly to bring the rectifier output voltage up slowly and reduce the capacitor inrush current

Rectifiers - $3 \phi, q=6$ Pulse

State 2 : A-C (+), 5 off, SCR s 1-4 On

Rectifiers - $3 \phi, q=6$ Pulse

State 3: B-C (+), 1 off, SCR s $2-4$ On

$3 \phi, q=6$ Pulse Rectifier

State 4 : B-A (+), 4 off, SCR s 2-6 On
$3 \phi, q=6$ Pulse Rectifier

State 5 : C-A (+), 2 off, SCRs 3-6 On
$3 \phi, q=6$ Pulse Rectifier

State 6 : C-B (+), 6 off, SCR s 3-5 On

$V_{d o}=\frac{3 \sqrt{2}}{\pi} V_{L L} \cos \alpha$
where α is the gate trigger retard angle and conduction is continuous

For $0 \leq \alpha \leq \frac{\pi}{3}$ where α is the gate trigger retard angle and conduction is continuous $V_{d o}=\frac{3 \sqrt{2}}{\pi} V_{L L} \cos \alpha$
$3 \phi, q=6$ Pulse Rectifier Waveforms

Retard angle $\alpha>60$ degrees

For $\frac{\pi}{3}<\alpha \leq \frac{2 \pi}{3}$ where conduction can be discontinuous $V_{d o}=\frac{3 \sqrt{2}}{\pi} V_{L L}\left(1+\cos \left(\alpha+\frac{\pi}{3}\right)\right)$ for resistive load

- 6 pulse - high input PF $\rightarrow 0.95$
- Use soft-start to limit filter capacitor inrush current.
- Output ripple frequency is 360 Hz for 60 Hz input
- Relatively low output ripple and easy to filter with small LC
- Limited to loads $<350 \mathrm{~kW}$
- Diodes or SCRs are air or water-cooled depending upon load current

Three Phase, Phase Shifting Transformer Phase shifting transformer for 12 Pulse operation

Total Primary Current in Wye-Wye-Delta

Total Primary Current in Wye-Wye-Delta

Balanced Bridge Harmonics - Trigonometric Identities

Addition formulae
$\sin (A+B)=\sin A \cos B+\sin B \cos A$
$\sin (A-B)=\sin A \cos B-\sin B \cos A$
Therefore
$\sin (A+B)+\sin (A-B)=2 \sin A \cos B$
$\sin (A+B)-\sin (A-B)=2 \sin B \cos A$
and
$\sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$
$\sin A-\sin B=2 \sin \frac{A-B}{2} \cos \frac{A+B}{2}$
Similarly
$\cos (A+B)=\cos A \cos B-\sin A \sin B$
$\cos (A-B)=\cos A \cos B+\sin A \sin B$
$\cos A+\cos B=2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}$
$\cos A-\cos B=-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}$

Three Phase Wye-Wye

$$
\begin{aligned}
V_{A p} & =V_{L N p} \sin \omega t \\
V_{B p} & =V_{L N p} \sin (\omega t-2 \pi / 3) \\
V_{C p} & =V_{L N p} \sin (\omega t-4 \pi / 3) \\
V_{A B p} & =V_{A p}-V_{B p} \\
& =V_{L N p}[\sin \omega t-\sin (\omega t-2 \pi / 3)] \\
& =2 V_{L N p} \sin \pi / 3 \cos (\omega t-\pi / 3) \\
& =\sqrt{3} V_{L N p} \sin (\omega t-\pi / 3+\pi / 2) \\
& =\sqrt{3} V_{L N p} \sin (\omega t+\pi / 6) \\
V_{B C p} & =\sqrt{3} V_{L N p} \sin (\omega t-\pi / 2) \\
V_{C A p} & =\sqrt{3} V_{L N p} \sin (\omega t-7 \pi / 6)
\end{aligned}
$$

For a transformer ratio, $N_{Y Y}$

$$
\begin{aligned}
V_{s} & =N_{Y Y} V_{p} ; I_{s}=I_{p} / N_{Y Y} \\
V_{A B Y S} & =\sqrt{3} N_{Y Y} V_{L N p} \sin (\omega t+\pi / 6) \\
V_{B C Y S} & =\sqrt{3} N_{Y Y} V_{L N p} \sin (\omega t-\pi / 2) \\
V_{C A Y S} & =\sqrt{3} N_{Y Y} V_{L N p} \sin (\omega t-7 \pi / 6) \\
I_{A B Y S} & =\left(\sqrt{3} I_{L N p} / N_{Y Y}\right) \sin \left(\omega t+\pi / 6+\phi_{Z}\right) \\
I_{B C Y s} & =\left(\sqrt{3} I_{L N p} / N_{Y Y}\right) \sin \left(\omega t-\pi / 2+\phi_{Z}\right) \\
I_{C A Y S} & =\left(\sqrt{3} I_{L N p} / N_{Y Y}\right) \sin \left(\omega t-7 \pi / 6+\phi_{Z}\right)
\end{aligned}
$$

Spectrum of Wye-Wye

Assume full conduction into a large inductive load

The load current, I_{L}, is then constant

The current out of the A leg of the transformer is
$\begin{aligned} I_{A N Y S}(t) & =0 \\ & =I_{L}\end{aligned} \quad \begin{array}{ll}0 \leq t \leq T / 12 \leq t \leq 5 T / 12\end{array}$
$=0 \quad 5 T / 12 \leq t \leq 7 T / 12$
$=-I_{L} 7 T / 12 \leq t \leq 11 T / 12$
$=0 \quad 11 T / 12 \leq t \leq T$
The Fourier series expansion is

$$
b_{n}=\frac{2}{T} \int_{0}^{T} I_{A N Y S}(t) \sin \frac{2 \pi n t}{T} d t
$$

$$
=\frac{4 I_{L}}{T} \int_{T / 12}^{5 T / 12} \sin \frac{2 \pi n t}{T} d t
$$

$$
=-\left.\frac{2 I_{L}}{n \pi} \cos \frac{2 \pi n t}{T}\right|_{T / 12} ^{5 T / 12}
$$

$I_{A N Y S}(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{2 \pi n t}{T}+b_{n} \sin \frac{2 \pi n t}{T}$
$=-\frac{2 I_{L}}{n \pi}[\cos (5 n \pi / 6)-\cos (n \pi / 6)]$
From the symmetry of the waveform,
$a_{0}=a_{n}=0$

$$
b_{n}=\frac{4 I_{L}}{n \pi} \sin \frac{n \pi}{2} \sin \frac{n \pi}{3}
$$

$$
=\frac{2 I_{L}}{T}\left[\int_{T / 12}^{5 T / 12} \sin \frac{2 \pi n t}{T} d t-\int_{7 T / 12}^{11 T / 12} \sin \frac{2 \pi n t}{T} d t\right]
$$

Wye-Wye Primary Current

The current on the primary leg of the transformer, due to the YY winding is
$I_{A N Y p}(t)=N_{Y Y} \frac{4 I_{L}}{n \pi} \sum_{n=1}^{\infty} \sin \frac{n \pi}{2} \sin \frac{n \pi}{3} \sin \frac{2 \pi n t}{T}$
Note that the first term eliminates all of the even harmonics and the second eliminates all multiples of the third harmonic.

Wye-Wye Primary Current

Three Phase Wye-Delta

In order to have balanced current on the primary
$I_{A \Delta s}+I_{B \Delta s}+I_{C \Delta s}=0$
When two delta leg A switches conduct
$I_{B \Delta s}=I_{C \Delta s}$
so that
$I_{A \Delta s}+2 I_{B \Delta s}=0$
The current through the switch is then

$$
\begin{aligned}
& I_{L}=I_{A \Delta s}-I_{B \Delta s} \\
& I_{L}=I_{A \Delta s}+\frac{1}{2} I_{A \Delta s} \\
& I_{L}=\frac{3}{2} I_{A \Delta s} \\
& I_{A \Delta s}=\frac{2}{3} I_{L}
\end{aligned}
$$

Wye-Delta Spectrum

The current through the A winding is

$$
\begin{aligned}
I_{A \Delta s}(t) & =I_{L} / 3 & & 0 \leq t \leq T / 6 \\
& =2 I_{L} / 3 & & T / 6 \leq t \leq T / 3 \\
& =I_{L} / 3 & & T / 3 \leq t \leq T / 2 \\
& =-I_{L} / 3 & & T / 2 \leq t \leq 2 T / 3 \\
& =-2 I_{L} / 3 & & 2 T / 3 \leq t \leq 5 T / 6 \\
& =-I_{L} / 3 & & 5 T / 6 \leq t \leq T
\end{aligned}
$$

$$
=\frac{4 I_{L}}{3 T}\left[\int_{0}^{T / 6} \sin \frac{2 \pi n t}{T} d t+2 \int_{T / 6}^{T / 3} \sin \frac{2 \pi n t}{T} d t+\int_{T / 3}^{T / 2} \sin \frac{2 \pi n t}{T} d t\right]
$$

$$
=-\frac{2 I_{L}}{3 n \pi}\left[\left.\cos \frac{2 \pi n t}{T}\right|_{0} ^{T / 6}+\left.2 \cos \frac{2 \pi n t}{T}\right|_{T / 6} ^{T / 3}+\left.\cos \frac{2 \pi n t}{T}\right|_{T / \beta} ^{T / 2}\right]
$$

$$
a_{0}=a_{n}=0
$$

Again, by symmetry, only the b_{n} terms are non-zero

$$
b_{n}=\frac{2}{T} \int_{0}^{T} I_{A \Delta s}(t) \sin \frac{2 \pi n t}{T} d t
$$

$$
=\frac{2 I_{L}}{3 n \pi}\left[\left(\cos 0+\cos \frac{\pi n}{3}\right)-\left(\cos \frac{2 \pi n}{3}+\cos \pi n\right)\right]
$$

$$
=\frac{4 I_{L}}{3 n \pi}\left(\cos \frac{n \pi}{6} \cos \frac{n \pi}{6}-\cos \frac{5 n \pi}{6} \cos \frac{n \pi}{6}\right)
$$

$$
=\frac{4 I_{L}}{3 n \pi} \cos \frac{n \pi}{6}\left(\cos \frac{n \pi}{6}-\cos \frac{5 n \pi}{6}\right)
$$

$$
=\frac{8 I_{L}}{3 n \pi} \cos \frac{n \pi}{6} \sin \frac{n \pi}{2} \sin \frac{n \pi}{3}
$$

$I_{A \Delta s}(t)=\frac{8 I_{L}}{3 n \pi} \sum_{n=1}^{\infty} \cos \frac{n \pi}{6} \sin \frac{n \pi}{2} \sin \frac{n \pi}{3} \sin \frac{2 \pi n t}{T}$
Note that multiples of the $2^{\text {nd }}$ and $3^{\text {rd }}$ harmonics are also suppressed.
The $\cos \frac{n \pi}{6}$ term does not introduce any extra zeros, but it
does contribute to the sign of the terms.
The non-vanishing terms are $n=1,5,7,11, \cdots$, for which the magnitude is $\sqrt{3} / 2$. Referred back to the primary, the current is

$$
\begin{aligned}
& I_{A \Delta p}(t)=N_{Y \Delta} \frac{8 I_{L}}{3 n \pi} \sum_{n=1}^{\infty} \cos \frac{n \pi}{6} \sin \frac{n \pi}{2} \sin \frac{n \pi}{3} \sin \frac{2 \pi n t}{T} \\
& I_{A \Delta p}(t)=N_{Y Y} \frac{8 \sqrt{3} I_{L}}{3 n \pi} \sum_{n=1}^{\infty} \cos \frac{n \pi}{6} \sin \frac{n \pi}{2} \sin \frac{n \pi}{3} \sin \frac{2 \pi n t}{T}
\end{aligned}
$$

Primary Current in the Wye-Delta

Total Current (Primary Wye Current) in Wye-Wye-Delta

Total Primary Current in Wye-Wye-Delta

The total current in the A leg of the primary is the sum of these two terms.
$I_{A p}(t)=I_{A N Y p}(t)+I_{A \Delta p}(t)$

The only non-vanishing terms in both of these series are $n=1,5,7,11$
and all other values of n which have the same phase

The values of $\cos \frac{n \pi}{6}$ for these n are $\frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}$

The surviving terms in each series have the same magnitude, but half have different signs so that the only remaining harmonics in the total balanced 12 pulse bridge are $\quad n=1,11,13,23,25,35, \cdots$ with coefficient $N_{Y Y} \frac{4 I_{L}}{n \pi}$

Total Primary Current in Wye-Wye-Delta

Harmonic	1	5	7	11	13	15	17	19
Frequency	60	300	420	660	780	900	1020	1140
Amplitude	2.205	0	0	0.200	0.085	0.170	0	0

Total Primary Current in Wye-Wye-Delta

$6 \phi, q=12$ Pulse By Series Bridges

SCR sequence for 30° lagging wye secondary
1-5, 7-11, 1-4, 7-10, 2-4, 8-10, 2-6, 8-12, 3-6, 9-12, 3-5, 9-11
$6 \phi, q=12$ Pulse By Parallel Bridges

Transformer phases and SCR firing sequence are the same as shown for the series-connected bridges

For Both Series And Parallel-Connected Bridges

- Input transformer Δ primary, $\Delta-Y$ secondaries for 6 AC phases
- Δ - Y secondaries are phase shifted 30°
- $5^{\text {th }}$ and $7^{\text {th }}$ harmonics virtually non-existent in input line, $\ll 5 \%$ THD of line voltage $<20 \%$ THD of line current
- Very high input PF to 0.97
- Output ripple frequency is 720 Hz for 60 Hz input
- Use soft-start to limit filter capacitor inrush current
- Freewheeling diode for to allow lagging bridge to conduct
- For loads $\geq 350 \mathrm{~kW}$
$6 \phi, q=12$ Pulse Rectifiers - Summary

Series-connected bridges

- For high-voltage, low-current loads

Parallel-connected bridges

- For high-current, low-voltage loads $\geq 350 \mathrm{~kW}$.
- Inter-phase transformer needed for current sharing
$12 \phi, q=24$ Pulse Rectifier

TRANSFORMER 1

$$
\text { C } 19^{\circ}
$$

- Input transformer polygon primary to $+7.5^{\circ} \Delta-Y$ secondaries for -30° shift
- Input transformer polygon primary to - $7.5^{\circ} \Delta-Y$ secondaries for $+30^{\circ}$ shift
- 15° shift between the 4 sets of bridges
- For loads ≥ 1 MW DC or Pulsed

SCR Output Voltages to Transformer Primary

$V_{R M S}=\sqrt{\frac{1}{\omega T} \int_{\alpha}^{\omega T} \sqrt{2} V_{L L} \sin ^{2} \omega t d \omega t}$
$V_{d o}=\frac{3 \sqrt{2} V_{R M S}}{\pi} * N \quad$ where N is the transformer
secondary to primary voltage ratio

Advantage Compared To In Line SCRs

- $\frac{1}{\sqrt{3}}$ lower SCR current and power (SCR on-voltage is constant)

Disadvantage

- Transformer wiring more complex

Similarities

- Other characteristics similar to In Line SCR controller

- Primary SCR in open wye with filter inductor in lower voltage primary
- High voltage secondary with diodes and filter capacitor isolated from main load
- Protected against secondary faults. High output impedance, capacitor bank isolated from load
- Secondary uses diodes only.

KLYSTRON POWER SUPPLY

- Large Joules under Load
Fault from filter Capacitor
-Low Joules under Fault
- Filter Loss
$V_{\max } * I_{\text {ripple }}$ or $\sim 5 \%$ of Load

KLYSTRON ARC VOLTAGE/CURRENT

^C CURRENT WITH KLYSTRON ARC

-Low Joules under Fault

- Filter Loss 5\% Vmax* Iripple or $\sim 0.03 \%$ of Load

Enerpro FCOG-1200

- 12 pulse operation
- 600 VAC L-L
- Soft start and stop
- Phase loss detection
- Instant gate inhibit
- Phase reference sense
http://www.enerpro-inc.com
- Klystron filaments need power. In some situations, DC power is undesirable. SLAC experience is that DC power can cause certain electrolysis effects that erode the filaments. Hence we sometimes avoid DC and use AC controllers
- So we also briefly discuss AC controllers (Variacs and electronic types), their waveforms, and their suitability to power klystron filaments
- We must also be aware that in certain situations AC powered filaments surrounded by a DC magnetic field (such as in an electron bean gun) can cause filament flexing and early filament failure from mechanical stress. We need to use DC power for these filaments.

Fixed Amplitude AC Controllers - Phase Angle Control

$$
\begin{aligned}
& I_{R M S}=\sqrt{\frac{1}{\omega T} \int_{\alpha}^{\pi}\left(I_{p k} \sin \omega t\right)^{2} d \omega t} \\
& I_{R M S}=\frac{I_{p k}}{\sqrt{\pi}} \sqrt{\frac{\pi}{2}-\frac{\alpha}{2}+\frac{1}{4} \sin 2 \alpha}
\end{aligned}
$$

-For duty cycles $<50 \%$ firing time is two half cycles

- 50% firing and non-firing time are equal at 2 halves on, 2
halves off
-> 50% non-firing time is one-half cycle

2 on, 8 off, $=20 \%$ duty cycle $8 * 8.3 \mathrm{~ms}=66.4 \mathrm{~ms}$ off

Fixed Amplitude AC Controllers - Variable Burst Firing

- 0 to 50% of set-point, on time is 16.7 ms . Off time is varied to achieve control
- 51% to 100%, off time is 16.7 ms . Power is controlled by varying the on cycles

$$
I_{R M S}=\frac{\sqrt{\frac{1}{\omega T} \int_{0}^{\omega T}\left(I_{p k} \sin \omega t\right)^{2} d \omega t}}{T_{o n} / T_{c y c l e}}
$$

Fixed Cycle Time 25 periods to 1000 periods - Use 25 periods here

$$
\begin{gathered}
I_{R M S}=\frac{\sqrt{\frac{1}{\omega T} \int_{0}^{\omega T}\left(I_{p k} \sin \omega t\right)^{2} d \omega t}}{T_{o n} / T_{c y c l e}} \\
T_{\text {cycle }}=\underset{\text { Section 6-DCPower Supplies }}{25 \text { periods }} 417.5 \mathrm{~ms}
\end{gathered}
$$

Requires motor driven Variac. More maintenance than solid-state, few manufacturers, difficult to obtain spare parts in future

Variable Amplitude AC Waveform

$$
\begin{aligned}
& I_{A V G}(D C)=\frac{1}{\omega T} \int_{0}^{\omega T} I_{p k} \sin \omega t d \omega t \\
& I_{A V G}=0.636 * I_{p k} \\
& I_{p k}=1.57 * I_{A V G} \\
& I_{R M S}=\sqrt{\frac{1}{\omega T} \int_{0}^{\omega T}\left(I_{p k} \sin \omega t\right)^{2} d \omega t} \\
& I_{R M S}=\frac{I_{p k}}{\sqrt{2}} \\
& I_{p k}=1.41 * I_{R M S}
\end{aligned}
$$

- Sinusoidal varying current-mechanical and thermal stress on filament
- I and V peaks only as large as needed

SET POINT ADJUSTMENT:
THE OUTPUT SET POINT MAY BE ADUUSTED WTH THE REMOTE 1 K POTENTIOMETER
PROVDED OR WITH A O-5 VDC SIGNAL TO THE J3 CONNECTOR ON THE STEPPER DRIVE CONTROL. MAKE CONNECTIONS TO $j 3-2(+) \& j 3-3(-)$. A NOMINAL +5 VDC SETPOINT SUPPLY IS AVAILABLE AT J3-1 (ADJUSTABLE AT TRIMPOT R22).

AC Controllers for Filaments

| Controller Type | Type | Stress Types |
| :--- | :--- | :--- | Variac | Variable Amplitude AC | Least thermal stress from
 AC current - no off time | |
| :--- | :--- | :--- |
| Intelligent half-cycle | Fixed Amplitude AC | Thermal stress from AC
 current - short off time |
| Burst Variable | Fixed Amplitude AC | Thermal stress from AC
 current - long off time |
| Burst Fixed | Fixed Amplitude AC | Thermal stress from AC
 current - longest off time |
| Phase Angle Triggered | Fixed Amplitude AC | Thermal and mechanical
 stresses from chopped AC
 current |

Transformer Primer - Example

$V_{\text {load }}=24 V D C=V_{\text {peak }}=V_{\text {rms }} \quad I_{\text {load }}=2.5 A=I_{\text {peak }}=I_{\text {rms }}$
$P_{\text {load }}=24 \mathrm{~V} * 2.5 \mathrm{~A}=60 \mathrm{~W}$
$V_{\text {secrms }}=V_{\text {secpeak }} * \sqrt{D}=24.8 \mathrm{~V} * \sqrt{0.5}=17.5 \mathrm{~V}$ each winding
$V_{\text {secrms }}=\sqrt{17.5 V^{2}+17.5 V^{2}}=24.8 \mathrm{~V}$ both windings
$I_{\text {secrms }}=\sqrt{1.77 A^{2}+1.77 A^{2}}=2.5 A$ total from both windings
$P_{\text {sec }}=V_{\text {secrms }} * I_{\text {secrms }}=24.8 \mathrm{~V} * 2.5 \mathrm{~A}=62 \mathrm{~W}$ both secondaries
$V_{\text {prirms }}=V_{\text {pripeak }} * \sqrt{D}=100 \mathrm{~V} * \sqrt{1}=100 \mathrm{~V}$
$I_{\text {prirms }}=\frac{V_{r m s s e c}}{V_{\text {rmspri }}} * I_{\text {secrms }}=\frac{24.8 \mathrm{~V}}{100 \mathrm{~V}} * 2.5 \mathrm{~A}=0.62 \mathrm{~A}$
$P_{p r i}=100 \mathrm{~V} * 0.62 \mathrm{~A}=62 \mathrm{~W}$
$E f f=\frac{P_{\text {load }}}{\text { Psec }} * 100 \%=\frac{60 \mathrm{~W}}{62 \mathrm{~W}} * 100 \%=96.8 \%$

Assume ideal components in the phase-controlled circuit above. For a purely resistive load:
A. Explain how the circuit operates
B. Draw the load voltage waveform and determine the boundary conditions of the delay angle α
C. Calculate the average load voltage and average load current as a function of α
D. Find the RMS value of the load current. Help: $\int \sin ^{2} a x d x=\frac{x}{2}-\frac{\sin 2 a x}{4 a}$

Given the following:

- Input voltage waveform
- Lossless transformer

- Two SCRs and two diodes each with conducting voltage drop of 1 V .

- Inductor, lossless, with very large inductance. Capacitor, large and lossless
- Resistor, 10 ohms, capable of very
 large power dissipation
- Circuit operating under steady-state conditions (i.e. all transients have subsided)

Rectifiers - Homework Problem \# 9 Continued

Problem
A. With the SCRs triggering retard angle at zero degrees, arrange the circuit to provide a full-wave, rectified, and properly low-pass filtered DC output of 200 V into the 10 ohm load resistor.
B. Calculate the load current and power
C. Determine the needed transformer turns ratio.
D. Calculate the circuit efficiency

Increase the SCRs trigger retard angle to 90 degrees and
E. Calculate the new output voltage, current, and power
F. Determine the new circuit efficiency

Independent

- A way to analyze any complex source and load network
- Provides a constant output voltage regardless of the output current
- Fixed DC output voltage
- Provides a constant output voltage regardless of the output current
- Continuously adjustable
- V_{o} dependent on $V_{\text {Prog }}\left(V_{\text {Ref }}\right)$

- Provides a constant output current regardless of the output voltage
- Fixed DC output current

Dependent

- Provides a constant output current regardless of the output voltage
- Continuously adjustable
- I_{o} dependent on $V_{\text {Prog }}\left(V_{\text {Ref }}\right)$

High Voltage Low Current DC supplies

Voltage Multipliers, Cockroft Walton or Cascade Supplies

- Voltage multipliers or cascaded supplies

- Electron beam gun supplies and deflector supplies
- Half-wave, full-wave, three-phase, or six phase
- 20 kV to $1,000 \mathrm{kV}, 0$ to 10 mA DC
- Requires high frequency input drive $\sim 5 \mathrm{kHz}$ to 50 kHz , but at low instantaneous power
- Provides low frequency, but high instantaneous power output
- Advantages - simple, reliable, inexpensive
- Disadvantages- low output power, poor regulation high output ripple, high output Z, 1st stage draws high current

High Voltage Multiplier DC supplies

Voltage multiple 20 kHz 0.5 uFd 1kv stage 10 mA Load

$$
\text { — load }- \text { no-load }- \text { Ripple }
$$

$$
\begin{array}{ll}
\text {-Disadvantages: } & \\
\text { Poor regulation } & E_{\text {drop }}=\left(I_{\text {load }} /\left(f^{*} C\right)\right) *\left(2 / 3 * n^{\wedge} 3+n^{\wedge} 2 / 2-n / 6\right) \\
\text { Large ripple } & E_{\text {ripple }}=\left(I_{\text {load }}\left(f^{*} C\right)\right)^{*} n^{*}(n+1) / 2 \\
\hline
\end{array}
$$

SCR Rectifier / Regulator Current Source

Reference Change	$V_{\text {Ref }} \uparrow$	$V_{\text {Ref }}-V_{L} \uparrow$	$\alpha \downarrow, I_{L} \uparrow$
Reference Change	$V_{\text {Ref }} \downarrow$	$V_{\text {Ref }}-V_{L} \downarrow$	$\alpha \uparrow, I_{L} \downarrow$
Load I Correction	$I_{L} \uparrow$	$V_{\text {Ref }}-V_{L} \downarrow$	$\alpha \uparrow, I_{L} \downarrow$
Load I Correction	$I_{L} \downarrow$	$V_{\text {Ref }}-V_{L} \uparrow$	$\alpha \downarrow, I_{L} \uparrow$

Disadvantage: Line commutated, low bandwidth, some fast changes not regulated

Diode Rectifier With Linear Post-Regulator To Improve Response

Reference Change	$V_{\text {Ref }} \uparrow$	$I_{B} \alpha V_{\text {Ref }}-V_{L} \uparrow$	$I_{E}=I_{L} \uparrow$
Reference Change	$V_{\text {Ref }} \downarrow$	$I_{B} \alpha V_{\text {Ref }}-V_{L} \downarrow$	$I_{E}=I_{L} \downarrow$
Load I Correction	$I_{L} \uparrow$	$I_{B} \alpha V_{\text {Ref }}-V_{L} \downarrow$	$I_{E}=I_{L} \downarrow$
Load I Correction	$I_{L} \downarrow$	$I_{B} \alpha V_{\text {Ref }}-V_{L} \uparrow$	$I_{E}=I_{L} \uparrow$

Diode Rectifier With Linear Post-Regulator To Improve Response

Regulation occurs by changing the transistor $Q 1$ resistance $R_{Q 1}=\frac{V_{C E}}{I_{E}}=\frac{\boldsymbol{V}-V_{L}}{I_{L}}$
V is constant, so if $I_{L} \uparrow, V_{L} \uparrow, V-V_{L} \downarrow, R_{Q 1} \downarrow$

$$
\text { if } I_{L} \downarrow, V_{L} \downarrow, V-V_{L} \uparrow, R_{Q 1} \uparrow
$$

Diode Rectifier With Linear Post-Regulator To Improve Response

- Output I sensed and deviations due to programming, load or other changes are corrected by changing the resistance of the post-regulator.
- Broader bandwidth than line-commutated type
- Very inefficient topology, except when full output is required

Linear Regulator Disadvantage

Linear pass transistor, Q1 $\quad V_{C E S a t}=1 V, \quad I_{E}=I_{L} \propto \beta \mathrm{I}_{B}$

Linear Regulator Disadvantage

Linear pass transistor, Q1 $\quad V_{\text {CESat }}=1 V, \quad I_{E}=I_{L} \propto \beta \mathrm{I}_{B}$

$$
\begin{array}{lll}
V_{S}=100 V & I_{L}=0 \rightarrow 99 A & V_{Q 1}=V_{S}-V_{L} \\
I_{S}=I_{L} & V_{L}=I_{L} * R_{L} & P_{Q 1}=V_{Q 1} * I_{Q 1} \\
P_{S}=V_{S} * I_{S} & P_{L}=V_{L} * I_{L} & E f f=\frac{P_{L}}{P_{S}}
\end{array}
$$

Linear Regulator Disadvantage

$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$$	$\begin{aligned} & \text { E } \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & a^{2} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			
0	0	0	100	0	0	100	0	0	0
10	10	100	90	10	900	100	10	1000	10
20	20	400	80	20	1600	100	20	2000	20
30	30	900	70	30	2100	100	30	3000	30
40	40	1600	60	40	2400	100	40	4000	40
50	50	2500	50	50	2500	100	50	5000	50
60	60	3600	40	60	2400	100	60	6000	60
70	70	4900	30	70	2100	100	70	7000	70
80	80	6400	20	80	1600	100	80	8000	80
90	90	8100	10	90	900	100	90	9000	90
99	99	9801	1	99	99	100	99	9900	99

Linear Regulator Disadvantage

- SCRs full on for full output
- SCRs phased back for lower outputs to improve efficiency.
- Limited range regulation is done by the post-regulator

1. Output I sensed. Deviations due to load or other changes are corrected by SCR rectifier and post-regulator.
2. Rectifier V_{O} is sensed. Slow line changes corrected by BW-limited SCRs. Fast transients corrected by high BW post-regulator
3. Bipolar transistor $V_{C E}$ is monitored. If $V_{C E}$ and/or $V_{C E}{ }^{*} I_{E}$ exceeds a safe value, $S C R$ firing is advanced and rectifier V_{O} is increased accordingly

Disadvantages

- Large output changes cannot be accommodated by post-regulator. Requires retardation of SCR rectifier pulses to improve efficiency
- Low power factor when SCR gate firing is retarded ($\left.V_{\text {load }} \ll V_{\text {line }}\right)$
- Implementation of 2 control loops is complex

The Present - Switchmode Power Supplies Circa 1990 - Present

Recalling The Recent Past

Topology	Disadvantages
- SCRs for rectification and regulation	• Low power factor
	- High AC line harmonic distortion
	- Narrow bandwidth
- Slow transient response gross regulation Fine regulation by post linear transistors	- High AC line harmonic distortion

The Present Popular Solution

Topology	Advantages
-SCRs (or diodes) for rectification	Rectifier SCRs or diodes are full on - hence high power factor (>0.9) possible

- High speed switches • High PF means low AC line harmonic (switch-mode inverters) for regulation distortion ($<5 \%$ V, $<25 \%$ I)
- Fast (10 kHz to 100 kHz) switching means wide bandwidth (> 100 s of Hz), fast transient response (microseconds)
- Fast switching means more corrections per unit time - better output stability
- Simple control loops compared to SCR rectifier/post-regulator combination
- Fast switching, high frequency operation for electrically and physically smaller transformers and filter components

The Present Popular Solution (Continued)

Topology	Disadvantages
- SCRs (or diodes) for	
rectification	- High speed, fast-edge switching can generate conducted and radiated electromagnetic interference (EMI)
- High speed switches	
(switch-mode inverters) for	
regulation	

Introduction To The Switchmode Advantage

The Switchmode Advantage

$$
\begin{array}{lll}
D=\frac{I_{\text {Lavg }}}{I_{\text {peak }}}=\frac{I_{\text {Lavg }}}{99 A} & V_{S}=100 \mathrm{~V} & V_{\text {Lavg }}=I_{\text {Lavg }} * R_{L} \\
I_{S}=I_{S W}=I_{L} & I_{S W R M S}=99 A^{1 / 2} * D^{1 / 2} & V_{L R M S}=99 V^{*} D^{1 / 2} \\
E f f=\frac{P_{L}}{P_{S}} * 100 \% & P_{S}=P_{S W}+P_{L} & P_{S W}=V_{S W R M S} * I_{S W R M S} \\
& I_{L a v g}=0 \rightarrow 99 A \\
& I_{L R M S}=99 A^{*}=D^{1 / 2} \\
& & V_{L R M S} * I_{L R M S}
\end{array}
$$

The Switchmode Advantage - Waveshapes

The Switchmode Advantage - Calculations

			$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$					
0	0	0	0	0	0	0.00	0.0	0	0	$N A$
10	0.101	10	31	31	990	0.32	31.5	10	1000	99
20	0.202	20	44	44	1980	0.45	44.5	20	2000	99
30	0.303	30	54	54	2970	0.55	54.5	30	3000	99
40	0.404	40	63	63	3960	0.64	62.9	40	4000	99
50	0.505	50	70	70	4950	0.71	70.4	50	5000	99
60	0.606	60	77	77	5940	0.78	77.1	60	6000	99
70	0.707	70	83	83	6930	0.84	83.2	70	7000	99
80	0.808	80	89	89	7920	0.90	89.0	80	8000	99
90	0.909	90	94	94	8910	0.95	94.4	90	9000	99
99	1	99	99	99	9801	1.00	99.0	99	9900	99

The Switchmode Advantage - Plots

Linear regulator

Switchmode regulator

SCR Regulation Vs Switchmode Regulation

	SCR	Switchmode
Efficiency	Low at low load, high at full load	High, whether low or high load
Operating frequency	60 Hz	10 kHz to 1,000 kHz
Transient Response	Tens of milliseconds	Tens of microseconds
Short-term-stability	100s of ppm	10s of ppm
Input filter	Large	Smaller, HF regulator provides supplemental filtering
Isolation/Line-matching transformer	Large and upstream of the rectifiers	Smaller because of high frequency. Downstream of the regulator
Output filter	None	High frequency ripple = smaller size
Power factor	Low when output is low	Always high
Line distortion	High when output is low	Always low
EMI	High when output is low	High, but higher frequency, easier to filter

Linear Vs. Switchmode- Advantage Summary

Linear	Switchmode
Output current/voltage is adjusted by varying pass transistor resistance	Output current/voltage is adjusted by varying switch duty factor
Transistor voltage and current are in phase so transistor power loss is high	Switch voltage and current are out of phase so switch power is low
Efficiency is dependent upon the output operating point and is maximum at 100 \% load	Efficiency is high and relatively constant

Line Commutated Switches

- Typically thyristor (4 - element) family devices SCRs, Triacs
- Employ natural current zero occurs each 1/2 cycle for turnoff
- Slow, tied to 60 Hz line and no turnoff control
- Not suitable as fast switch

Force Commutated

- Typically SCRs, Triacs
- Artificial current zero is manufactured by precharged capacitor $I_{c}=-I_{\text {Load }}$
- Complex and power-consuming charging and discharging circuits for capacitor
- Not suitable approach for fast switches

Self Commutated

- Devices have the ability to turn on or turn off by the application of a forward or reverse bias to the control elements (gate - emitter)
- Typically Bipolar Junction Transistors (BJTs), Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) or Insulated Gate Bipolar Junction Transistors (IGBTs)
- Only self-commutated switches used in modern switchmode power supplies

Self-Commutated Device	Bipolar Junction Transistor (BJT)	Metal Oxide Field Effect Transistor (MOSFET)	Insulated Gate Bipolar Transistor (IGBT)
Symbol			
Available Ratings	$\begin{aligned} & 600 \mathrm{~V}, 10 \rightarrow 100 \mathrm{~A} \\ & 1000 \mathrm{~V}, 10 \rightarrow 100 \mathrm{~A} \end{aligned}$	$\begin{gathered} 150 \mathrm{~V}, 10 \rightarrow 600 \mathrm{~A} \\ 600 \mathrm{~V}, 10 \rightarrow 100 \mathrm{~A} \\ 1200 \mathrm{~V}, 10 \rightarrow 100 \mathrm{~A} \end{gathered}$	$600 \mathrm{~V}, 10 \rightarrow 800 \mathrm{~A}$ $1200 \mathrm{~V}, 10 \rightarrow 2400 \mathrm{~A}$ $1700 \mathrm{~V}, 50 \rightarrow 2400 \mathrm{~A}$ $3300 \mathrm{~V}, 200 \rightarrow 1500 \mathrm{~A}$ $6500 \mathrm{~V}, 200 \rightarrow 800 \mathrm{~A}$
Switching Speed	$D C \leq f s \leq 2 \mathrm{kHz}$	$D C \leq f_{s} \leq 1,000 \mathrm{kHz}$	$D C \leq f_{s} \leq 20 \mathrm{kHz}$
$\begin{aligned} & \text { Vce or Vds } \\ & \text { f(Vge/Vgs, Ic/Id) } \end{aligned}$	$0.5 \mathrm{~V} \rightarrow 1.5 \mathrm{~V}$	$1.5 \mathrm{~V} \rightarrow 6 \mathrm{~V}$	$1.0 \rightarrow 3.0 \mathrm{~V}$
Conduction Loss (Vce*Ic) or (Vds*Id)	Lowest	Highest	Reasonable
Control Mode	Current	Voltage	Voltage

- Used in vast majority of switchmode power supplies, except MOSFETs for corrector / trim bipolars
- Voltage controlled device - faster than BJT
- MOSFET faster, but $V_{D S}$ too large
- 20 kHz for $P W M$
- Robust, failure rate < 50 FITs
- Commercially available since 1990

IGBT

IGBT Availability	
600 V	$10 \rightarrow 800 \mathrm{~A}$
1200 V	$10 \rightarrow 2400 \mathrm{~A}$
$1600 / 1700 \mathrm{~V}$	$50 \rightarrow 2400 \mathrm{~A}$
$2500 / 3300 \mathrm{~V}$	$200 \rightarrow 1500 \mathrm{~A}$
$4500 / 6500 \mathrm{~V}$	$200 \rightarrow 800 \mathrm{~A}$

Available as 6-pack, half-bridge, single switch

Fuji Electric (Collmer)	https://www.fujielectric.com/products/semiconductor/
Infineon (Eupec, IRF)	$\underline{\text { https://www.infineon.com/cms/en/product/power }}$
Hitachi	http://www.hitachi-power-semiconductor-device.co.jp/en/

Littlefuse (IXYS, Westcode) | https://www.littelfuse.com/products/power- |
| :---: |
| semiconductors/discrete-igbts.aspx |

Mitsubishi	http://www.mitsubishielectric.com/semiconductors/
Power Integrations	https://gate-driver.power.com
On Semiconductor(Fairchild)	https://www.onsemi.com/home.do
Powerex	https://www.pwrx.com/Home.aspx
Renesas (Intersil)	$\underline{h t t p s: / / w w w . r e n e s a s . c o m / u s / e n / p r o d u c t s / p o w e r . h t m l ~}$
Semikron	$\underline{h t t p s: / / w w w . s e m i k r o n . c o m / ~}$
Toshiba	$\underline{h t t p s: / / t o s h i b a . s e m i c o n-s t o r a g e . c o m / u s / p r o d u c t . h t m l ~}$

- There are many topologies, but most are combinations of the types that will be discussed here.
- Each topology contains a unique set of design trade-offs

Voltage stresses on the switches
Chopped versus smooth input and output currents
Utilization of the transformer windings

- Choosing the best topology requires a study of

Input and output voltage ranges
Current ranges
Cost versus performance, size and weight

Two Broad Categories

Flyback Converters

- Buck-Boost converter where the line-to-load matching/isolation transformer doubles as the output filter choke
- Advantage - reduction of one major component
- Disadvantage - constrained to low power applications. Not employed in accelerator power supplies

Forward Converters

- The line-to-load matching/isolation transformer is separate from the output filter choke
- May be used in low and high power systems. Used in the vast majority of accelerator power supplies
- Disadvantage - the increased cost and space associated with a separate transformer and choke

Flyback Converter

$$
V_{O}=\frac{D}{1-D} * V_{S} * \frac{N_{2}}{N_{1}}
$$

Typical Forward Converters Listed In Order Of Increasing Use

- Half-bridge Converter
- Boost Regulator
- Buck Regulator
- Full-bridge Converter

Typical Forward Converters Listed in Order of Increasing Complexity

- Buck Regulator
- Boost Regulator
- Half-bridge Converter
- Full-bridge Converter

Basic switchmode tool kit

Most fundamental switchmode converter topologies are constructed by rearranging the three components

Switchmode Topologies

Buck

Definition of the Pulse Width Modulated (PWM) Waveform

$$
\begin{aligned}
& \text { Duty Cycle }=\text { Duty Ratio }=D=\frac{T_{o n}}{T_{o n}+T_{o f f}}=\frac{T_{o n}}{T_{s}} \\
& D^{\prime}=1-D=\frac{T_{o f f}}{T_{o n}+T_{o f f}}=\frac{T_{o f f}}{T_{s}}
\end{aligned}
$$

- Boosts the input voltage to a higher output voltage $V_{o}=V_{i n} /(1-D)$
- Input current is smooth (continuous)

- Switching device Q1 turned on by square wave drive circuit with controlled on-to-off ratio (duty factor, D)
- $V_{i n}$ impressed across L
- Current in L increases linearly in forward direction
- Diode D is reversed biased (open)
- Capacitor C discharges into the load

State 2 - Regulation

- Q1 turned off. L polarity reverses.
- $V_{O}=V_{I n}+V_{L}, V_{L}=V_{O}-V_{I n}$
- $V_{O}>V_{I n}, L$ current decreases linearly
- Diode D is forward biased (closed)
- Capacitor C is recharged

Summary

- Output polarity is the same as the input polarity
- In steady-state, L volt-seconds with Q1 on $=$ volt-seconds with Q1 off

$$
\begin{aligned}
& V_{I n} * t_{o n}=\left(V_{O}-V_{\text {In }}\right) * t_{o f f} \\
& V_{O}=V_{\text {In }} *\left(t_{o n}+t_{o f f}\right) / t_{o f f} \\
& V_{O}=V_{I n} /(1-D)
\end{aligned}
$$

- Output voltage is always greater than the input voltage because $D \leq 1$
- IGBT duty factor (D) range 0 to 0.95
- Limitation of D yielding greater output voltage is the limitation on the input current through the inductor and diode
- Output voltage is not related to load current so output impedance is very low (approximates a true voltage source).

Some Advantages

- Few components, 1 switch - simple circuit, high reliability if not overstressed
- Input current is always continuous, so smaller input filter capacitor needed

Some Disadvantages

- Capacitor C current is always discontinuous so a much larger output capacitor is needed for same output ripple voltage
- Output is DC and unipolar so no chance of high-frequency transformer or bipolar output
- Low frequency transformer must be used in front of the Boost for isolation and to match the line voltage to the load voltage
- Minimum output voltage equal input voltage

- Used in the majority of switchmode power supplies
- Bucks the input voltage down to a lower voltage
- Perhaps the simplest of all
- Input current discontinuous (chopped) - output current smooth

- Switching device Q1 turned on by square wave drive circuit with controlled on-to-off ratio (duty factor, D)
- $V_{\text {in }}-V_{o}$ impressed across L
- Current in L increases linearly
- Capacitor C charges to Vo

- Switching device Q1 turns off
- Voltage across L reverses: - Vo impressed across L
- Diode D turns on
- Current in L decreases linearly
- C discharges into the Load

Topologies - Buck Converter Waveforms

Buck converter inductor current can be continuous, critically continuous or discontinuous

Discontinuous current is caused by:

- Too light a load
- Too small an inductor
- Too small filter capacitor
- Discontinuous difficult to control output and output $\neq D^{*}$ Vin

Summary

- Output polarity is the same as the input polarity
- In steady-state L volt-seconds with Q1 on = volt-seconds with Q1 off

$$
\begin{aligned}
& \left(V_{\text {In }}-V_{O}\right) * t_{\text {on }}=\left(V_{O} * t_{\text {off }}\right) \\
& V_{O}=V_{\text {In }} * t_{\text {on }} /\left(t_{\text {on }}+t_{\text {off }}\right)=V_{\text {In }} * D
\end{aligned}
$$

- Output voltage is always less than the input voltage because $D \leq 1$
- Switch duty factor (D) range 0 to 0.95
- Output voltage is not related to load current so output impedance is very low (approximates a true voltage source)

An Advantage

- Few components, 1 switch - simple circuit, high reliability if not overstressed

Disadvantages

- Output is DC and unipolar so no chance of high-frequency transformer or bipolar output
- Low frequency transformer must be used in front of the Buck for isolation and to match the line voltage to the load voltage

Application

- Used very widely in accelerator power systems, typically for large power supplies (perhaps $\geq 350 \mathrm{~kW}$ and used in conjunction with a 12-pulse rectifier with 6-phase transformer)

- Full wave rectifier, output ripple is multiples of the input frequency
- Equal in popularity to buck topology for high-power converters
- Used when line and load voltages are not matched
- Voltage stress on switches = input voltage
- Good transformer utilization, power is transmitted on both half-cycles

14 Topologies - Full-Bridge Converter Switching - Q1 and Q3 On , Q2 and Q4 Off

State 1 - Power

- Power is derived from the input rectifier and slugs of energy from $C_{\text {in }}$
- Q1 and Q3 are closed. Current flows through Q1 and the primary winding of T and Q3
- A voltage $\left(V_{i n}\right)$ is developed across the primary winding of T. A similar voltage is $\left(V_{i n}{ }^{*} N\right)$ is developed across the secondary winding of T
- The secondary voltage causes rectifiers D5 and D7 to conduct current

14 Topologies - Full-Bridge Converter Switching - Q1, Q2, Q3 and Q4 Off

State 2-Power Off

- Q1 and Q3 are turned off. All switches are off
- $C_{\text {in }}$ recharges
- The transformer primary current flows in the same direction but the voltage reverses polarity. This causes D2 and D4 to conduct. Stored leakage inductance energy is returned to the input filter capacitor. The transformer current decays to zero.
- The secondary rectifiers D5, D6, D7 and D8 are all off

14 Topologies - Full-Bridge Converter Switching - Q2 and Q4 On, Q1 and Q3 Off

State 3 - Power

- Power is derived from the input rectifier and slugs of energy from $C_{i n}$
- Q2 and Q4 are closed and current flows through Q2, the primary winding of T and Q4
- A voltage $\left(V_{i n}\right)$ is developed across the primary winding of T. A similar voltage $(\operatorname{Vin} * N)$ is developed across the secondary winding of T
- The secondary voltage causes rectifiers D6 and D8 to conduct current

14 Topologies - Full-Bridge Converter Switching - Q1, Q2, Q3 and Q4 Off

State 4 - Power Off

- Q2 and Q4 are turned off. All switches are off
- $C_{\text {in }}$ recharges
- The current in the transformer primary flows in the same direction but the voltage reverses polarity. This causes D1 and D3 to conduct. Stored leakage inductance energy is returned to the input filter capacitor. The transformer current goes to zero.
- The secondary rectifiers D5, D6, D7 and D8 all turn off

Topologies - Full Bridge Converter - IGBT Switching

Topologies - Full Bridge Waveforms

- Some inductive energy can be recovered to recharge input filter $C_{i n}$
- Same pulses applied to Q1 \& Q3 and the same, but 180° delayed, pulses are applied to Q2 \& Q4
- Switching sequence is Q1 \& Q3 are turned on, then turned off after providing the required ON time
- After delay (to account for finite switch turn off and turn on), Q2 \& Q4 are turned on. After providing the required ON time, Q2 \& Q4 are turned off.
- Sequence repeats
- Q1 and Q4 or Q2 and Q3 are never turned on together
- Only the leading edge (or trailing) edge of the gating and current pulse move
- Symmetrical +/- pulse obtained. Must be rectified to provide a DC output
- The output ripple is twice the switching frequency

Topologies - Full Bridge Converter

Advantages

- Simple primary winding needed for the main transformer, driven to the full supply voltage in both directions
- Power switches operate under extremely well-defined conditions. The maximum stress voltage will not exceed the supply line voltage under any conditions.
- Positive clamping by 4 energy recovery diodes suppresses voltage transients that normally would have been generated by the leakage inductances.
- The input filter capacitor $C_{\text {in }}$ is relatively small
- Modest part count for high reliability.
- Can be used with or without line-to-load matching transformer
- Transformer matches the load to the input line.
- With transformer unipolar output, without transformer, used for bipolar operation
- Capable of high power output (500 kW)

Disadvantage

- Four (4) switches are required, and since 2 switches operate in series, the effective saturated on-state power loss is somewhat greater than in the 2 switch, half-bridge case. In high voltage, off-line switching systems, these losses are acceptably small.

Topologies - Summary of 3 Forward Converters

Converter Type	Topology	V_{o}	$\boldsymbol{P}_{\boldsymbol{o}}$	Transformer	Output Type
Buck	1 switch	$V_{o}=V_{\text {in }} * D$	Any	Not possible	Unipolar
Boost	1 switch	$V_{o}=V_{\text {in }} /(1-D)$	$I_{\text {in }}$ limits Po	Not possible	Unipolar
Full Bridge	4 switches Minor switch losses	$V_{o}=V_{\text {in }} * D^{* n}$	Any	Possible	Unipolar/ bipolar

Pulse Width Modulation (PWM) Techniques

Pulse Width Modulation

$V_{\text {Ref }} \uparrow$	$V_{\text {Ref }}-V_{\text {Ramp }}=V_{Q 1}$ pulse width \uparrow	$V_{O} \uparrow$
$V_{\text {Ref }} \downarrow$	$V_{\text {Ref }}-V_{\text {Ramp }}=V_{Q 1}$ pulse width \downarrow	$V_{O} \downarrow$

PWM-Bipolar Bridge

Generalities

- Diagonal switching
- Two PWMs are usually employed
- Switches Q1 and Q3 are the + output leg

- Switches Q2 and Q4 are the - output leg
- An output rectifier is not required
- Since the output desired DC, but contains + and - components, a nonpolarized output filter capacitor must be used
- 2 and 4 quadrant operation is possible

PWM - Bipolar Bridge

Two types of PWM

- Sign/magnitude in which the sign of the reference signal determines which pair of switches to turn on and the magnitude determines the pulse duration/duty factor
- "50/50" scheme in which there are 2 separate, complimentary PWM signals

PWM - Bipolar Bridge - Sign / Magnitude PWM

Reference Signal	Q1/Q3 D	Q2/Q4 D
0	Off	Off
$+25 \%$	0.25	Off
$+50 \%$	0.50	Off
$+75 \%$	0.75	Off
$+100 \%$	1.00	Off
-25%	Off	0.25
-50%	Off	0.50
-75%	Off	0.75
-100%	Off	1.00

- Switch only one leg at a time
- The 2 switches in the active leg switch on and off together

Bipolar Bridge - Sign / Magnitude PWM - (+) Output

Q1/Q3 closed

Q1/Q3 opened

Bipolar Bridge - Sign / Magnitude PWM - (-) Output

Q2/Q4 closed

Bipolar Bridge - Sign / Magnitude PWM - Waveforms

"50/50" Bipolar PWM

Desired Output Reference Signal	$Q 1 / Q 3 D$	$Q 2 / Q 4 D$
-100%	0.0%	100.0%
-75%	12.5%	87.5%
-50%	25.0%	75.0%
-25%	37.5%	62.5%
0%	50.0%	50.0%
25%	62.5%	37.5%
50%	75.0%	25.0%
75%	87.5%	12.5%
100%	100.0%	0.0%

- Both bridge legs are always active
- Q1/Q3 (+) bridge
- Q2/Q4 (-) bridge
- Q1/Q3 180° phase shifted
- Q2/Q4 180° phase shifted
- Q1 is complement of Q4
- Q2 is complement of Q3

PWM - "50/50" Bipolar Switching For - 4 V Output

Q1/Q3 on 30\% Q2/Q4 on 70\%

Q4/D4 Q3/D3

	Q1	Q3	Q2	Q4	$V_{O C}$
1	On	Off	On	Off	0 V
2	Off	Off	On	On	-10 V
3	Off	On	Off	On	0 V
4	Off	Off	On	On	-10 V

PWM - "50/50" Bipolar Switching For 0 V Output

PWM - "50/50" Bipolar Switching For + 4 V Output

PWM - Bipolar PS PWM Strategies Compared

PWM Type	Advantages	Disadvantages

Conducting and Switching Losses

Turn-on losses

$$
\begin{aligned}
& P_{S w O n}=\frac{1}{t_{5}-t_{1}} * \int_{t_{1}}^{t_{2}} v_{C E}(t) * i_{C}(t) * d t \\
& P_{\text {Cond }}=\frac{1}{t_{5}-t_{1}} * \int_{t_{2}}^{t_{3}} V_{C E} * I_{C} * d t
\end{aligned}
$$

Turnoff losses

Reduce losses for greater efficiency and:

- Smaller AC distribution system
- Less heat load into cooling water system
- Less heat into buildings and building HVAC
- Reduce IGBT dissipation

Reducing Turn On Losses By Varying \boldsymbol{R}_{G}

Reducing Turn On Losses By Varying R_{G}

Reducing Turn On Losses By Varying R_{G}

Reducing Turn On Losses By Varying \boldsymbol{R}_{G}

Case	$\boldsymbol{R}_{\boldsymbol{G}}$	$d V_{C E} / d t$	$E_{O n}$
1	8.2Ω	- $0.6 \mathrm{kV} / \mu \mathrm{S}$	6.4 J
2	3.3Ω	- $1.0 \mathrm{kV} / \mu \mathrm{S}$	4.15
3	1.0Ω	$-2.8 \mathrm{kV} / \mu \mathrm{S}$	2.8 J
$\underset{C_{G}}{\mathbf{R}_{\mathbf{G}}}$		- $P_{\text {Diss }} \propto^{-1}-d V_{C E} / d t$ - $d V_{C E} / d t$ is controlled via R_{G} - Lower losses but possibly increased EMI because of faster $d V_{C E} / d t$	

- If the current rating of a single switch is insufficient (conduction loss is too great), add another switch in parallel.
- There are then 2 ways to switch Q1 and Q2, switch them ON and OFF together or stagger their On and OFF times

Conduction Loss Reduction By Simultaneous Switching of Q1 and Q2

$V_{R M S 2 S w-E a S w}=V_{R M S-1 S w} \quad I_{R M S 2 S w-E a S w}=\frac{1}{2} * I_{R M S-1 S w}$
$P_{\text {AvelSw }}=V_{R M S 1 S w} * I_{R M S 1 S w}$
$P_{\text {Ave2Sw-EaSw }}=V_{R M S 1 S w} * \frac{1}{2} I_{R M S 1 S w}=\frac{1}{2} * P_{\text {Ave1Sw }}$
The composite frequency is the same as in Q1 and Q2

Conducted Loss Reduction By Staggered Switching of Q1 and Q2

- Duty factor is each switch is halved
- $P_{\text {ave }}$ in each switch is $1 / 2$ that of the single switch case
- The composite frequency is twice that of Q1 and Q2

Conducted Loss Reduction By Paralleled Buck Regulators

Features:

- A second switch Q1 is added.
- Q1 and Q2 are staggered switched
- D2 is added, L2 is added
- Current in D1, D2 is $1 / 2$ the load current
- Current in L1, L2 is $1 / 2$ the load current
- L1, L2 energy 1/4 that of single inductor since $E=1 / 2 * L * I^{2}$

$$
P_{S w O f f}=\frac{1}{T} \int_{0}^{t_{S w}} v_{C E}(t) i_{C}(t) d t
$$

Semiconductor switches undergo stresses during switching

- Voltage spikes can exceed maximum voltage rating
- Current spikes can exceed maximum current rating
- Power dissipation at maximum voltage and current may be excessive

Snubbers are used to address these issues
Elementary calculations can give insight into snubber operation and design

- Techniques we will use are similar to those needed in other power supply circuits

Ideal switch:

- Opens instantaneously $V_{S W}: 0 \rightarrow V_{I N}$
- Current transfers to diode $I_{S W}: I_{\text {OUT }} \rightarrow 0$
- Switching power $=0$

Real switch:

- Assume that I,V change linearly with time
- Reasonable approximation to understand concepts
- Q starts to open
- $V_{Q}=V_{I N}$ before $V_{D}=0$ and diode conducts
- $P_{Q}=f_{S W} \int_{t_{O N}}^{t_{O F F}} v_{Q}(t) i_{Q}(t) d t$

$$
=\frac{1}{2} V_{\text {IN }} I_{\text {OUT }}\left(t_{\text {OFF }}-t_{\text {ON }}\right) \cdot f_{\text {SW }}
$$

Intuition:

- $I_{\text {OUT }}$ flows through C and $Q: I_{\text {OUT }}=i_{Q}+i_{C}$
- Lower i_{Q} means less power dissipated in Q

- When $i_{C}=I_{O U T}, i_{Q}=0$ and $P_{Q}=0$
- I I OUT flowing in C linearly increases v_{C} until $v_{C}=V_{I N} \Rightarrow$ Diode turns on

Calcs: By assumption current in Q decreases linearly, dropping to 0 at $t=t_{1}$:

$$
\begin{gathered}
i_{Q}=\left[1-\left(t / t_{1}\right)\right] I_{O U T} \Rightarrow i_{C}=I_{\text {OUT }}-i_{Q}=\left(t / t_{1}\right) I_{\text {OUT }} \\
v_{C}(t)=\frac{1}{C} \int_{0}^{t} i_{C}\left(t^{\prime}\right) d t^{\prime}=\frac{I_{\text {OUT }}}{2 C t_{1}} t^{2}=v_{Q}(t)
\end{gathered}
$$

At $t=t_{1}, i_{C}=I_{\text {OUT }}$ and $v_{C}=v_{Q}=\frac{I_{\text {OUT }}^{1}}{}-\alpha V_{D C}$, where $\alpha \equiv \frac{I_{\text {OUT }} t_{1}}{2 C}$
C continues charging with $I_{\text {OUT }}: v_{C}(t)=\frac{1}{C} \int_{t_{1}}^{t} I_{\text {OUT }} d t^{\prime}+\frac{I_{\text {OUT }} t_{1}}{2 C}=\frac{I_{\text {OUT }} t}{C}-\frac{I_{\text {OUT }} t_{1}}{2 C}$

$$
v_{C}\left(t_{2}\right)=V_{I N} \Rightarrow t_{2}=\frac{C V_{I N}}{I_{O U T}}+\frac{t_{1}}{2}
$$

$$
\begin{aligned}
& \mathcal{E}_{Q S}=\int_{t_{O N}}^{t_{O F F}} v_{Q}(t) i_{Q}(t) d t \\
& =\int_{0}^{t_{1}} \frac{I_{\text {OUT }} t^{2}}{2 C t_{1}} I_{\text {OUT }}\left[1-\left(t / t_{1}\right)\right] d t=\frac{\left(I_{\text {OUT }} t_{1}\right)^{2}}{24 C} \\
& \text { If C is selected such that } v_{C}\left(t_{1}\right)=\alpha V_{D C} \\
& \mathcal{E}_{Q S}=\frac{I_{\text {OUT }} t_{1} V_{\text {IN }} I_{O U T} t_{1}}{2 C V_{I N}}=\frac{\alpha V_{I N} I_{\text {OUT }} t_{1}}{12} \\
& \quad \ll \frac{V_{I N} I_{O U T}\left(t_{1}+t_{2}\right)}{2}=\mathcal{E}_{Q 0}
\end{aligned}
$$

Other consequences, considerations, and trade-offs:

- Larger C reduces energy loss in the device
- Also increases the charging time and the time at which the diode turns on.
- Additional charge in C will create a current spike when Q turns on again
- This current may challenge the instantaneous current and thermal limits of the device.

14 Switch Turn-off Loss Reduction: Shunt Q with Capacitor, Resistor, Diode
We now introduce a damping resistor $R_{S C}$ to:

- Limit current out of the shunt C_{S} into Q
- Dissipate energy stored in C_{S}

We still want to keep the low impedance charging path to C_{S}, so we shunt $R_{S C}$ with a diode $D_{S C}$. The value of $R_{S C}$ is chosen

- Large enough to limit current from C_{S} through $Q: V_{I N} / R_{S C}<I_{Q_{M A X}}-I_{\text {OUT }}$
- Small enough to discharge C_{S} during $t_{O N}$ of $Q: R_{S C} C_{S} \ll t_{O N}$ We now have two sources of energy that need to be dissipated
- $\mathcal{E}_{Q S}=\frac{I_{\text {OUT }} t_{1}}{2 C V_{\text {IN }}} \frac{V_{\text {IN }}{ }^{\text {IOUT } t_{1}}}{12} \sim \frac{1}{C_{S}}$ from the turn-off
- $\varepsilon_{C}=\frac{1}{2} C_{S} V_{I N}^{2} \sim C_{S}$ from the snubber
C_{S} can be chosen such that $\varepsilon_{Q S}+\mathcal{E}_{C}<\mathcal{E}_{Q 0}$

14 Switch Turn-off Loss Reduction: Shunt Q with Capacitor, Resistor, Diode
Trade-offs in component choices:

- Small value of C_{S}
- Increased energy dissipated in Q

- Higher impedance for high frequency noise; less filtering
- More high frequency ringing with parasitic inductances
- Increased value of $d v_{Q} / d t=i_{c} / C_{S}$
- Less stored energy in C_{S}
- Large value of C_{S}
- Larger stored energy in capacitor
- More energy dissipation in circuit
- More current flows through Q at switch turn-on
- Larger energy dissipation time constant for same $R_{S C}$

Ideal switch:

- Closes instantaneously $V_{S W}: V_{I N} \rightarrow 0$
- Current transfers to switch $I_{S W}: 0 \rightarrow I_{\text {OUT }}$
- Switching power $=0$

Real switch:

- Assume that I,V change linearly with time
- Reasonable approximation to understand concepts
- Q starts to close
- Once $V_{Q} \neq V_{I N} V_{D} \neq 0$ and diode stops conducting
- $P_{Q}=f_{S W} \int_{t_{O N}}^{t_{O F F}} v_{Q}(t) i_{Q}(t) d t$

$$
=\frac{1}{2} V_{I N} I_{O U T}\left(t_{O F F}-t_{O N}\right) \cdot f_{S W}
$$

Intuition:

- D on $\Rightarrow V_{I N}$ drops across Q and $L: V_{I N}=v_{Q}+v_{L}$
- Lower v_{Q} means less power dissipated in Q
- When $v_{L}=V_{I N}, v_{Q}=0$ and $P_{Q}=0$

- Increasing i_{Q} across L creates v_{L} that keeps $v_{Q}+v_{L}=V_{I N}$; diode on longer

Calcs: By assumption voltage in Q decreases linearly, dropping to 0 at $t=t_{1}$:

$$
\begin{gathered}
v_{Q}=\left[1-\left(t / t_{1}\right)\right] V_{I N} \Rightarrow v_{L}=V_{I N}-v_{Q}=\left(t / t_{1}\right) V_{I N} \\
i_{L}(t)=\frac{1}{L} \int_{0}^{t} v_{L}\left(t^{\prime}\right) d t^{\prime}=\frac{V_{I N}}{2 L t_{1}} t^{2}=i_{Q}(t)
\end{gathered}
$$

At $t=t_{1}, v_{Q}=0 ; v_{L}=V_{I N}$ and $i_{L}=i_{Q}=\frac{V_{I N} t_{1}}{2 L}=\alpha I_{\text {OUT }}$, where $\alpha \equiv \frac{V_{I N} t_{1}}{2 L I_{\text {OUT }}}$
i_{L} continues increasing with $V_{I N}: i_{L}(t)=\frac{1}{L} \int_{t_{1}}^{t} V_{I N} d t^{\prime}+\frac{V_{I N} t_{1}}{2 L}=\frac{V_{I N} t}{L}-\frac{V_{I N} t_{1}}{2 L}$

$$
i_{L}\left(t_{2}\right)=I_{\text {OUT }} \Rightarrow t_{2}=\frac{L I_{\text {OUT }}}{V_{I N}}+\frac{t_{1}}{2}
$$

Other consequences, considerations, and trade-offs:

- Larger L reduces energy loss in the device
- Also increases the transition time at which the diode turns off.
- Additional current in L will create a voltage spike when Q turns off again
- This voltage may challenge the instantaneous voltage and thermal limits of the device.

14 Switch Turn-on Loss Reduction: Series Q with Inductor, Resistor, Diode
We now introduce a damping resistor $R_{S C}$ to:

- Limit voltage out of the series L_{S} into Q
- Dissipate energy stored in L_{S}

We still want to keep the low impedance charging path to L_{S}, so we shunt $R_{S C}$ with a diode $D_{S C}$. The value of $R_{S C}$ is chosen

- Large enough to limit voltage from L_{S} through $Q: I_{O U T} R_{S C}<V_{Q_{M A X}}-V_{I N}$
- Small enough to discharge L_{S} during $t_{O N}$ of $Q: L_{S} / R_{S C} \ll t_{O N}$ We now have two sources of energy that need to be dissipated
- $\mathcal{E}_{Q S}=\frac{V_{I N} t_{1}}{2 L I_{\text {OUT }}} \frac{V_{I N} I_{\text {OUT }} t_{1}}{12} \sim \frac{1}{L_{S}}$ from the turn-on
- $\varepsilon_{L}=\frac{1}{2} L_{S} I_{\text {OUT }}^{2} \sim L_{S}$ from the snubber
L_{S} can be chosen such that $\mathcal{E}_{Q S}+\mathcal{E}_{L}<\mathcal{E}_{Q 0}$
Same mathematics for shunt turn-off (C) and series turn-on (L) snubbers

ICombination Turn-on and Turn-off Snubber: Capacitor, Inductor, Resistor, Diode
We can reduce parts count in a combination snubber
Steps in the cycle:

- Q off: $V_{C}=V_{Q}=V_{I N} ; I_{L}=0$;

- Q turns on:
- Same process as before: As I_{Q} increases, $V_{L}>0 \Rightarrow V_{Q}$ decreases faster
- Q on: $V_{C}=V_{Q}=0 ; I_{L}=I_{\text {OUT }}$
- Q turns off:
- Turn-off starts as before: V_{Q} increases $\Rightarrow I_{C}>0 \Rightarrow I_{Q}$ decreases faster
- Difference at end of turn-off

ICombination Turn-on and Turn-off Snubber: Capacitor, Inductor, Resistor, Diode
Diode turns on when $V_{Q}=V_{I N} \Rightarrow V_{D}=0$
$I_{L}=I_{D C}$ so this current needs to be dissipated
$V_{D}=0 ; V_{D S C}=0 \Rightarrow I_{L}$ flows in a series $L-C$ circuit

Recall dynamics of series resonant circuit

$$
\begin{gathered}
\omega_{0}=\frac{1}{\sqrt{L C}} ; Z_{0}=\sqrt{\frac{L}{C}} \\
v_{C}(t)=V_{\text {IN }}+Z_{0} I_{\text {OUT }} \sin \omega_{0} t \\
i_{L}(t)=I_{\text {OUT }} \cos \omega_{0} t
\end{gathered}
$$

$v_{C}(t)$ increases to $V_{I N}+Z_{0} I_{\text {OUT }}$ when $i_{L}=0$

$i_{L}(t)$ reverses sign, $D_{S C}$ turns off and $i_{L}(t)$ exponentially damps through $R_{S C}$

Disadvantage of this circuit is that $V_{Q_{\text {BREAKDOWN }}}$ must be larger than $V_{I N}$

Can also have combined snubber across L

Combination switcher

- When L and C are inserted in the circuit in series
- Resonant behavior that causes voltage and current to ring in the circuit
- Increased voltage and current stresses on semiconductor devices

We can further extend this concept

- Design circuit to further reduce losses
- Configure L - C circuit to ring through zero voltage or zero current
- Turn switch on and off at zero crossings
- Less loss per cycle enables circuit to operate at higher frequencies

Disadvantage

- Voltage and current stresses on the devices are much higher Will work through two types (duals) of soft switching circuits

Resonant circuits have two natural parameters

$$
\omega_{0}=\frac{1}{\sqrt{L C}} ; Z_{0}=\sqrt{\frac{L}{C}}
$$

Behavior of circuits depends on initial conditions and sources

$$
\begin{aligned}
& \binom{v_{C}(t)}{i_{L}(t)}=\left(\begin{array}{cc}
\cos \omega_{0} t & Z_{0} \sin \omega_{0} t \\
-\frac{\sin \omega_{0} t}{Z_{0}} & \cos \omega_{0} t
\end{array}\right)\binom{v_{C}(0)}{i_{L}(0)} \\
& +\left(\begin{array}{cc}
\left(1-\cos \omega_{0} t\right) & Z_{0} \sin \omega_{0} t \\
\frac{\sin \omega_{0} t}{Z_{0}} & -\left(1-\cos \omega_{0} t\right)
\end{array}\right)\binom{V_{I N}}{I_{\text {OUT }}}
\end{aligned}
$$

Coefficient signs depend on the orientations of the signals and sources.
Note the dual nature of $v_{C}(t)$ and $i_{L}(t)$.
Both are continuous since they evolve in t

- From their initial values as $\cos \omega_{0} t$
- With the initial value of the other variable as $\sin \omega_{0} t$

Circuit Equations Used in Soft Switching

In soft switching applications our standard oscillator equations will evaluate to equations such as

$$
\begin{aligned}
& v_{C}(t)=V_{0}+Z_{0} I_{0} \sin \omega_{0} t \\
& i_{L}(t)=I_{0}+\left(V_{0} / Z_{0}\right) \sin \omega_{0} t
\end{aligned}
$$

These equations will place conditions on values of V_{0}, I_{0}, Z_{0} that will allow soft switching, that is: $v_{C}(t)=0$ and $i_{L}(t)=0$

Also recall (dual) linear charging relations:
Constant current charging a capacitor

$$
C \frac{d v_{C}(t)}{d t}=I_{0} \Rightarrow v_{C}(t)=\frac{I_{0}}{C} t
$$

Constant voltage charging an inductor

$$
L \frac{d i_{L}(t)}{d t}=V_{0} \Rightarrow i_{L}(t)=\frac{V_{0}}{L} t
$$

Power dissipation across semiconductor:
$P_{Q}=f_{S W} \int_{t_{O N}}^{t_{O F F}} v_{Q}(t) i_{Q}(t) d t$
Control Q to switch when $v_{Q}(t)=0$
Theory of operation (assume perfect switches):

- Put series $L-C$ around transistor

- Let $v_{Q}(t)$ ring and turn on Q when $v_{Q}(t)=0$ (note reverse diode across Q) Four states of operation:
- Q on, D off: $v_{Q}=v_{C}=0 ; v_{D}<0 ; i_{Q}=I_{\text {OUT }} ; i_{C}=i_{L}=0$
- Q off, D off $\left(\right.$ charge $\left.v_{C}\right): v_{Q}=v_{C}>0 ; v_{D}<0 ; i_{C}=I_{\text {OUT }} ; i_{Q}=i_{L}=0$
- Q off, D on (resonant state): $v_{Q}=v_{C} \neq 0 ; v_{D}=0 ; i_{Q}=0 ; i_{C}-i_{L}=I_{O U T}$
- Q on, D on (discharge i_{L}): $v_{Q}=v_{C}=0 ; v_{D}=0 ; i_{Q}-i_{L}=I_{O U T} ;$
Q on, D off; $v_{Q}=0 ; i_{Q}=I_{\text {OUT }} ; v_{O}(t)=V_{I N} ; t_{1}$ open

$$
Q \text { off, } D \text { off; } V_{Q} \neq 0 ; \quad i_{C}=I_{\text {OUT }} \Rightarrow
$$

$$
\begin{gathered}
v_{C}(t)=\frac{I_{O U T}}{C} t, 0 \leq t \leq \frac{C V_{I N}}{I_{O U T}}=t_{2} \\
v_{O}(t)=V_{I N}-v_{C}(t)
\end{gathered}
$$

Q off, D on; $V_{C}=V_{I N} \Rightarrow V_{D}<0 \Rightarrow$ resonant circuit;

$$
\begin{aligned}
& i_{L}(t)=\frac{V_{I N}-v_{C}(0)}{Z_{0}} \sin \omega_{0} t-\left(1-\cos \omega_{0} t\right) I_{O U T} \text { 促 } \\
& i_{L}(t)=\left(\cos \omega_{0} t-1\right) I_{O U T} \\
& \text { Sune 2019 Section } 6-\text { DC Power Supplies }
\end{aligned}
$$

Requires $Z_{0}>\frac{V_{I N}}{I_{\text {OUT }}}$
Two zero crossings $\left(t_{3 i}, t_{3 f}\right)$ will occur:

- One on the way down and one on the way up $t_{3 i}=\omega_{0}^{-1}\left\{\pi-\arcsin \left[-V_{\text {IN }} /\left(Z_{0} I_{\text {OUT }}\right)\right]\right\}$
$C_{Z V S}$ across Q already has ZVS switching at turn-off (see snubber section above)

Now turn on Q when $v_{C}(t)=0 ; t_{3 i} \leq t \leq t_{3 f}$

- Note: Reverse diode across Q clamps voltage to 0 $i_{L}(t)$ rings until $t_{3 i}$, supplying $C \dot{v}_{C}$ and $I_{\text {OUT }}$ $i_{L}\left(t_{3 i}\right)=\left(\cos \omega_{0} t_{3 i}-1\right) I_{\text {OUT }}$
Q on; D on; $V_{I N}$ discharges $i_{L}(t)$ until $i_{L}(t)=0$ $i_{L}(t)=i_{L}\left(t_{3 i}\right)+\left(V_{I N} / L\right) t$

$$
=\left(\cos \omega_{0} t_{3 i}-1\right) I_{O U T}+\left(V_{I N} / L\right) t
$$

$$
\Rightarrow t_{4}=\left(1-\cos \omega_{0} t_{3 i}\right)\left(L I_{\text {OUT }} / V_{I N}\right)
$$

$$
v_{O}(t)=V_{I N}
$$

ZVS does not have a fixed period; t_{1} a free parameter

- Off time determined by $Z_{0}, \omega_{0}, V_{I N}, I_{O U T}$
- On time determined by required $V_{\text {OUT }}=R_{L} I_{\text {OUT }}$ $V_{\text {OUT }}$ decreases as $f_{\text {ZVS }}$ increases

$$
<v_{0}>=V_{I N}-\alpha_{Z V S}\left(Z_{0}, \omega_{0}, V_{I N}, I_{O U T}\right) f_{Z V S}
$$

 where $\alpha_{Z V S}$ depends on the system.

Disadvantages:

- (V, I) stresses on $(Q, D)>2 \times$
- ZVS mode only works for a limited range of $V_{\text {IN }}$ and $I_{\text {OUT }}$
- Losses still exist

Most useful when voltage stresses are not an issue.

Reducing Switch Losses By Resonant Switching

Fixed Frequency Switching

- $T_{\text {on }}$ and $T_{\text {off }}$ vary

ZVS Resonant Mode Switching

- Frequency varies
- $T_{\text {on }}$ varies
- $T_{\text {off }}$ fixed to accommodate resonant circuit
- Conversion frequency inversely proportional to load current

Reducing Switch Losses By Resonant Zero Voltage Switching (ZVS)

Time Interval 1

- Q1 has been closed and is carrying load current. D and C do not have current flow in this steady-state condition.
- $V_{C R}=0$ and $I_{C R}=0$ as it has been sinusoidally discharged
- Note that $V_{C R}=V_{C E Q 1}$ and $I_{C Q 1}=I_{L R}$

Reducing Switch Losses By Resonant Zero Voltage Switching (ZVS)

Time Interval 2

- Q1 is opened. Diode D conducts
- Current commutates (rushes) into C_{R}
- C_{R} charges and discharges sinusoidally with frequency determined by C_{R} and L_{R}. $1 / 2$ sine wave occurs
- $V_{C R}$ is sine wave, $I_{C R}$ is cosine wave $=C d V_{C R} / d t$
- $V_{C E Q I}=V_{C R}$
- $I_{C R}=I_{L R}$

Reducing Switch Losses By Resonant Zero Voltage Switching (ZVS)

Time Interval 3

- When $V_{C R}$ discharges to $0\left(V_{C E Q 1}=0\right)$, Q1 is re-closed.
- $I_{C Q I}=I_{L R}$
- There is a linear current buildup in Q1 due to L_{R} and L

Power dissipation across semiconductor:
$P_{Q}=f_{S W} \int_{t_{O N}}^{t_{O F F}} v_{Q}(t) i_{Q}(t) d t$
Control Q to switch when $i_{Q}(t)=0$
Theory of operation (assume perfect switches):

- Put series $L-C$ around transistor
- Let $i_{Q}(t)$ ring and turn on Q when $i_{Q}(t) \leq 0$ (note reverse diode across Q) Four states of operation:
- Q off, D on: $v_{Q}=V_{I N} ; v_{D}=0 ; i_{D}=I_{O U T} ; i_{Q}=0 ; i_{C}=0$
- Q on, D on (charge i_{L}): $v_{Q}=0 ; v_{D}=0 ; i_{L}=i_{Q}>0 ; I_{\text {OUT }}=i_{L}+i_{D}$
- Q on, D off(resonantstate): $v_{Q}=0 ; v_{D}<0 ; v_{Q}=0 ; i_{L}=i_{C}+I_{\text {OUT }}$
- Q off, D off $\left(\right.$ discharge $\left._{C}\right): v_{Q}=V_{I N} ; V_{D}<0 ; i_{C}=-I_{\text {OUT }} ;$
Q off, D on; $i_{Q}=0 ; i_{D}=I_{\text {OUT }} ; v_{O}(t)=0 ; t_{1}$ open
Q on, D on; $v_{Q}=0 ; v_{D}=0 \Rightarrow$

$$
\begin{gathered}
i_{L}(t)=\frac{V_{I N}}{L} t, 0 \leq t \leq \frac{L I_{O U T}}{V_{I N}}=t_{2} \\
v_{O}(t)=0
\end{gathered}
$$

Q on, D off; $i_{L}=I_{\text {OUT }} \Rightarrow V_{D}<0 \Rightarrow$ resonant circuit;

$$
\begin{gathered}
\omega_{0}=1 / \sqrt{L C} ; Z_{0}=\sqrt{L / C} ; \\
i_{L}(0)=I_{\text {OUT }} ; v_{C}(0)=0 ; \\
i_{L}(t)=I_{\text {OUT }}+\left(i_{L}(0)-I_{\text {OUT }}\right) \cos \omega_{0} t \\
\quad+\left(V_{\text {IN }} / Z_{0}\right) \sin \omega_{0} t \\
i_{L}(t)=I_{\text {OUT }}+\left(V_{\text {IN }} / Z_{0}\right) \sin \omega_{0} t
\end{gathered}
$$

$$
\begin{aligned}
& v_{C}(t)=Z_{0}\left(i_{L}(0)-I_{\text {OUT }}\right) \sin \omega_{0} t+\left(1-\cos \omega_{0} t\right) V_{I N} \\
& v_{C}(t)=\left(1-\cos \omega_{0} t\right) V_{I N} \\
& \text { June } 2019
\end{aligned}
$$

$i_{L}(t)=I_{\text {OUT }}+\left(V_{\text {IN }} / Z_{0}\right) \sin \omega_{0} t$
$v_{C}(t)=\left(1-\cos \omega_{0} t\right) V_{I N} ; v_{O}(t)=v_{C}(t)$
$i_{L}(t)=0$ when $\sin \omega_{0} t=-Z_{0} I_{\text {OUT }} / V_{\text {IN }}$

Requires $Z_{0}<\frac{V_{I N}}{I_{\text {oUT }}}$ (opposite of $Z V S$)
Two zero crossings $\left(t_{3 i}, t_{3 f}\right)$ will occur:

- One on the way down and one on the way up
 $t_{3 f}=\omega_{0}^{-1}\left\{\arcsin \left[-Z_{0} I_{\text {OUT }} / V_{I N}\right]+2 \pi\right\}$
$I_{\text {ZCS }}$ before Q already has ZCS switching at turn-on (see snubber section above)

Now turn on Q when $i_{L}(t) \leq 0 ; t_{3 i} \leq t \leq t_{3 f}$

- Note: Reverse diode allows $i_{L}(t) \leq 0$
$v_{C}(t)$ rings until $t_{3 f}, C \dot{v}_{C}=i_{L}-I_{\text {OUT }}$
$v_{C}\left(t_{3 f}\right)=\left(1-\cos \omega_{0} t_{3 f}\right) V_{I N}$

ZCS does not have a fixed period; t_{1} a free parameter

- On time determined by $Z_{0}, \omega_{0}, V_{I N}, I_{\text {OUT }}$
- Minimum period $T_{Z C S}$, maximum $f_{Z C S}$ exist
- Off time determined by required $V_{\text {OUT }}=R_{L} I_{\text {OUT }}$

$V_{\text {OUT }}$ increases as $f_{Z C S}$ increases $\left.<v_{0}\right\rangle=\alpha_{Z C S}\left(Z_{0}, \omega_{0}, V_{I N}, I_{O U T}\right) f_{Z C S}$ where $\alpha_{Z C S}$ depends on the system. Disadvantages:
- (V, I) stresses on $(D, Q)>2 \times$
- ZCS mode only works for a limited range of $V_{\text {IN }}$ and $I_{\text {OUT }}$
- Losses still exist

Most useful when component stresses are not an issue.

Switch Turnoff Loss Reduction By RCD Snubber

$$
P_{S w O f f}=\frac{1}{T} \int_{0}^{t_{S w}} v_{C E}(t) i_{C}(t) d t
$$

Goal:

- To increase the rate of decay of I_{C} during turnoff
- To decrease the rate of $V_{C E}$ build up during turnoff
- To realize goal, add a resistor R, capacitor C, diode D snubber network

- When the IGBT turns off, current commutates out of the IGBT into the capacitor, C via the diode D
- This aids fast I_{C} current decay
- C becomes linearly charged to the bus voltage
- $d V_{C E} / d t$ inversely proportional to C - this slows $V_{C E}$ recovery

- When the IGBT turns on, the capacitor C, discharges through R and the IGBT

- Small $C=$ fast $d V_{C E} / d t$, V appears with current still in the IGBT, have IGBT loss
- Large C means slow $d V_{C E} / d t$, current gone before voltage buildup but the resistor losses are high
- When the snubber circuit is optimized, the IGBT turnoff loss with snubber + snubber loss < IGBT loss w/o snubber!

Design criteria

- R must limit discharge I through IGBT to $<$ IGBT rating
- $P_{R} \geq E_{C} / T=1 / 2 C V^{2} f$
- C ripple current rating $\geq \Sigma$ (ave charge + ave discharge currents)
- C must appreciably discharge each cycle, so $R C<$ minimum expected IGBT on time
- D has to be rated to hold off the bus voltage and carry peak capacitor charging current

Note: Turn-on losses in the latest IGBTs have been reduced so that snubber circuits are no longer required in most applications

Resonant Switching Attractions

- Drastically reduce switch turn-on and turn-off losses
- Almost loss-less switching allows higher switching frequencies
- Reduce the electromagnetic interference (EMI) associated with pulse width modulation (PWM)

Two Resonant Switching Methods

- Zero current switching (ZCS)
- Zero voltage switching (ZVS)
- ZVS prevalent as disadvantages in ZCS
- Lets examine ZVS

High Frequency Inductors and Transformers

Low and High Frequency Transformers Compared

	Low frequency	High frequency
Standards	Well defined by ANSI, IEEE, NEMA and $U L$	Not as well defined Insulation standard followed
Operation	60 Hz Sine wave 3 phase	10 kHz to 100 kHz Square wave - transformers Triangular wave - inductors Single phase
Core material	3 to 100 mil laminations of steel or Fe	0.5 to 3 mil laminations of Fe or Si-Fe Powdered Fe Powdered ferrites, Ni-Zn, Mn-Zn
Winding material	Single-strand Cu wire Layer or bobbin-wound	Multi-strand Cu Litz wire Cu foil, layer wound

The power rating of a transformer is dependent upon the kollowing factors $V * A=K_{I} * K_{2}{ }^{*} f * A_{C}{ }^{*} A_{E} * J^{*} B_{M}$
where
$V^{*} A=$ power rating of the transformer $\left(V^{*} A\right)$
$K_{1}=$ waveshape factor (sine or square wave)
$K_{2}=$ copper fill factor (0 to 1)
$f=$ excitation frequency (Hz)
$A_{C}=$ core area $\left(\mathrm{m}^{2}\right)$
$A_{E}=$ winding area $\left(\mathrm{m}^{2}\right)$
$J=$ conductor current density $\left(\frac{A}{m^{2}}\right)$
$B_{M}=$ peakflux density $\left(\frac{W b}{m^{2}}\right) \quad$ where a Weber $=1 *$ volt $*$ sec
The transformer area product $=A_{C} * A_{E} \propto \frac{V * A}{B_{M} f^{*} J}$

An example of a $10 \mathrm{kVA}, 480 \mathrm{~V}$: 208 V Transformer
At 60 Hz the volume and weight would be

f	f ratio to 60 Hz	Volume (in 3)	Volume ratio to 60 Hz	Weight (lb)	Weight ratio to 60 Hz
60 Hz	1	$18 X 18 X 18=$ $5832\left(\mathrm{in}^{3}\right)$	1	100	1
20 kHz	333	$6 H X 5.25 \mathrm{WX} 3.37 \mathrm{D}$ $118\left(\mathrm{in}^{3}\right)$	$1 / 50$	5	$1 / 20$

- Inductance
- Ripple current frequency
- Peak current
- RMS value of AC current
- DC current
- Saturation DC current
- Resonant frequency (an order of magnitude > ripple frequency)

Ripple Filters

High Frequency Filter

Low Frequency	High Frequency
Pass DC - reject f $>60 \mathrm{~Hz}$	Pass DC - reject $f>$ switching frequency
Large L1 to reduce On inrush \& high PF	Large L2 to reduce inrush and prevent discontinuous current
R2 C2 for "critical" damping	R4 C4 for "critical" damping

Time Domain $\boldsymbol{y}(t)=f(t) \otimes \boldsymbol{x}(t)$ where \otimes implies the convolution operation

- Difficult computations, particularly transient calculations, requires solution of differential or difference equations

Frequency Domain $Y(f)=F(f) * X(f)$ where *implies multiplication

- Easier computations, all calculations for steady-state or transient conditions that look algebraic in nature.

Transfer Function

- Relates the output response of a circuit/system to the input stimulus
- Form is $T(f)=Y(f) / X(f)$ where $X(f)$ is the input stimulus and $Y(f)$ is the output response $\quad Y(f)=X(f) * T(f)$

The "s" Operator

- s is used in the frequency domain and in La Place analysis
- $s=j \omega=j 2 \pi f \quad j=\sqrt{-1}$

Poles and Zeros

- Zero $=0 \quad$ Pole $=\infty$
- Zeros occur at frequencies that cause the transfer function to go to zero. Transfer function $=0$ is caused by a zero numerator and or an infinite denominator $T(s)=0 / X(s)=0 \quad$ or $\quad T(s)=Y(s) / \infty=0$
- Poles occur at frequencies that cause the transfer function to become infinite. Transfer function $=\infty$ is caused by an infinite numerator or a zero denominator $T(s)=\infty / X(s)=\infty \quad$ or $\quad T(s)=Y(s) / 0=\infty$

A Simple Low Pass Filter

- Resonant frequency (pole) at f_{p} will cause problems !
- $\operatorname{Atf}=\infty$, the output goes asymptotically to zero

The Praeg Low Pass Ripple Filter

Why important:

- Used as low and high frequency filters in virtually every power supply
- Provides the filtering of the previous $2^{\text {nd }}$ order filter
- Essentially critical damped
- No DC current in $R, C 2$

Component Selection Criteria

- L and C1 must be chosen to yield the desired breakpoint frequency (1/10 of the ripple frequency for 40 dB attenuation)
- C1 and C2 must be rated for the rectifier working and surge voltages
- C1 and C2 must be rated to carry the ripple current at the rectifier output frequency and at the switching frequency
- L must be large enough to offset the leading PF introduced by main filter capacitor, C1
- L must be large enough to limit the inrush current caused by rapid charge of C1 during power supply turn-on to an acceptable level
- L must be rated to carry the DC load current without overheating or saturating
- $C 2 \geq 5 * C 1$
- $R=(L / C 1)^{1 / 2}$

The Praeg Low Pass Ripple Filter

$$
T=\frac{s R C_{2}+1}{s^{3} R L C_{1} C_{2}+s^{2} L\left(C_{1}+C_{2}\right)+s R C_{2}+1}
$$

$$
C_{2} \geq 5 * C_{1}
$$

$$
R=\sqrt{\frac{L}{C_{l}}}
$$

360 Hz Praeg Filter

$f:=1 \cdot H z, 2 \cdot H z . .1000 \cdot H z \quad \underset{\sim}{s}(f):=j \cdot 2 \cdot \pi \cdot f \quad \underset{\sim N}{L}:=1.5 \cdot 10^{-3} \cdot H \quad f_{r}:=36 \cdot H z \quad C_{1}:=\frac{1}{4 \pi^{2} \cdot L \cdot f_{r}^{2}} \quad C_{1}=0.0130 F$

$$
R=\sqrt{\frac{L}{C_{1}}} \quad R=0.34 \Omega \quad C_{2}:=5 \cdot C_{1} \quad C_{2}=0.065 F
$$

$$
\begin{array}{cc}
T(f):=\frac{s(f) \cdot R \cdot C_{2}+1}{s(f)^{3} \cdot R \cdot L \cdot C_{1} \cdot C_{2}+s(f)^{2} \cdot L \cdot\left(C_{1}+C_{2}\right)+s(f) \cdot R \cdot C_{2}+1} & M(f):=20 \cdot \log (|T(f)|)
\end{array} \quad A R(f):=\arg (T(f)) \quad A D(f):=A R(f) \cdot 57.3
$$

$$
\begin{aligned}
& f_{r 1}=\frac{1}{2 \pi \sqrt{L C}} \\
& \text { Let }_{r 2}=n f_{r 1}=\frac{n}{2 \pi \sqrt{L C}} \\
& n f_{r 1}=\frac{1}{2 \pi \sqrt{\frac{L}{n} \frac{C}{n}}}
\end{aligned}
$$

L is smaller by the factor n
C is smaller by the factor n
$f:=10 \cdot H z, 20 \cdot H_{z} . .100000 \cdot H z s(f):=j \cdot 2 \cdot \pi \cdot f \quad L:=1.5 \cdot 10^{-5} \cdot H \quad C_{1}:=0.00013 \cdot F \quad f_{r}:=\frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C_{1}}}$

$$
\begin{array}{lll}
R:=\sqrt{\frac{L}{C_{1}}} \quad R=0.34 \Omega \quad C_{2}:=5 \cdot C_{1} \quad C_{2}=6.5 \times 10^{-4} F & f_{r}=3604 \mathrm{~Hz}_{z} \\
T(f):=\frac{s(f) \cdot R \cdot C_{2}+1}{s(f)^{3} \cdot R \cdot L \cdot C_{1} \cdot C_{2}+s(f)^{2} \cdot L \cdot\left(C_{1}+C_{2}\right)+s(f) \cdot R \cdot C_{2}+1} \quad M(f):=20 \cdot \log (|T(f)|) & A R(f):=\arg (T(f)) \\
& A D(f):=\operatorname{AR}(f) \cdot 57.3
\end{array}
$$

Homework Problem \# 10

Given the circuit below:

Sketch $|H(j \omega)|$ versus ω

Other Design Considerations And Power Supply Costs

Other Design Considerations - Heat Loading Into Building Air

 All equipment $=\sum\left(P_{\text {switchgear }}+P_{\text {transformer }}+P_{A C \text { cables }}+P_{P S}+P_{D C \text { cables }}\right)$- Switchgear effiency $\geq 98 \% \quad$ Switchgear losses $=P_{O} *\left(\frac{1-\text { Eff }}{E f f}\right)$
-Transformer efficiency $\geq 97 \%$ Transformer losses $=P_{O} *\left(\frac{1-\text { Eff }}{\text { Eff }}\right)$
- $P_{\text {AC cables }}=\sum_{j} i_{j R M S}^{2} * \frac{R_{j}}{f t} *$ Length $_{j}$
- Power supply losses $=\sum_{j}\left(P_{\text {in } j}-P_{\text {out } j}\right)$
- $P_{D C \text { output cable }}=\sum_{j} i_{j D C}^{2} * \frac{R_{j}}{f t} *$ Length $_{j}$

Other Design Considerations - Rack Cooling

- Thermal radiation from rack surface
- Electronics - maximum 50C inside rack
- Max rise in rack $=50 \mathrm{C}-T_{\text {ambient } \max }$
- Size openings, back pressure drops $B p=\left(C F M /\left(k^{*} \text { Opening Area }\right)\right)^{2}$
- Fan vs load curve - junction is operating flow point

Power supply heat loss to water $=\sum$ electrical losses of all water-cooled components Heat lost (dissipated) by PS water cooled components $=$ Heat gained by cooling water system $Q=M * C^{*} \Delta T \quad$ cal $=g m * \frac{\mathrm{cal}}{g m *{ }^{O} C} *\left({ }^{O} C_{\text {Outlet }}-{ }^{O} C_{\text {Inlet }}\right)$
$q=m * c^{*} \Delta T \quad$ watt $=g p m * \frac{264 \text { watt }}{g p m *{ }^{O} C} *\left({ }^{O} C_{\text {Outlet }}-{ }^{O} C_{\text {Inlet }}\right)$
Usually the power loss and the inlet and maximum allowable outlet temperatures are known. The mechanical group will usually ask for an estimate of the water flow requirements.
So solving for the flow yields
$m=\frac{q}{c * \Delta T}=\frac{\text { watt }}{\frac{264 \text { watt }}{\text { gpm } *{ }^{O} C} *\left({ }^{O} C_{\text {Outlet }}-{ }^{O} C_{\text {Inlet }}\right)}$

$Q=$ Power that can be removed by the air or cooling water (W)
$T_{j}=$ Device junction temperature $\left({ }^{\circ} C\right)$
$T_{c}=$ Device case temperature (${ }^{\circ} \mathrm{C}$)
$T_{s}=$ Heatsink temperature (${ }^{\circ} \mathrm{C}$)

$T_{a}=$ Ambient air or cooling water inlet temperature ${ }^{9} C$) $\theta_{j c}=$ junction to case thermal resistance $\rho(\mathrm{C} / W)$
$\theta_{c s}=$ case to heatsink thermal resistance $\left.P C / W\right)$
$\theta_{s a}=$ Heatsink to ambient air or cooling water thermal resistance ${ }^{\circ} \mathrm{C} / \boldsymbol{W}$)

then all of the device dissipation will be removed by the

air or water

Calculate the actual air or water temperature rise from $q=m *{ }^{*} \Delta T$
$\Delta T=\frac{q}{m^{*} c}=\frac{\text { watts }}{\mathrm{gpm} * \frac{264 \text { watt }}{\mathrm{gpm}{ }^{\circ} \mathrm{C}}}$
$\Delta T \leq$ the maximum allowable temperature rise

Power Output Vs Mounting / Input Voltage / Cooling Considerations

	Input AC (V)				Cabinet		Cooling	
Power Output	$\begin{gathered} 1 \phi \\ 120 \end{gathered}$	$\begin{aligned} & 3 \phi \\ & 208 \end{aligned}$	$\begin{aligned} & 3 \phi \\ & 480 \end{aligned}$	$\begin{gathered} 3 \phi \\ 4160 \end{gathered}$	RM	FS	$A C$	WC
$<2 \mathrm{~kW}$	X				X		X	
$2 \mathrm{~kW} \rightarrow 5 \mathrm{~kW}$		X			X		X	
$>5 \mathrm{~kW} \rightarrow 40 \mathrm{~kW}$			X		X		X	
$>40 \mathrm{~kW} \rightarrow 100 \mathrm{~kW}$			X			X	X	
$>100 \mathrm{~kW} \rightarrow 1 \mathrm{MW}$			X			X	X	X
> 1 MW				X		X	X	X
$\begin{aligned} R M & =\text { Rack mounted } \\ \text { AC } & =\text { Air-cooled } \end{aligned}$			$\begin{gathered} F S=\text { Freestanding } \\ W C=\text { Water-cooled } \end{gathered}$					

Other Design Considerations - Cost Of Switchmode Power Supplies

A 100 kW power supply is 80% efficient. Approximately 50% of the power supply heat loss is removed by cooling water.

- How much heat is dissipated to building air and how much heat is removed by the water system.
- Calculate the water flow rate needed to limit the water temperature rise to $8^{\circ} \mathrm{C}$ maximum.

Typical DC Power Supply Ratings for Accelerators

DC Power Supplies in Particle Accelerators

PEP-II and SPEAR3 Dipole Power Supplies

- 1200 VDC, 800 Amperes, 960 KW
- Powers largest magnet string at Spear3, 36 ring bend magnets in series
- Requires 50 PPM (full scale) current regulation, 0.1% voltage regulation
- Requires 600 VAC, 6-Phase AC Input

DC Power Supplies in Particle Accelerators

Storage Ring of the Diamond Project

- The power converter comprises of 8 paralleled modules
- Each module is a non-isolated step down PWM switching regulator operating at a fixed frequency of 2 kHz
- IGBT devices are used as the switching element
- The 8 PWM drives are phase shifted by $360 / 8^{\circ}$ to achieve a 16 kHz output ripple frequency
- 1 quadrant operation

Figure 1: Dipole Converter Topology.

DC Power Supplies in Particle Accelerators
 Diamond Booster Magnet Power Converters

- Booster operates at 5 Hz to accelerate the electrons: 100 MeV to 3 GeV.
- Power converters produce an off-set sine wave current with high repeatability at 5 Hz
- To avoid disturbance on the ac distribution network, the dipole and quadrupole power converters were designed to present a constant load despite having high circulating energy: 2 MVA in the case of the dipole
- Redundancy was introduced wherever this was economically feasible.
- Plug-in modules are used to simplify and speed up repairs.
- Component standardization and de-rating across all power converters was an additional design goal

Diamond Booster Dipole Power Converter

- Booster dipole PC is rated at peaks of 1000 A and 2000 V
- Three units are sufficient to produce the required output. The fourth is redundant
- Each unit is made up of a boost circuit and a 2-quadrant output regulator that produces the required offset sine wave current.
- The boost circuit regulates the voltage on the main energy storage capacitor and is controlled to draw constant power from the ac network.
- Displaced 4 kHz switching frequency

Figure 4: First few cycles after turn on.

Figure 1: Booster dipole power circuit.

THE 3HZ POWER SUPPLIES OF THE SOLEIL BOOSTER

Table 1: Major booster parameters

Injection energy	110	MeV
Extraction energy	2.75	GeV
Number of dipoles	36	
Dipole magnetic length	2.16	m
Dipole gap	22	mm
Dipole field @2.75GeV	0.74	T
Dipoles inj. current	19.7	A
Dipoles ext.current	541	A
Dipoles load resistance	400	$\mathrm{~m} \Omega$
Dipoles load inductance	156	mH

Positive master branch

Figure 4: dipoles PS main schematics

DC Power Supplies in Particle Accelerators

Power Supplies for the ATF2

Figure 2: Topology of CNAO synchrotron power supply.

Figure 1.3. MCOR12 Block Diagram.

Figure 1.1. A typical MCOR installation

DC Power Supplies in Particle Accelerators

NEW MAGNET POWER SUPPLY FOR PAL LINAC

Table 1: Development specifications of MPS

	Bipolar	Unipolar	
$\begin{gathered} \text { Size } \\ (\mathrm{W} \times \mathrm{H} \times \mathrm{D}) \end{gathered}$	$435 \times 135 \times 450$	$435 \times 178 \times 450$	mm
Input	$1 \phi 220 \mathrm{~V}$	3 ¢ 30 V	V
Output	$\pm 10 / 20$	50/50	A/V
Output stability	$\pm 50 \mathrm{ppm}$	$\pm 20 \mathrm{ppm}$	<1 hour
	$\pm 100 \mathrm{ppm}$	$\pm 50 \mathrm{ppm}$	>10 hours
Output resolution	16		bit
Topology	Full-Bridge 4-Q DC/DC converter		
Switch freq.	50		kHz
Output Filter Cut-off freq.	<5		kHz

Figure 1: Bipolar MPS operation of full-bridge fourquadrant $\mathrm{DC} / \mathrm{DC}$ converter.

Figure 4: Circuit diagram of bipolar MPS.

PEP-II Large Power Supplies

Table 1: LGPS ratings.

LGPS	V	I	P (kW)	Qty
BV1/2	80	900	72	1
QF2L/R	80	1250	100	2
QF5L/R	253	750	190	2
QD4L/R	200	1350	270	2

- Line-isolated
- 32 kHz Switch-output ripple
- High efficiency
- Fast output response
- Stability better than $\pm 10 \mathrm{ppm}$
- 100A to 225A
- 70kW to 135kW
- Low cost: US\$ 0.26-0.39/W

Section 7 - Superconducting Magnet Power Systems

- Rationale for Using Superconducting Magnets
- Superconducting Metals and Critical Surface Diagrams
- Dipole Magnet
- Quadrupole Magnet
- Winding Construction
- Operating Modes
- Quenches
- Superconducting Magnet Power System Schematic

Rationale For Using Superconducting Magnets

- Problem
- Contemporary high energy physics questions require much higher beam energies
- Higher energies mean larger magnets, larger facilities (size goes like bend radius which increases with energy).
- Conventional magnets consume lots of electrical power, iron cores saturate at about $2 T$
- Synchrotron light sources require high field insertion devices (undulators, wigglers)
- Permanent magnet pole pieces also have limited magnetic fields
- Superconducting Magnets
- Are smaller (possess high current density \Rightarrow compact windings, high gradients)
- Consume much less power (primarily refrigeration power), consequently lower power bills
- Can generate greater magnetic fields (typically to $10 T$ and more). Greater magnetic fields mean smaller bend radius, smaller accelerator and rings, reduced capital expense. Furthermore, no expensive iron core

Example - Superconducting solenoid
From Ampere's Law
$\oint H \cdot d l=N I_{0} \quad B=\mu_{o} H$
$\mu_{o} \oint H \cdot d l=\mu_{o} N I_{0}$
$B L=\mu_{o} N I_{0}$ or

$B=\mu_{o} N I_{0} / L$
$B=$ Tesla, T
$\mu_{o}=4 \pi * 10^{-7} T^{*} m / A$
$N=$ number of solenoid turns, t
$I_{0}=$ amperes carried per turn, A/t
Lor $d l=$ solenoid length, m
Assume a solenoid 3m long with 2,500 turns and carrying 5,000A
$B=\left(\mu_{o} N I_{0}\right) / L=\left(4 \pi * 10^{-7} T^{*} m / A * 2500 t * 5,000 A / t\right) / 3 * m=5.2 T$

Normal conductors follow Drude's model

- Electrons move freely in metal, accelerated by external $\overrightarrow{\boldsymbol{E}}$ field
- After a time τ the electron interacts with the lattice of the solid and gives up its energy
- Steady state average value of velocity $\overrightarrow{\boldsymbol{v}}=-e \overrightarrow{\boldsymbol{E}} \tau / m$
- Steady state value of current, $\overrightarrow{\boldsymbol{J}}=-n e \vec{v}=\left(n e^{2} \tau / m\right) \overrightarrow{\boldsymbol{E}}=\sigma \overrightarrow{\boldsymbol{E}}$
- This defines the conductivity σ
- Better conductors have longer times between interactions
- "Perfect" conductor has $\sigma \rightarrow \infty$
- Resistance of normal metal decreases to finite non-zero value as temperature decreases

Superconducting Metals

- Superconducting metal resistance drops to zero at T_{C}
- Superconductors also exhibit Meissner effect
- Excludes $\overrightarrow{\boldsymbol{H}}$ from the center of the SC

BCS theory (Bardeen, Cooper, Schrieffer, 1957) explains SC

- In presence of lattice, conduction electrons can form "Cooper pairs" that lower the energy of the system
- Two phase system - normal and SC phases
- Band gap forms and Cooper pairs can carry current with no lattice interaction SC current capacity dependent on number of SC pairs

- Exclusion of $\overrightarrow{\boldsymbol{H}}$ (Meissner effect) increases system free energy.
- Sufficiently large $\overrightarrow{\boldsymbol{H}}$ raises free energy of SC state above that of normal conductor and "quenches" SC state
- Many, but not all metals and alloys can exhibit SC behavior
- Different materials have different values of T_{C}, H_{C}, and J_{C}.
- Niobium or one of its alloys is most common commercially used SC material
- Picture shows the 3 dimensional space critical surface, which is the boundary between superconducting and normal conducting phases
- Superconducting phase below surface
- Normal conducting above

- Conventional magnet typically "irondominated"
- Iron pole pieces shape the field
- SC magnets are made from superconducting cable
- Winding location shapes the field according to Ampere's Law
- Windings must have the correct cross section
- Also need to shape the end turns
- Quadrupole windings, gradient fields produce focusing

Superconducting

 Magnet Wire of NiobiumTitaniumOhanian's Physics has a photograph of a cross- section of copper wire of diameter 0.7 mm with 2100 filaments of niobium-titanium embedded in it. This is an approximate sketch of the geometry. Although copper is one of the best roomtemperature conductors, it acts almost as an insulator between the strands.

- The superconductor is made in the form of fine filaments embedded in a matrix of copper. Filament diameter $=10-60 \mu m$. These form a wire of diameter $=0.3$ 1.0 mm . A typical wire is at left.
- The composite wires are twisted like a rope as below left.
- The choice of the filament material is a trade-off between $T_{C}, B_{\text {Crit }}$ and ductility
- Other filament materials have higher critical temperatures and yield higher fields, but only $\mathrm{NbTi}\left(T_{C}=10^{\circ} \mathrm{K}\right)$ is ductile

Operating Modes

Quenches

- Occurs if the limits (T, P, B) of the critical surface are exceeded. The affected magnet coil changes from a superconducting to a normal conducting state.
- The resulting drastic increase in electrical resistivity causes Joule heating, further increasing the temperature and spreading the normal conducting zone through the magnet.
- High temperatures can destroy the insulation material or even result in a meltdown of superconducting cable
- The excessive voltages can cause electric discharges that could destroy the magnet
- In addition, high Lorentz forces and temperature gradients can cause large variations in stress and irreversible degradation of the superconducting material, resulting in a permanent reduction of its current-carrying capability.

Quench in a Large Magnet

A formation of an unrecoverable normal zone within a superconductor. Quenching will convert energy supplied by the current source AND magnet stored energy into heat.

- When quench occurs, energy release is localized in the normal zone of the conductor!
- If that zone is small in volume, Quench may lead to unrepairable damage of the magnet windings or other electrical infrastructure (splices, current leads, etc).
- Quench protection is an array of techniques used to prevent such damage from occurring.

Quench protection sequence:

Parameter	Values
Detection Time	5 to 20 milliseconds
Resistance	10 s to 100 s of nanoohms
Voltage	10 s to 100 s of microvolts
Energy	10 to 100 s of microjoules
Energy Extraction Time Constant	10 to 100 s seconds

Internal magnet voltage during quench may reach several hundreds of volts!

Slide courtesy M. Marchevsky, LBL - USPAS 2017

Quench Detection Methods - Mutual Inductance

- Detector subtracts voltages to give

$$
V=L \frac{d i}{d t}+I R_{Q}-M \frac{d i}{d t}
$$

- Adjust detector to make $M=L$
- M can be a toroid linking the current supply bus, but must be linear, which means no iron

- Adjust for balance when not quenched
- Imbalance of resistive zone seen as voltage across detector, D
- If there is concern about symmetrical quenches, connect a second detector at a different point

Quench Detection For Symmetrical Quenches

- Imbalance bridge circuit detects resistive voltage in any branch of the coil winding by comparing potential of a preselected voltage tap to that provided by a resistive divider. Several (at least 2) imbalance circuits are used in order to detect symmetric quenches. Typical Imb. threshold is $\sim 100 \mathrm{mV}$ for research magnets. Quench is detected when either of the detector circuits outputs voltage above pre-set threshold. A time interval over which voltage rises above the threshold is often called "detection time" (td).
- Overvoltage Detector senses voltage across coil compensated for the inductive component. Often includes resistive junctions (splices).

Slide courtesy M. Marchevsky, LBL - USPAS 2017

Protection Using An External Dump Resistor

By adding an external resistor in parallel or series with the quenching magnet, part of the magnet energy can be extracted outside of the cryostat.
Efficiency of energy extraction depends on $R_{Q}(t) / R_{\text {dump }}$. At most, $50-60 \%$ of the magnet energy is extracted outside of the cryostat using these methods.

$$
L \frac{d I(t)}{d t}=\mathrm{I}(\mathrm{t}) R_{Q}(t)+I(t) R_{d u m p}
$$

Standard scheme

Modified schemes 1 and 2 -current ramping not limited by the dump resistor

Drawback is, $V_{\text {mag max }}=I_{\text {mag }} R_{\text {dump }}=\frac{2 E}{I_{\text {mag }} \tau}$ appears across the magnet terminals The extraction time constant is determined by $L / R_{\text {dump }}$, since $R_{\text {dump }}>R_{Q}$ Slide courtesy M. Marchevsky, LBL - USPAS 2017

Quench Protection With An Internal (Secondary) Circuit

- Breaker is closed, secondary switch is open when magnet current I_{1} is ramped for operation.
- When quench is sensed, breaker is opened and secondary switch is closed.
- $L \frac{d i}{d t}$ in current decay induces a current in L_{2} and $R_{2} . R_{2}$ heats and normalizes the entirety of L_{1} very quickly. The quench voltage is spread over the entire magnet
- τ is reduced quickly, reducing magnet damage possibility

- Strings of silicon diodes are added in parallel to each magnet.
- Diodes start to conduct at ~2-5 V of bias at liquid helium temperature, and therefore are not carrying any current during ramping or normal magnet operation.
- As quench occurs, voltage across the magnet rises above, its diodes become conductive and so the chain current is bypassed through them
- This decouples the magnet energy and rundown time from the string

A Powerex R7HC1216xx Diode rated at 1600 A energy and run-down time, reducing heat dissipation

- Same scheme can be used for protection of multi-coil magnets (quadrupoles, sextupoles). A complete accelerator can be also split in several chains, depending on its size.

An Overview Of An Entire System

A collider has several equal strings of 77 superconducting magnets, each with $71.4 m H$ inductance, carrying 15 kA of current. If one, or more quenches, all the energy from the other magnets will dissipate their energies into the quenched magnet, thus destroying it. Design a switched dump resistor to discharge the current at a maximum rate, dI/dt, less than the 300A/s damage threshold, to prevent damage to the superconducting magnet in the event of a quench. Refer to the circuit diagram below.

1. What is the energy stored in each magnet and in the string when running at its design value?
2. What is the total inductance of the string?
3. Write the equation that describes the resistor current after closing the switch.
4. Find the resistor value to limit the maximum rate of decrease of current in the magnets to $150 \mathrm{~A} / \mathrm{s}$
5. What is the maximum voltage generated across the resistor?
6. What is the time constant of this circuit?
7. Design a steel dump resistor that has little thermal conductance to the outside world (adiabatic system). Calculate how much steel mass (weight) will limit the temperature increase of the resistor to $500^{\circ} \mathrm{K}$. (Steel gets structurally soft at $538^{\circ} \mathrm{C}$ and melts at $1510^{\circ} \mathrm{C}$.)

Help

$Q=M C_{p} \Delta T$
$Q=$ heat (energy) into the system expressed in joules
$M=$ mass or weight of the resistor
$C_{p}=$ specific heat of material $=0.466 \frac{J}{g m^{*} \mathrm{~K}}$ for steel
$\Delta T=$ Temperature rise of the resistor
From information in "CERN LHC Magnet Quench Protection System, L. Coull, et. al, 13th International Conference on Magnet Technology, Victoria, Canada, 1993

Section 8 - Pulsed Power Supplies

- Transmission Lines
- Conventional Pulsers
- Solid-State Pulsers
- Turn-on Pulser
- Marx Modulator
- Induction Modulator

Outline

- Until now, we have used lumped elements: capacitors, inductors, etc.
- Capacitors are concentrations of electrical energy
- Inductors are concentrations of magnetic energy
- For high frequency behavior we need to return to Maxwell equations where separation of the $\boldsymbol{E}, \boldsymbol{H}$ fields is not so distinct.
- For the study of pulsed power systems
- We need to understand basics of transmission lines
- Once we know the basics, we can follow simple rules to apply them
- If we just state the rules
- It may sound like black magic and take away the intuition
- Therefore we derive the rules to help in understanding the basics of transmission lines

Impedance Matching

- Pulsed Power systems differ from low power electronics; it is expensive to produce high power signals
- High voltages
- Semiconductors (and other devices) must be able to withstand voltages across their terminals
- Circuits must be rated to prevent breakdown
- High currents
- Circuit elements must be able to handle current
- High power
- Generated heat must be dissipated
- The system requirements give us the minimum power required at the load
- By properly designing our circuits, matching impedances, we can minimize the required system power, and therefore the cost and complexity of our systems

Transmission Line Basics

- A transmission line is a "controlled impedance" device, usually consisting of two conductors.
- Its geometry and material properties determine the electric and magnetic field distributions between the conductors.
- The voltage between the conductors is determined by the integral of the electric field between them (Faraday's law)
- The current along the conductors determines the integral of the magnetic field around the conductor (Ampere's law)
- Transmission lines support the propagation of fixed velocity waves in both directions (forward and backward) along the line.
- Transmission lines guide transverse electro magnetic (TEM) waves, TE or TM waves are guided by waveguides

Capacitance/length (voltage between conductors)

$$
C=\frac{Q}{V l}=\frac{\lambda}{V}=\frac{\lambda}{-\int_{b}^{a} \overrightarrow{\boldsymbol{E}} \cdot d \overrightarrow{\boldsymbol{x}}}=\frac{\lambda}{\int_{a}^{b} \frac{\lambda}{2 \pi r \epsilon} d r}=\frac{2 \pi \epsilon}{\log (b / a)}
$$

Inductance/length (flux between conductors)

$$
L=\frac{1}{I l} \iint \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{s}}=\frac{1}{I l} \int_{0}^{l} \int_{a}^{b} \frac{\mu I}{2 \pi r} d r d l=\frac{\mu}{2 \pi} \log (b / a)
$$

- $Z=\sqrt{\frac{L}{C}}=\sqrt{\frac{\mu}{\epsilon}} \frac{1}{2 \pi} \log \left(\frac{b}{a}\right)$
- $v=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\mu \epsilon}}$

Transmission Line Equations

$$
\begin{aligned}
& V(x+d x, t)-V(x, t)=-L d x \frac{\partial I(x, t)}{\partial t} \\
& I(x+d x, t)-I(x, t)=-C \mathrm{dx} \frac{\partial V(x, t)}{\partial \mathrm{t}} \\
& \frac{\partial V(x, t)}{\partial x}=-L \frac{\partial I(x, t)}{\partial t} ; \frac{\partial I(x, t)}{\partial x}=-C \frac{\partial V(x, t)}{\partial t} \\
& \frac{\partial^{2} V(x, t)}{\partial x^{2}}-L C \frac{\partial^{2} V(x, t)}{\partial t^{2}}=0 \\
& \frac{\partial^{2} I(x, t)}{\partial x^{2}}-L C \frac{\partial^{2} I(x, t)}{\partial t^{2}}=0
\end{aligned}
$$

Transmission Line Equation

Both solve the "Telegrapher's Equation"

- General solution of the second order wave equation is a combination of two terms, both with velocity $v=1 / \sqrt{ } L C$

$$
V(x, t)=V_{+}(x-v t)+V_{-}(x+v t)
$$

- V_{+}is a forward traveling wave
- V_{-}is a backward traveling wave
- V_{+}and V_{-}are determined by initial conditions

Often can be determined from conservation of energy and momentum

Change variables to $\phi=x-v t ; \psi=x+v t$.
Then for any function $f(x-v t)$ (forward) and $g(x+v t)$ (backward)

$$
\begin{aligned}
& \frac{\partial f(x-v t)}{\partial x}=\frac{d f(\phi)}{d \phi} ; \frac{\partial g(x+v t)}{\partial x}=\frac{d g(\psi)}{d \psi} \\
& \frac{\partial f(x-v t)}{\partial t}=-v \frac{d f(\phi)}{d \phi} ; \frac{\partial g(x+v t)}{\partial t}=v \frac{d g(\psi)}{d \psi}
\end{aligned}
$$

We can rewrite the two terms in the circuit equations

$$
\begin{gathered}
\frac{\partial V}{\partial x}=\frac{\partial V_{+}(x-v t)}{\partial x}+\frac{\partial V_{-}(x+v t)}{\partial x}=\frac{\mathrm{d} V_{+}(\phi)}{d \phi}+\frac{d V_{-}(\psi)}{d \psi} \\
\frac{\partial I}{\partial t}=\frac{\partial I_{+}(x-v t)}{\partial t}+\frac{\partial I_{-}(x+v t)}{\partial t}=-v \frac{d I_{+}(\phi)}{d \phi}+v \frac{d I_{-}(\psi)}{d \psi}
\end{gathered}
$$

Therefore separating the circuit equation $\frac{\partial V}{\partial x}=-L \frac{\partial I}{\partial t}$ into its two components means
$\frac{d V_{+}(\phi)}{d \phi}=L v \frac{d I_{+}(\phi)}{d \phi}=$ and $\frac{d V_{-}(\phi)}{d \phi}=-L v \frac{d I_{-}(\phi)}{d \phi}$
Recalling that $v=1 / \sqrt{L C}, L v=\sqrt{L / C}=Z$, integrate to obtain

$$
\begin{aligned}
& V_{+}(x-v t)=\sqrt{L / C} I_{+}(x-v t)=Z I_{+}(x-v t) \\
& V_{-}(x+v t)=-\sqrt{L / C} I_{-}(x+v t)=-Z I_{-}(x+v t)
\end{aligned}
$$

(The integration constant is zero for waves.)
This gives the definition of the transmission line impedance Z as the ratio of the voltage wave to the current wave (taking direction of travel into account) Z is not a resistance, which would cause power dissipation in the line Note that this is similar to the definition of Z for second order $L-C$ circuits Now $1 / \sqrt{L C}=v$ instead of ω

- L and C are now values per unit length, changing the dimenstions

$$
\begin{gathered}
\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{E}}=-\partial \overrightarrow{\boldsymbol{B}} / \partial t ; \quad \overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{H}}=\partial \overrightarrow{\boldsymbol{D}} / \partial t \\
\overrightarrow{\boldsymbol{E}}=\frac{\lambda e(z, t)}{2 \pi \epsilon r} \hat{\boldsymbol{r}} ; \overrightarrow{\mathbf{H}}=\frac{I h(z, t)}{2 \pi r} \widehat{\boldsymbol{\theta}} \\
\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{E}}=\left|\begin{array}{cc}
\overrightarrow{\boldsymbol{r}} & \overrightarrow{\boldsymbol{\theta}} \\
\partial / \partial r & 1 / r \partial / \partial \theta \\
E_{r} & \frac{\hat{\mathbf{z}}}{r E_{\theta}} \\
E_{z}
\end{array}\right|=\frac{\lambda}{2 \pi \epsilon r} \frac{\partial e(z, t)}{\partial z} \widehat{\boldsymbol{\theta}} \\
\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{H}}=-\frac{I}{2 \pi r} \frac{\partial h(z, t)}{\partial z} \hat{\boldsymbol{r}} \\
\frac{\partial e(z, t)}{\partial z}=-\frac{\epsilon \mu I}{\lambda} \frac{\partial h(z, t)}{\partial t} ; \frac{\partial h(z, t)}{\partial z}=-\frac{\lambda}{I} \frac{\partial e(z, t)}{\partial t}
\end{gathered}
$$

Wave Equation from Fields

Differentiate w.r.t z and use second equation to get

$$
\begin{aligned}
& \frac{\partial^{2} e(z, t)}{\partial z^{2}}-\mu \epsilon \frac{\partial^{2} e(z, t)}{\partial t^{2}}=0 \\
& \frac{\partial^{2} h(z, t)}{\partial z^{2}}-\mu \epsilon \frac{\partial^{2} h(z, t)}{\partial t^{2}}=0
\end{aligned}
$$

This is the telegrapher's equation with

$$
v=1 / \sqrt{\mu \epsilon}=1 / \sqrt{\mu_{r} \mu_{0} \epsilon_{r} \epsilon_{0}}=c / \sqrt{\mu_{r} \epsilon_{r}}
$$

- Our wave equation has two solutions, V_{+}, V_{-}
- We are working with circuit equations, but with the proper identification with EM sources and fields we can use common conservation laws of physics to determine V_{+}and V_{-}
$-V \sim \overrightarrow{\boldsymbol{E}}$
$-I \sim \overrightarrow{\boldsymbol{H}}$

Transmission Line Types

- Coaxial transmission lines
- Voltage between two coaxial conductors
- Currents of equal magnitude and opposite sign are carried on the conductors
- Conductors separated by air or dielectric
- Transverse electromagnetic (TEM) transmission line media
- Ideally non-dispersive (propagates all frequency components equally), with no cutoff frequency
- No external electric or magnetic fields

Energy In Transmission Line

The energy of the electromagnetic fields in a volume is

$$
\begin{gathered}
\mathcal{E}=\frac{1}{2} \iiint(\overrightarrow{\boldsymbol{E}} \cdot \overrightarrow{\boldsymbol{D}}+\overrightarrow{\boldsymbol{B}} \cdot \overrightarrow{\boldsymbol{H}}) d^{3} x \\
=\frac{1}{2} \iiint\left(\frac{\lambda}{2 \pi \epsilon r} \frac{\lambda}{2 \pi r}+\frac{\mu I}{2 \pi r} \frac{I}{2 \pi r}\right) r d r d \theta d z \\
=\frac{1}{2} \frac{2 \pi}{(2 \pi)^{2}} l\left(\lambda^{2} / \epsilon+\mu I^{2}\right) \int_{a}^{b} \frac{r}{r^{2}} d r \\
=\frac{1}{2}\left[(\lambda l)^{2} \frac{1}{2 \pi \epsilon l} \log (b / a)+\frac{\mu l}{2 \pi} \log (b / a) I^{2}\right] \\
\mathcal{E}=1 / 2 Q^{2} / C+1 / 2 L I^{2}=1 / 2 C V^{2}+1 / 2 L I^{2}
\end{gathered}
$$

Energy in Transmission Line

$$
\begin{aligned}
\mathcal{E} & =\frac{1}{2} C V^{2}+\frac{1}{2} L I^{2}=\frac{1}{2}\left[C V^{2}+L\left(\frac{V}{Z}\right)^{2}\right] \\
& =\frac{1}{2}\left(C V^{2}+\frac{L}{Z^{2}} V^{2}\right)=\frac{1}{2}\left(C V^{2}+\frac{L}{L / C} V^{2}\right)=C V^{2}=L I^{2}
\end{aligned}
$$

In a wave, the EM energy is equally distributed.

- Half of the energy is in the electric field.
- Half is in the magnetic field.

Power and Momentum Flow

The power flow of fields is determined by the Poynting vector $\overrightarrow{\boldsymbol{P}}=\overrightarrow{\boldsymbol{E}} \times \overrightarrow{\boldsymbol{H}}$. For the coaxial line

$$
\overrightarrow{\boldsymbol{P}}=\frac{\lambda}{2 \pi \epsilon r} \hat{\boldsymbol{r}} \times \frac{I}{2 \pi r} \widehat{\boldsymbol{\theta}}=\frac{\mathrm{V}}{\mathrm{r} \log (\mathrm{~b} / \mathrm{a})} \frac{\mathrm{I}}{2 \pi r} \hat{\mathbf{z}}
$$

Power flow along the line is

$$
P=\int_{S} \overrightarrow{\boldsymbol{P}} \cdot d \overrightarrow{\boldsymbol{s}}=\frac{V I}{2 \pi \log (b / a)} \int_{0}^{2 \pi} d \theta \int_{a}^{b} \frac{d r}{r}=V I
$$

The momentum of an EM field is $\overrightarrow{\boldsymbol{p}}=\overrightarrow{\boldsymbol{P}} / c^{2}$ so the momentum flow is $V I / c^{2}$ (with direction \pm)

Energy Stored in Charged Line

Energy of line of length d statically charged to voltage V $\mathcal{E}=\frac{1}{2}(C d) V^{2}$ (C capacitance/length)

Energy of two co-moving waves

$$
\begin{aligned}
(V & \left.=V_{+}+V_{-}\right) ; V_{+}=V_{-}=V / 2 \\
\mathcal{E} & =\frac{1}{2}\left[(C d) V_{+}^{2}+(L d) I_{+}^{2}\right]+\frac{1}{2}\left[(C d) V_{-}^{2}+(L d) I_{-}^{2}\right] \\
& =\left[(C d) V_{+}^{2}+(C d) V_{-}^{2}\right]=2(C d) V_{+}^{2} \\
& =2(C d)\left(\frac{V}{2}\right)^{2}=\frac{1}{2}(C d) V^{2}
\end{aligned}
$$

Calculated energy the same in both cases

Momentum in Charged Line

- Momentum of EM field on line of length d statically charged to voltage V
$-(I=0) \Rightarrow(P=0) \Rightarrow(\overrightarrow{\boldsymbol{p}}=0)$
- Momentum of two co-moving waves
- Power $V_{+} I_{+}$propagating in positive direction
- Power V_I_ propagating in negative direction
- Total momentum

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{p}}_{\boldsymbol{T}}=\overrightarrow{\boldsymbol{p}}_{+}+\overrightarrow{\boldsymbol{p}}_{-}=V_{+} I_{+}-V_{-} I_{-} \\
& =1 / Z\left[(V / 2)^{2}-(V / 2)^{2}\right]=0
\end{aligned}
$$

- Calculated momentum the same in both cases
- Coaxial transmission lines and cables

$$
Z_{0}=\frac{\ln b / a}{2 \pi} \sqrt{\frac{\mu}{\varepsilon}}
$$

Transmission Line Types - Continuous

- Planar transmission line - Stripline consists of a single strip buried in a dielectric separated from two or more ground planes

Characteristic Impedance

$$
Z_{O}=\frac{60}{\sqrt{\varepsilon_{r}}} \ln \left[\frac{4 H}{0.67 \pi W\left(0.8+\frac{T}{D}\right)}\right] \text { ohms }
$$

Transmission Line Types - Continuous

- Planar transmission line - Microstrip line consists of a single strip on dielectric separated from a ground plane

when $\left(\frac{W}{H}\right)<1 \quad$ Effective Dielectric Constant $\quad \varepsilon_{e}=\frac{\varepsilon_{r}+1}{2}+\frac{\varepsilon_{r}-1}{2}\left[\left(1+12\left(\frac{H}{W}\right)\right)^{-1 / 2}+0.04\left(1-\left(\frac{W}{H}\right)\right)^{2}\right]$
Characteristic Impedance $\quad Z_{O}=\frac{60}{\sqrt{\varepsilon_{e}}} \ln \left(8 \frac{H}{W}+0.25 \frac{W}{H}\right) \quad$ ohms
when $\left(\frac{W}{H}\right) \geq 1 \quad$ Effective Dielectric Constant

Characteristic Impedance

$$
\begin{aligned}
& \varepsilon_{e}=\frac{\varepsilon_{r}+1}{2}+\frac{\varepsilon_{r}-1}{2}\left[\left(1+12\left(\frac{H}{W}\right)\right)^{-1 / 2}\right] \\
& Z_{O}=\frac{120 \pi}{\sqrt{\varepsilon_{e}}\left[\frac{W}{H}+1.393+\frac{2}{3} \ln \left(\frac{W}{H}+1.444\right)\right]}
\end{aligned}
$$

ohms

- Lumped element transmission lines
- Combination of series inductors, shunt capacitors
- Single inductor-capacitor combination is a resonant circuit
- Series of an infinite combination of series L, shunt C turns into an ideal transmission line
- Electric fields of lines stored in capacitors
- Magnetic fields of lines stored in series inductors

Lumped Element Transmission Lines

$E=\hat{y} E_{y} \quad H=\hat{x} H_{x} \quad Z_{0}=\sqrt{\frac{L}{C}}$ Characteristic impedance - 377 ohms for air (free space)
for air (and most dielectrics) $\mu_{r}=1$, for air $\varepsilon_{r}=1$ (most other dielectrics $\varepsilon_{r}>1, n=$ number of sections $Z_{0}=\frac{\ln b / a}{2 \pi} \sqrt{\frac{\mu}{\varepsilon}}$ For coaxial line, $50 \Omega \leq Z_{0} \leq 80 \Omega$
$\nu=\frac{1}{\sqrt{\mu_{0} \mu_{r} \varepsilon_{0} \varepsilon_{r}}}=$ wave velocity wavelength $\lambda=\frac{v}{f}$ time delay $=t_{d}=n * \sqrt{L C}$

Transmission Line Boundary Conditions

- Join two transmission lines together
- If the impedances of both lines are the same, the electric and magnetic fields (voltage and current) can propagate without interruption.
- If not, the boundary conditions on the fields force a reflection of part of the signal

The general situation at an interface between two transmission lines of impedance Z_{1} and Z_{2} is

- A source generates an incident voltage and current, $\left(V_{1}{ }^{+}, I_{1}{ }^{+}\right)$moving forward on Line 1, with $V_{1}^{+}=Z_{1} I_{1}^{+}$
- $\left(V_{1}^{+}, I_{1}^{+}\right)$at the interface causes a transmitted voltage and current, $\left(V_{2}^{+}\right.$, $I_{2}{ }^{+}$, moving forward on Line 2, with $V_{2}{ }^{+}=Z_{2} I_{2}{ }^{+}$
- $\left(V_{1}{ }^{+}, I_{1}{ }^{+}\right)$at the interface might also cause a reflected voltage and current, (V_{1}^{-}, I_{1}^{-}), moving backward on Line 1, with $V_{1}^{-}=Z_{1} I_{1}^{-}$

Transmission Line Equations at an Interface

The voltages on each side of the interface must be equal.
$V_{1}^{+}+V_{1}^{-} \quad=V_{2}^{+}$
Current must be conserved at the interface.

$$
I_{1}^{+} \quad=I_{2}^{+}+I_{1}^{-}
$$

Expressing the second equation in terms of the voltages
and impedances yields the Reflection Coefficient, Gamma

$\frac{V_{1}^{+}}{Z_{1}}$	$=\frac{V_{2}^{+}}{Z_{2}}+\frac{V_{1}^{-}}{Z_{1}}=\frac{V_{1}^{+}}{Z_{2}}+\frac{V_{1}^{-}}{Z_{2}}+\frac{V_{1}^{-}}{Z_{1}}$
$\frac{V_{1}^{-}}{V_{1}^{+}}$	$=\frac{\frac{1}{Z_{1}}-\frac{1}{Z_{2}}}{\frac{1}{Z_{1}}+\frac{1}{Z_{2}}}=\frac{Z_{2}-Z_{1}}{Z_{2}+Z_{1}}=\Gamma$

The transmission coefficient, T, is defined as

$T \quad \square \frac{V_{2}^{+}}{V_{1}^{+}}=\frac{\left(V_{1}^{+}+V_{1}^{-}\right)}{V_{1}^{+}}$
$=1+\Gamma$
$=\frac{Z_{2}+Z_{1}+Z_{2}-Z_{1}}{Z_{2}+Z_{1}}=\frac{2 Z_{2}}{Z_{2}+Z_{1}}$

Transmission Line Power Conservation

The flow of energy (power) is conserved at the interface.

$$
\begin{aligned}
P_{I N} & =V_{1}^{+} I_{1}^{+} \text {(assume all voltages and impedances are real) } \\
& =\frac{\left(V_{1}^{+}\right)^{2}}{Z_{1}} \\
& =\frac{\left(T V_{1}^{+}\right)^{2}}{Z_{2}}=\frac{\left(4 Z_{2}\right)}{\left(Z_{2}+Z_{1}\right)^{2}}\left(V_{1}^{+}\right)^{2} \\
P_{T} & =\frac{\left(\Gamma V_{1}^{+}\right)^{2}}{Z_{1}}=\frac{\left(Z_{2}-Z_{1}\right)^{2}}{Z_{1}\left(Z_{2}+Z_{1}\right)^{2}}\left(V_{1}^{+}\right)^{2} \\
P_{R} & =\frac{\left(4 Z_{2} Z_{1}+Z_{2}^{2}-2 Z_{2} Z_{1}+Z_{1}^{2}\right)}{Z_{1}\left(Z_{2}+Z_{1}\right)^{2}}\left(V_{1}^{+}\right)^{2}=\frac{\left(V_{1}^{+}\right)^{2}}{Z_{1}} \\
P_{T}+P_{R} & =P_{I N}
\end{aligned}
$$

Open Line

- $Z_{1}=Z_{o}, Z_{2}$ infinite
- $\Gamma=1$
- $I_{2}=0$

- Voltage totally reflected without inversion

Shorted Line

- $Z_{1}=Z_{o}, Z_{2}$ zero
- $\Gamma=-1$
- $V_{2}=0$

- Voltage totally reflected with inversion

Transmission Line More Complicated Example

- Pulse sent down line on controlled impedance
- First interface is with higher impedance device $\left(Z_{2}>Z_{1}\right)$
-Transmitted pulse
-Reflected pulse
- Transmitted pulse reflects off short

Discharging a Pulse Forming Network

Now apply this to a PFN

- Charge the PFN to V
- Open charging switch

- Close discharge switch
- Energy, momentum conserved
- V_{+}, V_{-}waves with $V_{+}=V_{-}=V / 2$
- Duration of pulse is time for a full round trip

$$
\tau=\frac{2 d}{v}=2 d \sqrt{L C}
$$

Transmission Line Homework Problem \#13

A. A transmission line can be formed using lumped Ls and Cs. Calculate the delay of a line composed of 8 sections of inductances $L=4 m H$ per section and capacitance $C=40 p F$ per section.
B. The frequency of a signal applied to a two-wire transmission cable is 3 GHz . What is the signal wavelength if the cable dielectric is air? Hint - relative permittivity of air is 1
C. What is the signal wavelength if the cable dielectric has a relative permittivity of 3.6?

Transmission Line Homework Problem \#14

For the transmission line shown below, calculate the Reflection Coefficient Γ, the reflected voltage and the voltage and current along the line versus time.

Resonant Charging

$$
\begin{aligned}
& K V L: \quad U=L_{1} \frac{d i_{1}}{d t}+v_{2} \\
& K C L: i_{1}=C_{2} \frac{d v_{2}}{d t}
\end{aligned}
$$

$\binom{\dot{i_{1}}}{\dot{v}_{2}}=\left(\begin{array}{cc}0 & -1 / L_{1} \\ 1 / C_{2} & 0\end{array}\right)\binom{i_{1}}{v_{2}}+\binom{1 / L_{1}}{0} u$
$s\binom{I_{1}}{V_{2}}-\binom{i_{1}(0)}{v_{2}(0)}=A\binom{I_{1}}{V_{2}}+B U$
where $\mathrm{A}=\left(\begin{array}{cc}0 & -1 / L_{1} \\ 1 / C_{2} & 0\end{array}\right)$ and $\mathrm{B}=\binom{1 / L_{1}}{0}$

Resonant Charging

In matrix notation

$$
(s I-A) X=x(0)+B U
$$

$$
\mathrm{X}=(s I-A)^{-1} x(0)+(s I-A)^{-1} B U
$$

$$
(s I-A)^{-1}=\left(\begin{array}{cc}
s & 1 / L_{1} \\
-1 / C_{2} & s
\end{array}\right)^{-1}=\frac{1}{s^{2}+1 / L_{1} C_{2}}\left(\begin{array}{cc}
s & -1 / L_{1} \\
1 / C_{2} & s
\end{array}\right)
$$

$$
=\frac{1}{s^{2}+1 / L_{1} C_{2}}\left(\begin{array}{cc}
s & -\frac{\omega_{0}}{\omega_{0} L_{1}} \\
\frac{\omega_{0}}{\omega_{0} C_{2}} & s
\end{array}\right)=\frac{1}{s^{2}+\omega_{0}^{2}}\left(\begin{array}{cc}
s & -\omega_{0} / Z_{0} \\
\omega_{0} Z_{0} & s
\end{array}\right)
$$

$$
\binom{I_{1}}{V_{2}}=\frac{1}{s^{2}+\omega_{0}^{2}}\left(\begin{array}{cc}
s & -\omega_{0} / Z_{0} \\
\omega_{0} Z_{0} & s
\end{array}\right)\left[\binom{i_{10}}{v_{20}}+\binom{\frac{U_{0}}{Z_{0}} \frac{\omega_{0}}{s}}{0}\right]
$$

where $U(s)=U_{0} / s, \omega_{0}^{2}=1 / L_{1} C_{2}, Z_{0}=\sqrt{L_{1} / C_{2}}$.

Resonant Charging

Assume initial values of $\left(i_{10}, v_{20}\right)=(0,0)$, then
$\binom{I_{1}}{V_{2}}=\frac{1}{s^{2}+\omega_{0}^{2}}\binom{\omega_{0} / \omega_{0} L_{1}}{\omega_{0}^{2} / s} U_{0}$
$I_{1}=\frac{U_{0}}{Z_{0}} \frac{\omega_{0}}{s^{2}+\omega_{0}^{2}} \Rightarrow i_{1}(t)=\frac{U_{0}}{Z_{0}} \sin \left(\omega_{0} t\right)$
$V_{2}=\frac{1}{s} \frac{U_{0} \omega_{0}^{2}}{s^{2}+\omega_{0}^{2}}=\left(\frac{1}{s}-\frac{s}{s^{2}+\omega_{0}^{2}}\right) U_{0}$
$\Rightarrow v_{2}(t)=\left(1-\cos \omega_{0} t\right) U_{0}$
At time $t=\pi / \omega_{0}, \cos \left(\omega_{0} \pi / \omega_{0}\right)=-1$
Voltage doubles, $v_{2}\left(\pi / \omega_{0}\right)=2 U_{0}$

- Use diode to prevent circuit ringing down
- Second order undamped system implies oscillation
- Resonant frequency $\omega_{0}=1 / \sqrt{L C}$
- Voltage and current across each reactive element $\pi / 2$ out of phase \Rightarrow $\sin \omega_{0} t, \cos \omega_{o} t$
- Step change of current across inductor requires infinite voltage \Rightarrow $i(t)=I_{0} \sin \omega_{0} t ; v_{C}(t)=V_{0} \cos \omega_{0} t$
- Energy oscillates between inductor and capacitor $\Rightarrow 1 / 2 L I_{0}^{2}=$ $1 / 2 C V_{0}^{2} \Rightarrow V_{0}=\sqrt{L / C} I_{0}=Z_{0} I_{0}$
- Output oscillates about "steady state" value $\left(U_{0}\right)$
- Starts at $v_{C}(0)=0$
- Maximum value $v_{C}\left(\pi / \omega_{0}\right)=2 U_{0}$

Two capacitors now in series
$C_{S}=C_{2} C_{3} /\left(C_{2}+C_{3}\right)$
$\omega_{0}=1 / \sqrt{L_{1} C_{S}}$
$Z=\sqrt{L_{1} / C_{S}}$
Initial conditions

$v_{3}(0)=U_{0}, i_{1}(0)=v_{2}(0)=0$
There are several ways to calculate the final voltage on C_{2}.

1) Integrate the current through L_{1} for the time $\left(0, \pi / \omega_{0}\right)$

$$
\begin{aligned}
& Q_{2}=\int_{0}^{\pi / \omega_{0}} i_{1}(t) d t=U_{0} \sqrt{\frac{C_{S}}{L_{1}}} \int_{0}^{\pi / \omega_{0}} \sin \omega_{0} t d t=U_{0} \sqrt{\frac{C_{S}}{L_{1}}} \sqrt{L_{1} C_{S}} 2 \\
& =2 C_{S} U_{0} \Rightarrow v_{2}\left(\frac{\pi}{\omega_{0}}\right)=2 \frac{C_{S}}{C_{2}} U_{0}=2 \frac{C_{3}}{C_{3}+C_{2}} U_{0}
\end{aligned}
$$

2) Find the charge transfer necessary to change the voltage across the series capacitors from U_{0} to $-U_{0}$.

$$
\begin{aligned}
& q_{30}=C_{3} U_{0} \\
& q_{3 f} / C_{3}-q_{2 f} / C_{2}=\left(q_{30}-q_{2 f}\right) / C_{3}-q_{2 f} / C_{2}=-q_{30} / C_{3}=-U_{0} \\
& \left(\frac{1}{C_{2}}+\frac{1}{C_{3}}\right) q_{2 f}=\frac{C_{3}+C_{2}}{C_{3} C_{2}} q_{2 f}=\frac{2}{C_{3}} q_{30} \Rightarrow q_{2 f}=\frac{2 C_{2}}{C_{3}+C_{2}} q_{30} \\
& \Rightarrow v_{2 f}=\left[2 C_{3} /\left(C_{3}+C_{2}\right)\right] \cdot U_{0} ; v_{3 f}=\left[\left(C_{3}-C_{2}\right) /\left(C_{3}+C_{2}\right)\right] \cdot U_{0}
\end{aligned}
$$

3) Use conservation of energy and charge to find circuit equations

$$
\mathcal{E}_{T}=\varepsilon_{0}=q_{30}^{2} /\left(2 C_{3}\right) ; q_{T}=q_{2}+q_{3}=q_{30}=q_{2 f}+q_{3 f}
$$

$$
q_{3 f}^{2} /\left(2 C_{3}\right)+q_{2 f}^{2} /\left(2 C_{2}\right)=q_{30}^{2} /\left(2 C_{3}\right)
$$

$$
\left(q_{30}^{2}-q_{3 f}^{2}\right) /\left(2 C_{3}\right)=\left(q_{30}+q_{3 f}\right) \cdot\left(q_{30}-q_{3 f}\right) /\left(2 C_{3}\right)
$$

$$
=\left(q_{30}+q_{3 f}\right) \cdot q_{2 f} /\left(2 C_{3}\right)=q_{2 f}^{2} /\left(2 C_{2}\right)
$$

$$
q_{2 f}=\left(q_{30}+q_{3 f}\right)\left(C_{2} / C_{3}\right)=\left(2 \mathrm{q}_{30}-\mathrm{q}_{2 \mathrm{f}}\right)\left(\mathrm{C}_{2} / \mathrm{C}_{3}\right)
$$

$$
\mathrm{q}_{2 \mathrm{f}}=\left[2 C_{2} /\left(C_{3}+C_{2}\right)\right] \cdot q_{30} \Rightarrow v_{2 f}=\left[2 C_{3} /\left(C_{3}+C_{2}\right)\right] \cdot U_{0} ;
$$

Conventional Pulsers - The Pulse Forming Network (PFN)

Flatness is directly proportional to the number of LC meshes Rise-time is determined by the LC of the mesh closest to the load
 Pulse width T is twice the one way transit time of the wave in the PFN The one-way transit time is

$$
t=n * \sqrt{L^{*} C}
$$

and the pulse width T is

$$
T=2 * n * \sqrt{L^{*} C}
$$

The load impedance and pulse width are usually specified. From these two parameters the PFN LC can be specified. The nominal L and C in each mesh is the total L and C divided by the number of meshes.

$$
\begin{aligned}
Z & =\sqrt{\frac{L}{C}} \\
T & =2 * Z * C \\
C & =\frac{T}{2 * Z} \\
L & =\frac{T * Z}{2}
\end{aligned}
$$

Since the PFN impedance is matched to the load impedance, all the PFN stored energy is dissipated in the load

Conventional Pulsers - The Pulse Forming Network (PFN)

The PFN is typically tuned to the impedance of the load in order to reduce voltage and current reflections. The effective output voltage at the load obeys the voltage divider law and is effectively
$V_{l o a d}=V_{p f n} * \frac{Z_{\text {load }}}{Z_{\text {load }}+Z_{p f n}}$
$V_{\text {pfn }}=V_{\text {load }} * \frac{Z_{\text {load }}+Z_{\text {pfn }}}{Z_{\text {load }}}$

Because typically the PFN has the same impedance as the load,
$V_{p f n}=2 * V_{\text {load }}$

Therefore the PFN must be charged to twice the desired load voltage.

- Open transmission lines are often used for Pulse Forming Networks (PFNs)
- They are typically charged up from a high impedance source
- Their open end is connected to a normally open switch that closes to connect the PFN to the load
- This situation can be viewed as a traveling wave reflecting back and forth off of two open ends
- Total voltage on the line is the sum of the incident and reflected waves $\left(V_{P F N}=\right.$ $2 V_{\text {LOAD }}$)
- Pulse has length $2 l / v$, since the tail of the pulse must reflect off of the other open end before it reaches the load

Note: $l=$ the length of the open transmission line and $v=$ wave velocity

Conventional Thyratron Pulser-PFN

Kicker Pulser

Conventional Pulsers - Kicker or Fast Modulator

- Improve the rise time of modulator pulse using Cable PFN
- In line Switch with PFN
- Blumline with Shunt Switch

Conventional Pulsers - Kicker Modulator

- Conventional Inline Kicker Modulator
- Thyratron for switches
- Improve the rise time of modulator pulse using Cable PFN

1 Conventional Pulsers - Why We Use a Pulsed Modulator to Drive a Klystron
Klystron perveance $=P=\frac{I_{\text {klystron }}}{\left(V_{\text {beam voltage }}\right)^{3 / 2}}$
The perveance of 5045 klystron is 2 micropervs
The peak RF power from a 5045 is 65 MW , the beam volatge is 350 kV
$I_{\text {klystron }}=P *\left(V_{\text {beam voltage }}\right)^{3 / 2}=2 * 10^{-6} *(350 \mathrm{kV})^{3 / 2}=414 \mathrm{~A}$
The power needed to achieve $65 M W$ of $R F=V_{\text {beam voltage }} I^{\prime} I_{\text {klystron }}$

$$
=350 \mathrm{kV} * 414 \mathrm{~A}=144.0 \mathrm{MW}!
$$

Pulsed power is the right approach
Smaller power source
Less cooling required (klystron efficiency is 45\%)
Average power $=$ peak power *duty cycle(on-time*PRR)
Average power $=144.9 \mathrm{MW} * 5 \mu S^{*} 60 \mathrm{~Hz}=42.4 \mathrm{~kW}$ much lower power

Conventional Pulsers - Present Klystron Modulator Power Supply

- Primary VVT, with diode rectifier
- High voltage secondary with diodes and filter capacitor
- Protected against secondary faults

Thyratron

Charging Supply

Pulse Forming Network

75 MW Klystrons

Conventional Pulsers - Klystron Modulator PS - Cabinet Details

Energy Recovery Circuit Capacitor Discharge Switch

De-spiking Coil
Charging Diode

Pulse Forming Network
Anode Reactor

Thyratron

Keep Alive Power Supply
Charging Transformer

Step Start Resistors
600VAC Circuit Breaker

Filter Capacitors
Contactors

Full Wave Bridge Rectifier

De-Qing Chassis
Power Supply
AC Line Filter Networks

Power Transformer (T20)

Equations of Motion:

$$
\begin{aligned}
& \frac{d \vec{p}}{d t}=\vec{F}=q(\vec{E}+\vec{v} \times \vec{B}) \\
& \frac{d E}{d t}=q \vec{v} \cdot \vec{F}
\end{aligned}
$$

where $\vec{p}=\gamma m \vec{v}$ is the relativistic momentum, $\gamma=1 / \sqrt{1-\beta^{2}}$, and $\vec{\beta}=\vec{v} / c$.

For a system with only magnetic fields, $\vec{E}=0$, the energy E is constant

$$
\frac{d E}{d t}=q \vec{v} \cdot(\vec{v} \times \vec{B})=0
$$

so we need to solve the differential equation

$$
\frac{d \vec{v}}{d t}=\frac{q}{\gamma m} \vec{v} \times \vec{B}
$$

since γ is constant.
We will choose our coordinate system so that the beam travels in the \hat{z} direction and we want to deflect the beam in the \hat{x} direction. Therefore $\vec{B}=B \hat{y}$.

Kicker Current Equations

Our coupled differential equations are

$$
\begin{aligned}
\frac{d v_{x}}{d t} & =-\frac{q B}{\gamma m} v_{z} \\
\frac{d v_{z}}{d t} & =\frac{q B}{\gamma m} v_{x} B
\end{aligned}
$$

Differentiating the second equation and substituting in the first equation we get

$$
\frac{d^{2} v_{z}}{d t^{2}}=-\left(\frac{q B}{\gamma m}\right)^{2} v_{z}=-\omega_{B}^{2} v_{z}, \quad \omega_{B}=\frac{q B}{\gamma m}
$$

This is the familiar harmonic oscillator equation with solutions

$$
v_{z}(t)=v_{z 0} \cos \omega_{B} t+\frac{\dot{v}_{z 0}}{\omega_{B}} \sin \omega_{B} t
$$

We set our initial conditions such that $v_{z 0}=\omega_{B} \rho, \dot{v}_{z 0}=0$. Then

$$
\begin{aligned}
& v_{z}(t)=\omega_{B} \rho \cos \omega_{B} t \\
& v_{x}(t)=-\omega_{B} \rho \sin \omega_{B} t
\end{aligned}
$$

ρ is the radius of curvature of the particle trajectory through the magnet.

Integrating again, we get the equations for the particle coordinates

$$
\begin{aligned}
& z(t)=\rho \sin \omega_{B} t+z_{0} \\
& x(t)=\rho \cos \omega_{B} t+x_{0}
\end{aligned}
$$

ρ is the radius of curvature of the particle trajectory through the magnet.
Now we relate the desired curvature of the beam to its properties and the strength of the magnetic induction.

$$
\begin{gathered}
|p|=\gamma m v=\gamma m \omega_{B} \rho=q B \rho \\
\rho=\frac{p}{q B}=\frac{c p}{c q B}=\frac{c \gamma m \beta c}{c q B}=\frac{\beta \gamma m c^{2}}{c q B}=\frac{\beta E}{c q B}
\end{gathered}
$$

All of these equations have been written in MKS units. Accelerators use a mix of units. The unit of magnetic induction, B is Tesla, but the unit of energy is GeV . The unit of E / q is the volt, which is also the ratio of an electron-Volt to the electron charge. Therefore this equation is unchanged if we measure q in units of electric charge and E in units of eV .

$$
\begin{aligned}
& 1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J} \\
& 1 e^{-}=1.602 \times 10^{-19} \mathrm{C}
\end{aligned}
$$

Inserting the units for a particle with a fundamental charge, the equation for the curvature in a dipole magnetic field is

$$
\begin{gathered}
\rho=\frac{\beta E(\mathrm{eV})}{c(\mathrm{~m} / \mathrm{s}) B(T)}=\frac{\beta E(\mathrm{eV})}{2.998 \times 10^{8} B(T)}=\frac{10^{9} \beta E(\mathrm{GeV})}{2.998 \times 10^{8} B(\mathrm{~T})} \\
\rho=\frac{\beta E(\mathrm{GeV})}{0.2998 B(T)}
\end{gathered}
$$

For ultra-relativistic beams, $\beta \approx 1$

$$
\begin{gathered}
E=3 \mathrm{GeV} \text { (electrons) } \\
\gamma=\frac{3000}{0.511}=5870.8 \\
\beta=0.9999999855
\end{gathered}
$$

Kicker is usually designed to deflect the beam a certain angle θ. If the B field is constant over a length L,

$$
\begin{gathered}
\rho \sin \theta=L \\
B L=\frac{\beta E}{0.2998} \sin \theta
\end{gathered}
$$

Example:
A 1 meter long kicker is required to deflect a 3 GeV electron beam by 2 mrad. Assuming a uniform field in the kicker, calculate the magnetic induction required for this deflection.

$$
\begin{aligned}
& B L=\frac{\beta E}{0.2998} \sin \theta \\
& B=\frac{3}{0.2998} 2 \times 10^{-3}=0.020 \mathrm{~T}
\end{aligned}
$$

Assuming that the magnet has two conductors and the circumference of the loop of the magnetic field from each conductor passing through the beam trajectory is 0.150 meters, calculate the current that flows through each conductor.

$$
\begin{aligned}
& \oint \vec{H} \cdot \overrightarrow{d l}=2 I=0.150 \mathrm{H}=\frac{0.150 \mathrm{~B}}{\mu_{0}} \\
& I=\frac{0.150 \mathrm{~B}}{2 \cdot 4 \pi \times 10^{-7}}=\frac{0.150 \cdot 0.020}{2 \cdot 4 \pi \times 10^{-7}}=1194 \mathrm{~A}
\end{aligned}
$$

- Cable Pulse Transformer parallels multiple cable inputs and series connects the outputs. The pulse length must be $<2 X$ the electrical length of the cable and must drive a matched load.
- Fast rise time with simple transformer
- Disadvantage stray capacitance and floating cable return limits transformer usage

Comparison of Thyratron and Solid-State Pulser Parameters

Parameter	Thyratron	Solid-state
Control turn-on	Yes	Yes
Control turn-off	No	Yes
Pulse Shaping	PFN	IGBT
Output Voltage	$1 / 2$ PFN voltage	Same as device voltage

Solid-State Pulsers

- Replace Thyratron with solid-state switch SCR, IGBT, MOSFET, etc
- Having a high enough di/dt capability is the problem
- For many applications IGBTs without PFNs are being used at the present time

Fig. 11) Switch Assembly SPR-08F45-6-WC

Model S38 Thyristor Module

Features:

- 4700 V Peak Off-State Voltage
- 14kA Peak Non-Repetitive Current
- $30 \mathrm{kA} / \mu \mathrm{S}$ Maximum di/dt
- 100 nS turn-on delay time
- Low Inductance
- Fractional turn pulse transformer
-Similar to a induction accelerator
-Multiple primaries driven in parallel
-The secondary connected in series
- Solid-state driver consists of
- A solid state switch that turns on and off
- DC capacitor per primary winding

- All pulse capacitors are pre-charged simultaneously
- IGBTs are all switched on together
- Capacitors are then simultaneously discharged producing sinusoidal V and I pulses in the pulse transformer and magnet. The secondary winding voltages are additive
- At the end of the pulse the IGBT is turned off. The magnet current decay causes a voltage reversal at the free-wheeling diode
- The freewheeling diodes conduct and the magnet current decays exponentially to zero

Hybrid

- Solid-state 10 - stack installed alongside Gallery line-type PFN unit
- $22 \mathrm{kV}=>330 \mathrm{kV}$ via 15:1 xfmr
- Prototype currently at 255 kV @ $2.2 \mu \mathrm{sec}$ @ 120 PPS

Solid-State Induction Klystron Modulator Hybrid modulator pulse

SOLID STATE DRIVERS

- 152 IGBT Drivers (two per each primary)
- 1800 Volts per IGBT
- 2700 Amps per Driver

CORES AND SECONDARY

- 76 Primaries @ 5400 A
- 3-Turns Secondary
- 400kV @ 1800A, 725MW for $3.2 \mu s, 350 \mathrm{~kW}$ Ave.

$$
\begin{aligned}
& \text { 2) Klysima Voltage: . } 50 \mathrm{kVOI} \text {. } 1 . \mathrm{sI} \mathrm{C} \text {. } \\
& \text { 3) Klysiron \#3 Amps: } 100 \text { VOI } 1 \text { uSl: }
\end{aligned}
$$

- Marx Generator charges capacitors in parallel for quickness, discharges them in series for high output voltage. For long pulses, advantage is to avoid the need for large iron core transformers based on volt-second product

- If the load is a magnet, the charging inductors are not required

- Another implementation, using solid-state switches in place of the charging inductors for smaller size and less diversion of capacitor current from load

Solid-State Pulsers - Homework Problem \# 15

A controlled impedance transmission line often drives a kicker. The kicker is usually well modeled as an inductor. A matching circuit can be built around the kicker and its inductance so that this circuit, including the kicker magnet, has constant, frequency independent, impedance which is matched to the transmission line.

Assuming that the transmission line impedance is Z_{0} and the kicker inductance is $L_{\text {Kicker }}$ derive the values of R1, R2, and C necessary to make a frequency independent (constant) impedance Z_{0}.

Solid-State Pulsers - Homework Problem \# 16

A. What is the significance of the value $\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}$?
B. What is the significance of the values $\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$ and $\sqrt{L^{*} C}$?
C. Calculate the speed of light in mediums with dielectric constants of:

$$
\varepsilon_{r}=1 \quad \varepsilon_{r}=2 \quad \varepsilon_{r}=4 \quad \varepsilon_{r}=8 \quad \varepsilon_{r}=16
$$

Section 9

- Magnetics
- The Electric - Magnetic Equivalence
- Field Due to a Current
- Magnetic Units Including Turns
- Cores and Materials
- Transformer Design Issues
- Inductors
- Various magnetic types, such as transformers and filter inductors, play a key role in many of the components used in power supplies
- Magnets are also extensively used in accelerators to guide, direct, steer, and focus beams. They are also used to correct chromatic aberrations.
- Magnetic circuits are analogous to electric circuits and are important for the analysis of magnetic devices. The equations for both electric and magnetic circuits show strong similarities

Electrical	Closest Magnetic
EMF (Volts)	MMF (A^{*} turn, F)
Current (Amperes)	Flux (Wb / turn, Φ)
Resistance (ohms, Ω)	Reluctance (A^{*} turns / Wb, R)
Resistivity (ohm*m, ρ)	
Conductance (mhos, σ)	Permeance (Wb / A^{*} turn, P)
Conductivity (Siemens $/ m$)	Permeability (Henries / m, μ)

Symbol	Description	SI units	cgs units
N	Winding turns	turn (t)	t
H	Field intensity	$(A \cdot t) / m$	Oersted (Oe)
B	Flux density	tesla (T)	gauss (G)
μ	Permeability	$T \cdot m / A$ or H / m	$G / O e$
F	Magnetomotive force	$A \cdot t$	gilbert $(G b)$
Φ	Flux	weber/t $(W b / t)$	maxwell
R	Reluctance	$A \cdot t / W b$	
P	Permeance	henry/t or $(W b / A * t)$	Henry/t (H / t)
I	Current	ampere (A)	ampere (A)
L	Inductance	henry (H)	henry (H)

$$
\begin{aligned}
I= & \oint H \bullet d l \\
& \text { For uniform current density } \\
& H=\frac{I^{\prime}}{l} \quad l=2 \pi r \\
& I^{\prime} \\
& =\text { The fraction of the total current flow in the wire } \\
& \text { For } r \leq a \Rightarrow I^{\prime}=\frac{r^{2}}{a^{2}} I \quad H_{1}=\left(\frac{I}{2 \pi}\right) \frac{r}{a^{2}} \\
& \text { For } r>a \Rightarrow I^{\prime}=I \quad H_{2}=\frac{I}{2 \pi r}
\end{aligned}
$$

Permeability Definitions

- $\mu_{0}=$ permeability of vacuum $=4 * \pi * 10^{-7} \mathrm{H} / \mathrm{m}$
- $\mu_{r}=$ relative permeability (dimensionless)
- $\mu_{m}=$ material permeability $=B / H$ at any given point
- $\mu_{m}=\mu_{0} * \mu_{r}$
- Permeability is an important core parameter
- Ferromagnetic materials used in transformer and inductor cores because of their high permeability

Core Materials
Air
Alloys of steel
Amorphous steel
Iron Powder
Manganese-Zinc Ferrite
Molybdenum Permalloy
Powder
Nickel-Zinc Ferrite
Sendust (Fe, Si, Al)
Silicon Steel

Energy is power integrated over time, in this case extracted energy
$W=-\int_{0}^{t_{1}} V I d t \quad V=-n A \frac{d B}{d t}=-n A \mu \frac{d H}{d t}$ and $I=\frac{H l}{n}$
$W=\int_{0}^{t_{1}} A \mu \frac{d H}{d t} H l d t=A \mu l \int_{0}^{H_{1}} H d H=A l\left(\frac{\mu H_{1}^{2}}{2}\right)$
W is the magnetic energy stored in the volume, $A l$, and $\left(\frac{\mu H_{1}^{2}}{2}\right)$ is the field energy density

- U-U, U-I cores
- E-E, E-I, ETD cores
- POT cores
- RM cores
- PQ and PM cores
- EP, EFD and ER cores
- Toroid

Pot cores

cut Ccore

Linear region

H_{s}

Material	Frequency Range	$\boldsymbol{B}_{\text {sat }}$	Cost
Ferrites	Good to microwaves	0.2 T	Low
MPP (Moly Permalloy Powder)	200 kHz	0.2 to 0.55 T	High
Powdered Fe	$1 M H z$	0.4 to 1 T	Low
Laminated Si-Fe	2 kHz	$1 T$	Low
Laminated Electrical Steel	2 kHz	0.5 to 1.8 T	Low
Ni-Fe Alloys	100 kHz	0.5 to 1.8 T	High

Effect of permeability magnitude on transformer operation

Effect of permeability nonlinearity on transformer operation

Relationship Between $v(t)$ and $B(t)$

$B_{\max }=\frac{V_{r m s}}{4.44 * f * A_{c} * N_{p} * 10^{-8}}$
where
$B_{\max }=$ maximum allowable flux density in gauss
$V_{r m s}=$ voltage applied to the primary in volts
$4.44=\frac{\sqrt{2}}{2 \pi}$ converts peak AC to rms and ω to $f(\mathrm{~Hz})$
$f \quad=$ frequency of the applied voltage in hertz
$A_{c}=$ Corecrossectional area in cm^{2}
$N_{p}=$ Number of primary winding turns
$10^{-8}=$ conversion from engineering to SI units

Example for a $480 \mathrm{~V}, 600 \mathrm{kVA}$, laminated electrical steel core
$B_{\max }=\frac{480 \mathrm{~V} * 1.05(\text { voltage safety factor })}{4.44 * 60 \mathrm{~Hz}^{*} 300 \mathrm{~cm}^{2} * 60 \text { turns } * 10^{-8}}=10,510$ gauss

Curves	
20000 B (gauss)	
15000	
F0000	
5000	
O	
-5000	
F1000	
1000	$H(A / m)$
-2000 8 8 8, 80	- 8 8 8 8

For square wave or rectangular wave excitation
$B_{\max }=\frac{V_{\text {peak }}}{2 \pi * f * A_{c} * N_{p} * 10^{-8}}$
$V_{\text {peak }}=$ peak applied voltage

- Four quadrant B-H curves are known as hysteresis curves. Note that the curve is open in the middle. This is a consequence of the magnetic microstructure.
- Remanence is defined as the absolute value of the magnetic field when the applied voltage is removed. The remnant field can cause inrush current problems when the transformer re-energized

- Coercive Force - The amount of reverse magnetic field which must be applied to a magnetic material to make the magnetic flux return to zero.

B-H Loop

- They are unavoidable in many cores
- In an inductor they permit increased energy storage for a given B by reducing the effective permeability
- Air gaps also stabilize the inductance value for both bias and manufacturing variations
- In general gaps are undesired in transformers but very useful in inductors
- An air gap may be discrete or distributed

For the $480 \mathrm{~V}, 600 \mathrm{kVA}$ transformer
$i_{\max }=\frac{10^{3} * h * A_{c} *\left(\left(B_{r}+2 * B_{\max }\right)-130\right)}{3.2 * N_{p} * A_{s}}$
$i_{\text {max }}=$ maximum instantaneous current in amperes
$h \quad=$ the length of the coil in inches $=40$
$A_{c} \quad=$ the crossectional area of the core in sq inches $=46.5$
$B_{\max }=$ Maximum flux density $=10,500 G=1.05 T=68$ kilolines per square inch
$B_{r} \quad=$ residual flux density in kilolines (Maxwells) per square inch
$=60 \%$ of $1.05 T$, expressed as 41 kilolines per square inch

$N_{p} \quad=$ number of primary turns $=60$
$A_{s} \quad=$ effective square inches of the air-core magnetic field=69.4
Example $I_{f l}=\frac{600 \mathrm{kVA}}{\sqrt{3} * 480 \mathrm{~V}}=722 \mathrm{~A}$, the inrush current is
$i_{\text {inrush }}=\frac{10^{3} * 40 * 46.5 *((41+2 * 71)-130)}{3.2 * 60 * 69.4}=6.56 \mathrm{kA}$
This is about 9X the transformer full load (operating) current
Reduce the inrush current by increasing the number of primary turns and/or increasing the effective area of the air-core magnetic field

There are always energy losses in transformers. These energy losses generate heat in the form of core losses and winding losses. The losses are from the following sources:

1. Hysteresis loss from sweeping of flux from positive to negative and the area enclosed by the loop is the loss. Hysteresis loss is due to the energy used to align and re-align the magnetic domains. The smaller the loop area, the smaller the energy loss per cycle
2. Eddy current loss from the circulating currents within the cores due to flux generated voltages.
3. Copper or winding loss. This is also dependent on the wire size, switching frequency, etc. Skin effect and proximity effect will contribute to this loss.

Demagnetization Or Degaussing

Removing residual magnetism from a ferromagnetic circuit by using decreasing excitation

- As the frequency of a given ac current in a conductor is increased, the power dissipation increases
- We ascribe this to an increase in ac resistance of the conductor but in actuality it is due to a rearrangement of the current distribution within the conductor
- The increase in loss is due to a tendency for the current to concentrate on the perimeter of the conductor rather than being uniform over the conductor area as it would be at dc
- This effect becomes more severe as frequency is increased
- This is called "skin effect"

$$
\delta=\frac{1}{\sqrt{\pi f \mu \sigma}} \quad \text { meters }
$$

63\% of the current is carried in this depth.

- A current carrying conductor will generate a magnetic field
- This field can induce eddy currents in nearby conductors, increasing losses in addition to any skin effect. The eddy currents obey Lenz's Law. They flow in a direction that reduces the flux in the conductor
- This is referred to as "proximity effect"
- In a transformer or inductor, the inner windings operate in a field created by the outer windings
- This can also limit the conductor size
- As a general rule the wire diameter or the layer thickness is usually less than twice the skin depth at the operating frequency. For multi-layer windings wire diameters of less than 0.5 skin depth may be required.

Current Concentrates At One Side

Purposes

- Used as filters for smoothing power supply ripple
- Used as fault current limiting reactors in AC power currents
- Used to limit di/dt in certain pulsed circuits

Requirements

- Must carry high DC current
- Must select core size that is able to store the required magnetic energy (volt-seconds)
- An air gap is sometimes employed to extend DC current capability without saturating. Iron and Ferrites are manufactured with distributed air gaps.
$L=\frac{\mu_{0} \mu_{r} N^{2} A_{c}}{\mu_{0} \mu_{r} l_{g}+l_{c}}$
where
$N=$ the number of winding turns (dimensionless)
$A_{c}=$ the core cross sectional area in m^{2}
$l_{c}=$ the length of the magnetic path in the core in meters
$l_{g}=$ the effective length of the air gap in meters
$\mu_{0} \mu_{r}=$ core material permeability under the operating conditions (dimensionless)
$\mu_{0}=\frac{4 \pi * 10^{-7} H}{m}$

Section 10-Controls

- Electric Circuit Theory
- Stability
- Zero Flux Current Transductors
- Shunt Resistors
- Feedback Loops
- Power Supply Controllers

Kirchoff's current law - sum of all current into a node is 0
Kirchoff's voltage law - sum of all voltages around a loop is 0
Voltage-current relations across passive elements
$V=R^{*} I \quad V=L * \frac{d i}{d t} \quad I=C \frac{d v}{d t}$
$v(t)=R i(t)+L \frac{d i(t)}{d t} \quad$ Real magnet with R and L components
Represent the current $i(t)$ as a complex exponential
$i(t)=I e^{j \omega t}$ then the equation for v becomes
$V e^{j \omega t}=R I e^{j \omega t}+L j \omega I e^{j \omega t}=(R+j \omega L) I e^{j \omega t}$
$I e^{j \omega t}$ is the eigenfunction
$(R+j \omega L)$ is the eigenvalue, which, is the impedance, $Z(\omega)$
$K V L-A(t)+R i(t)+v_{c}(t)=0 \quad B u t i(t)=C \frac{d v_{c}(t)}{d t}$
System equation
$R C \frac{d v_{c}(t)}{d t}+v_{c}(t)=A(t) \quad$ Let $R C=\tau$
Solution
$v_{c}(t)=v_{c}(0) e^{-\frac{t}{\tau}}+\tau^{-1} e^{-\frac{t}{\tau}} \int_{0}^{t} A(u) e^{\frac{u}{\tau}} d u$
For the case when A is constant

$v_{c}(t)=\left[v_{c}(0) e^{-\frac{t}{\tau}}+A\left(1-e^{-\frac{t}{\tau}}\right)\right]$
This is now in the form of an initial value multiplied by
an eigenfunction and an input multiplied by the same eigenfunction

Repeat the same problem using Laplace transforms
$C \frac{d v_{c}(t)}{d t} \quad=\frac{\left[-v_{c}(t)+A(t)\right]}{R}$
Transform both sides

$$
\begin{aligned}
C\left[s V_{c}(s)-v_{c}(0)\right] & =-\frac{1}{R} V_{c}(s)+\frac{1}{R} A(s) \\
\left(s C+\frac{1}{R}\right) V_{c}(s) & =C v_{c}(0)+\frac{1}{R} A(s) \\
V_{c}(s) & =\frac{1}{s+\tau^{-1}} v_{c}(0)+\frac{\tau^{-1}}{s+\tau^{-1}} A(s) \quad \text { let } \tau^{-1}=\alpha
\end{aligned}
$$

For the case when A is constant

$$
=\frac{1}{s+\alpha} v_{c}(0)+A \frac{1}{s} \frac{\alpha}{s+\alpha}
$$

Take the inverse transform

$$
\begin{array}{ll}
v_{c}(t) & =v_{c}(0) e^{-\alpha t}+A\left(1-e^{-\alpha t}\right) \\
v_{c}(t) & =v_{c}(0) e^{\frac{-t}{\tau}}+A\left(1-e^{\frac{-t}{\tau}}\right)
\end{array}
$$

Same result as on the previous page

Take the inverse transform to obtain
$v_{c}(t)=v_{c}(0) e^{-\frac{t}{\tau}}+A\left(1-e^{-\frac{t}{\tau}}\right)$, as before

From the transform equation
$V_{c}(s)=\frac{1}{s+\tau^{-1}} v_{c}(0)+\frac{\tau^{-1}}{s+\tau^{-1}} A(s)$
we can immediately read off the system transfer function as the ratio of $\frac{V_{c}(s)}{A(s)}=\frac{\tau^{-1}}{s+\tau^{-1}}$ when the initial conditions are zero.

We also see that both the transfer function and the response to the initial conditions have the same poles and therefore similar frequency characteristics

- Dynamics are determined by the numerator and denominator of transfer function
- The values of s for which the numerator or denominator vanishes are called "zeroes" and "poles", respectively
- One pole circuits all have the same shape response and depend only on the time constant, $\tau=R C$ or L / R
- A one pole circuit rises to 63% or decays to 37% of its final value at $t=\tau$

$$
H(s)=\frac{\tau^{-1}}{s+\tau^{-1}}
$$

- Since we will analyze our systems primarily in the frequency domain, it is important to understand the properties of a one pole system as a function of frequency.
- We can calculate the transfer function using algebra on the system impedances

$$
\begin{aligned}
H(j \omega) & =\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}} \\
& =\frac{\tau^{-1}}{j \omega+\tau^{-l}} \\
& =\frac{1}{1+j \omega \tau}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Magnitude }|H(j \omega)| \\
& =\frac{1}{\sqrt{1+(\omega \tau)^{2}}} \\
& |H(j \omega)|_{d B} \\
& \\
& \\
& \\
& =-10 \log _{10}\left[1+(\omega \tau)^{2}\right] \\
& \\
& \cong 0 \quad \text { for } \omega \tau \ll 1 \\
& \\
& \\
& =-10 \log _{10} 2 \quad \text { for } \omega \tau=1 \\
& 3 d B \text { (half-power) point } \quad \begin{aligned}
& \\
20 d B \text { per decade attenuation } & \cong-20 \log _{10} \omega-20 \log _{10} \tau \quad \text { for } \omega \tau \gg 1 \\
\text { Phase } & =-\arctan (\omega \tau) \\
& \cong 0 \quad \omega \tau \ll 1 \\
& =-45^{0} \quad \omega \tau=1 \\
& \cong-90^{\circ} \quad \omega \tau \gg 1
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& Z_{S}=R_{S}+j \omega L=R_{S}+s L \\
& Z_{L}=\frac{\frac{R_{L}}{j \omega C}}{R_{L}+\frac{1}{j \omega C}} \\
&=\frac{\frac{R_{L}}{S C}}{R_{L}+\frac{1}{S C}}
\end{aligned}
$$

Electrical Circuit Theory - Two Pole Systems

Find transfer function of voltage divider

$$
\begin{aligned}
H(j \omega) & =\frac{\frac{R_{L} / j \omega C}{R_{L}+1 / j \omega C}}{R_{S}+j \omega L+\frac{R_{L} / j \omega C}{R_{L}+1 / j \omega C}}=\frac{R_{L}}{-R_{L} L C \omega^{2}+j\left(R_{L} R_{S} C+L\right) \omega+\left(R_{S}+R_{L}\right)} \\
& =\frac{1}{L C} \frac{1}{-\omega^{2}+j\left(R_{S} / L+1 / R_{L} C\right) \omega+\left(1+R_{S} / R_{L}\right)(1 / L C)} \quad \text { let } \omega_{0}^{2}=1 / L C \\
& =\frac{\omega_{0}^{2}}{-\omega^{2}+j\left(R_{S} / L+1 / R_{L} C\right) \omega+\left(1+R_{S} / R_{L}\right) \omega_{0}^{2}}
\end{aligned}
$$

This has the form

$$
\begin{array}{ll}
H(s)=\frac{a_{0}}{s^{2}+a_{1} s+a_{0}} & =\frac{a_{0}}{\left(s-s_{1}\right)\left(s-s_{2}\right)} \\
s_{1}=-\frac{a_{1}}{2}+\sqrt{\left(\frac{a_{1}}{2}\right)^{2}-a_{0}} & s_{2}=-\frac{a_{1}}{2}-\sqrt{\left(\frac{a_{1}}{2}\right)^{2}-a_{0}}
\end{array}
$$

- Two pole circuits have two degrees of freedom. One degree sets the system time scale. One degree sets the stability parameter
- For a given time scale, the more stable the system, the slower its response. Two pole systems can be separated into three categories
- Over-damped system radical is positive, roots are real $a_{1}{ }^{2} / a_{0}>4$
- Both poles are real
- No oscillation in step response
- Critically damped system radical is zero, roots are real $a_{1}{ }^{2} / a_{0}=4$
- Both poles are real and identical
- Fastest step response with no oscillation
- Under-damped system radical is negative, roots are complex $a_{1}^{2} / a_{0}<$ 4
- Poles are complex conjugates of each other
- Step response is faster than the other two, but has overshoot

Summarizing

- Low and high frequency behavior is almost independent of a_{1}
- At low frequencies the magnitude is constant and the phase approaches 0°
- At high frequencies the magnitude decreases $40 \mathrm{~dB} /$ decade ($20 \mathrm{~dB} /$ pole) and the Phase approaches -180° (-90° /pole)
- At $\omega_{0} a_{1}$ determines attenuation and phase slope
- Increased rise time and overshoot are the result of additional response near ω_{0}
- A resonant circuit is a lossless $\left(R_{S}=0\right.$ and $R_{L}=\infty$ in diagram) second order circuit often encountered in pulsed-power systems. Real systems have loss (and damping), but can be well approximated by resonant circuits
- The resonant frequency is $f=\frac{1}{2 \pi \sqrt{L C}}$

Electrical Circuit Theory - Bode Plots

- Bode plots are a standard way to present properties of feedback systems
- Each pole
- Corresponds to a 6 dB /octave (20 dB/decade) roll-off in amplitude above the pole
- Represent magnitude on log-log plot with a straight line that has a 6 dB/octave kink at the pole
- Corresponds to a 90 degree phase shift at high frequencies
- 0 angle shift at $f_{c} / 10$
- -45 degree shift at f_{c}
- -90 degree shift at $10^{*} f_{c}$

Electrical Circuit Theory - Bode Plots

- Complex conjugate poles are slightly more complex

Far from the poles they have the same behavior as two real poles

- 12 dB/octave
- 180 degree phase shift

Near the pole frequency, their behavior depends on the damping factor of the complex pole pair

- Similar rules exist for zeros

6 dB/octave increase in gain above zero
+45 degree phase shift at the zero

- Purpose of a power supply is to provide stable power
- Use feedback circuits to
- Regulate a system, that is, keep the output fixed at a desired constant value
- Control a system, that is, force the output to follow a variable control input
- $V_{0}=K\left(V_{\text {ref }}-\beta T I_{0}\right)$

- $I_{0} Z=V_{0}=K\left(V_{r e f}-\beta T I_{0}\right) \Rightarrow \frac{I_{0}}{V_{r e f}}=\frac{K / Z}{1+\beta T K / Z}=A_{C L}$
- $A_{F W D}=K / Z$ is the forward gain; $A_{L O O P}=\beta T K / Z$ is the loop gain
- $A_{C L}=\frac{A_{F W D}}{1+A_{L O O P}}$ is the closed loop gain

For $A_{L O O P} \gg 1, A_{C L} \approx \frac{A_{F W D}}{A_{L O O P}}=\frac{1}{\beta T}$

- The power amplifier and load characteristics (K, Z) are relatively unimportant.
- The gain and stability are dependent upon the feedback loop βT

The feedback loop ensures the output always follows the input

$\boldsymbol{I}_{o}=\boldsymbol{K} / \mathbf{Z}\left(\right.$ Vref $\left.-\boldsymbol{\beta} \boldsymbol{T} \boldsymbol{I}_{o}\right)$		
Vref	Vref- $\beta T I_{o}$	I_{o}
Vref \downarrow	Vref- $\beta T I_{o} \downarrow$	$I_{o} \downarrow$
$\operatorname{Vref} \uparrow$	Vref- $\beta T I_{o} \uparrow$	$I_{o} \uparrow$
$I_{o} \downarrow$	Vref- $\beta T I_{o} \uparrow$	$I_{o} \uparrow$
$I_{o} \uparrow$	Vref- $\beta T I_{o} \downarrow$	$I_{o} \downarrow$

Three Types of Stability

- Stability against oscillation
- Stability against short and long-term output voltage or current drift
- Stability (Regulation) against rapid, short changes in line voltage or load characteristics

Stability Against Oscillation

$$
\begin{aligned}
& \frac{I_{0}}{V_{\text {ref }}}=A=\frac{K / Z}{1+\beta T K / Z} \\
& \frac{I_{0}(s)}{V_{\text {ref }}(s)}=A(s)=\frac{K(s) / Z(s)}{1+\beta(s) T(s) K(s) / Z(s)}
\end{aligned}
$$

All of the elements of the transfer function - the gain, or in this case the transconductance, are functions of the complex frequency $s=j \omega=j 2 \pi f$

In order to avoid a singularity and an instability, $1+\beta(s) T(s) K(s) / Z(s) \neq 0$
In terms of magnitudes and phases of the individual terms, for

$$
\beta=|\beta| e^{j \alpha} ; T=|T| e^{j \beta} ; K=|K| e^{j \chi} ; Z=|Z| e^{j \phi}
$$

this condition means
$|\beta||T||K| /|Z| \neq 1$ when $\alpha+\beta+\chi-\phi= \pm \pi= \pm 180^{\circ}$

- For stability, the phase shift must be $<180^{\circ}$ when the \mid gain $\mid=1$
- For stability, the |gain \mid must be <1 when the phase shift is 180°

Short-Term (24 hour) Stability - essentially stability against cyclic or diurnal temperature changes.

$$
\frac{I_{0}(s)}{V_{r e f}(s)}=A_{C L}(s)=\frac{K(s) / Z(s)}{1+\beta(s) T(s) K(s) / Z(s)}
$$

Since $\beta(s) T(s) K(s) / Z(s) \gg 1, A_{C L}(s) \approx \frac{1}{\beta(s) T(s)} \quad K(s), Z(s)$ unimportant
The stability is primarily dependent on the properties of the transductor $T(s)$, feedback factor, $\beta(s)$, and the reference setting, $V_{r e f}(s)$.

In most cases $V_{\text {ref }}$ and the error amplifier $\beta(s)$ are temperature stabilized.

- The diurnal temperature cycle can be as much as $40^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$. This globally affects the internal parts as well as the external setpoint
- All parts (resistors, capacitors, semiconductors, op-amps, etc) are temperature dependent.
- The load is also temperature dependent and is subject to the same diurnal changes
- The input line voltage will change during the course of the day as more premises load is consumed or shed

General

- Use low-temperature coefficient parts or balance (+) coefficient parts with (-) coefficient parts
- Enclose the power supply in a controlled environment where temperature change is held to a minimum
- 10 to 50 ppm attainable w/o temperature control (5 to 10 ppm) with temperature control

For the read-back signal, use:

- Precision, low-temperature coefficient current transductors ($0.3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) with metal film burden resistor $\left(0.9 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \cong 1.2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Precision, low-temperature coefficient resistors for current shunt or voltage read-back (10 ppm $/{ }^{\circ} \mathrm{C}$)

LEM (was Danfysik)
Model 866
$0- \pm 600$ A
$\pm 400 \mathrm{~mA}$ out
$0.3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
DC-100 kHz
$10 \mathrm{kA} / \mathrm{mS}$
Separate burden resistor Also Danisense

LEM (was Danfysik) Model
860 Series
0 - ± 1000 A, ± 2000 A, ± 3000
A
± 10 V out
$0.3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
DC-100 kHz
$10 \mathrm{kA} / \mathrm{mS}$
Also Danisense

https://isabellenhuetteusa.com/

Long-Term Stability

- All parts are subject to aging.
- Resistors increase or decrease in value
- Capacitor dielectrics breakdown
- Capacitor electrolytes dry out or evaporate and leak
- Semiconductor bias points change
- Op-amp scale, linearity, monotonicity, gain and offsets change with time

Stability Enhancement

- Accelerate initial aging components prior to intended use by baking at elevated temperatures
- Accelerate aging by exposure to electron beam
- Two types of Regulation - Load and Line
- Classic definition of Load Regulation (0% is best)

$$
\% V_{R}=\frac{V_{N L}-V_{F L}}{V_{F L}} * 100 \% \quad \% I_{R}=\frac{I_{N L}-I_{F L}}{I_{F L}} * 100 \%
$$

- Classic definition employing $V_{N L}$ is usually not applicable. A limited version uses"decreased load or increased load" instead of a no-load condition

$$
\% V_{R}=\frac{V_{D L}-V_{F L}}{V_{F L}} * 100 \% \quad \% I_{R}=\frac{I_{D L}-I_{F L}}{I_{F L}} * 100 \%
$$

- In addition, the recovery time for the power supply output voltage or current to return the original condition is also specified
"The power supply shall have a voltage regulation of 0.5\% for load changes of $\pm 5 \%$ from nominal with voltage recovery in ≤ 2 milliseconds"
- Line Regulation - Definition (HL= output voltage under high line, $N L=$ output voltage under nominal line, $L L=$ output voltage under low line)

$$
\begin{array}{ll}
\% V_{R}=\frac{V_{H L}-V_{N L}}{V_{N L}} * 100 \% & \% I_{R}=\frac{I_{H L}-I_{N L}}{I_{N L}} * 100 \% \\
\% V_{R}=\frac{V_{N L}-V_{L L}}{V_{N L}} * 100 \% & \% I_{R}=\frac{I_{N L}-I_{L L}}{I_{N L}} * 100 \%
\end{array}
$$

- In addition, the recovery time for the power supply output voltage or current to return the original condition is also specified
"The power supply shall have a voltage/current regulation of 0.5\% for line changes of $\pm 5 \%$ from nominal with voltage/current recovery in $\leq 2 \mathrm{mS}$ "

The ability of a power supply to respond to a transient condition depends upon the speed, depth and duration of the transient. The transient can be mitigated by the use of:

- Large filter capacitors and inductors in the input and output filters to maintain the input and output load voltage and current against line voltage changes and load changes..
- Employ fast regulating circuits. Regulating speed should be at least as fast as the fastest expected transient.
- Earliest controllers proportional only
- Proportional control consists of just a gain
- It has good response to instantaneous changes in the process or other cause of error
- Control effort is the product of the error and a finite gain Kp
- Eventually effort is too small to reduce error to zero
- There is always an error - it can never be eliminated

- Integral control consists of a pure integrator
- The control effort is now $\int \boldsymbol{e}(\boldsymbol{t}) \boldsymbol{d t}$
- Eliminates DC errors
- Limits high frequency response
- Introduces a phase delay that can cause sluggishness or oscillation

- Responds to the change of the error signal
- Control effort increases with frequency of error signal $s K_{d}$
- Useful either to cancel a pole or to predict periodic behavior
- Can emphasize high frequency noise

- PID stands for Proportional, Integral, and Derivative control
- Standard, general purpose classical control element
- K_{p} general cancelling of error signals
- K_{i} eliminates $D C$ error
- K_{d} provides nimble circuit for fast changes in the error signal or process

- We have been discussing "classical" control theory
- Insert control elements in the forward path to compensate for the plant dynamics
- Now we will have a brief introduction to "modern" control theory
- Identify the states of the system
- One state exists for each order of differential equation that describes the plant
- Typically one state for each reactive component: $d i / d t=v / L ; d v / d t=i / C$
- Feedback on each state, with appropriate weighting, in order to compensate for the plant dynamics
- We will work through a simple example
- Damping of a resonant circuit
- Compare with Praeg filter damping
- Our supply has a high fundamental frequency, ω_{S}
- Our load is a magnet of inductance L_{3} and resistance R_{L}
- The L_{3} / R_{L} time constant is very long compared to $2 \pi / \omega_{S}$
- But not long enough to reject enough of the ripple from u
- We introduce a two pole $L-C$ low pass filter to provide additional rejection of ω_{S}
- We set the frequency of this filter, $\omega_{0}=1 / \sqrt{L_{1} C_{2}}$, such that

$$
\omega_{S} \gg \omega_{0} \gg R_{L} / L_{3}
$$

- R_{L} only lightly damps the $L-C$ filter
- $L_{1}, C_{2}, R_{L}, L_{3}$ circuit exhibits much ringing at ω_{0}
- Introduce Praeg filter, a series $C_{P}-R_{P}$, to damp ω_{0}
- As with Praeg filter design, because of the separation of the circuit elements in the frequency domain, we can reduce our analysis to investigating only the $L_{1}-C_{2}$ resonator.

- Recall that the transfer function of our $L-C$ low-pass filter is

$$
\frac{V(s)}{U(s)}=A(s)=\frac{\omega_{0}^{2}}{s^{2}+\omega_{0}^{2}}
$$

- Also recall that the general equation for the transfer function of a closed loop negative feedback system is

$$
H(s)=\frac{G_{F O R W A R D}}{1+G_{L O O P}}=\frac{A(s)}{1+B(s) A(s)}
$$

- If we just place a loop around the oscillator (no controller in the forward loop)

$$
H(s)=\frac{\frac{\omega_{0}^{2}}{s^{2}+\omega_{0}^{2}}}{1+\frac{B(s) \omega_{0}^{2}}{s^{2}+\omega_{0}^{2}}}=\frac{\omega_{0}^{2}}{s^{2}+(1+B(s)) \omega_{0}^{2}}
$$

- If $B(s)$ is just a constant, we can increase the frequency, but not provide any damping.

- We want to change the transfer function to give us a damped response

$$
H(s)=\frac{a_{0}}{s^{2}+a_{1} s+a_{0}}
$$

- To do this, we choose $B(s)=\xi s / \omega_{0}$, with, for example, $\xi=\sqrt{2}$. Then

$$
H(s)=\frac{\omega_{0}^{2}}{s^{2}+(1+B(s)) \omega_{0}^{2}}=\frac{\omega_{0}^{2}}{s^{2}+\xi \omega_{0} s+\omega_{0}^{2}}=\frac{\omega_{0}^{2}}{s^{2}+\sqrt{2} \omega_{0} s+\omega_{0}^{2}}
$$

- But this choice of $B(s)$ is a differentiator
- Inserting a differentiator in the feedback loop is problematic
- A differentiator amplifies noise in the system
- (An integrator reduces noise)
- Can we instead extract \dot{v} from the plant?
- No. We do not have access to \dot{v}
- But we do have access to $i=C_{2} \dot{v}$

- Starting with our standard state equations

$$
L \frac{d i}{d t}=u-v ; \quad C \frac{d v}{d t}=i
$$

- We draw state diagrams for the derivatives of the state variables
- We draw additional diagrams that integrate the derivatives to obtain the state variables
- Finally we connect the blocks to form the oscillator feedback
 loop
- We verify the transfer function $\left(\omega_{0}=1 / \sqrt{L C}\right)$

$$
H(s)=\frac{\frac{1}{L} \frac{1}{S} \frac{1}{C} \frac{1}{S}}{1+\frac{1}{L} \frac{1}{s} \frac{1}{C} \frac{1}{s}}=\frac{\frac{\omega_{0}^{2}}{s^{2}}}{1+\frac{\omega_{0}^{2}}{s^{2}}}=\frac{\omega_{0}^{2}}{s^{2}+\omega_{0}^{2}}
$$

- We cannot access \dot{v}, but multiplying i by $1 / C$ gives us \dot{v}

$$
\frac{\xi}{\omega_{0}} \dot{v}=\frac{\xi}{\omega_{0}} \frac{1}{C} i=\xi Z_{0} i
$$

where $Z_{0}=\sqrt{L / C}$

- Feeding back on the intermediate variable (i) enables us to damp the oscillation of i.
- i and v are in quadrature \Rightarrow they oscillate together
- Damping i oscillation also damps voscillation
- i grows faster $\left(\sim \sin \omega_{0} t\right)$ than $v\left(\sim\left(1-\cos \omega_{0} t\right)\right)$
- Faster feedback response
- Proper choice of ξ gives desired response
- State feedback loop is now complete
- Determined desired system response (system poles)
- Determined coefficients of denominator polynomial
- Related states to system derivatives
- Implemented required gains on each state variable

State Feedback vs Praeg Filter

- Praeg filter
- Advantages
- Passive solution
- No requirements on control circuitry
- Disadvantages
- Large capacitance required in series with damping resistor
- Power dissipation/heat required to damp system
- State filter
- Advantages
- Minimal extra hardware (current sensor)
- All control at low power
- Disadvantages
- Need sufficient bandwidth of power supply controller
- Bandwidth much greater than ω_{0}
- The transfer function is the relation between the input, x, and the output, y
- By increasing feedback gain, y more closely approaches the desired output
- The efficiency of feedback for a dynamic (time-varying) system involves not only the gains, but also the speed of the system response. Some common terms that characterize the dynamics are
- Bandwidth is the frequency range over which the feedback achieves (close) to its nominal gain (3 dB point)
- DC Response is a measure of how closely the system tracks a constant input. Improve the DC Response by increasing the loop gain
- Step Response is the action of the system in response to an input step
- Settling Time is how long it takes to settle to within a certain fraction of its final value
- Overshoot is any ringing occurs as the system achieves its final value
- Ramp response is a measure of how well the system follows an input ramp command

Purposes

- Sets the output voltage or current to a desired value
- Regulates the output voltage or current to the desired value in the presence of line, load and temperature changes
- Monitors load and power supply actual versus desired performance

Summary

- Typically 2 control loops - voltage and current
- The outer loop defines the source type - voltage or current stabilized
- The outer loop has lower BW and corrects for drift due to slow temperature changes and aging effects
- The inner loop has higher BW and compensates for fast transients, AC line changes

Power Supply Front Panel

Constant Voltage Mode. The power supply will operate in this mode whenever the current demanded by the load is less than that defined by the front panel current control. The output voltage is set by the front panel voltage control. The output current is set by the load resistance and the Vset.

Constant Current Mode. The power supply will operate in this mode whenever the voltage demanded by the load is less than that defined by the front panel voltage control. The output current is set by the front panel current control. The output voltage is set by the load resistance and the I set.

Controls Type	Characteristics
All analog controls	- Long, expensive multi-conductor cable -Cables subject to noise pickup, ground loops, losses in signal strength - Installation rigid, difficult to modify Hybrid analog/digital controls - PLCs, ADCs / DACs subject to noise pickup, ground - - Seops, must keep out of power supply - Installation rigide can be daifficult to modify All digital controls - Integrated high level digital signals exhibit greater immunity to noise pickup, ground loops - Serial data cable can be daisy-chained - Installation flexible, control system can be modified in software or firmware - Will require novel implementation of interlocks, voltage and current transductors

Bus Type	Single/ Differential	Protocol	Data Rate	Length	Connector	Comments
RS232	$-12 \rightarrow+12 \mathrm{~V}$ SE	Serial	$115 \mathrm{~kb} / \mathrm{s}$	5 m	$25 / 15 / 9$ pin sub D	Inexpensive wiring
BitBus IEEE 1118	O-5V Differential	Serial	$375 \mathrm{~kb} / \mathrm{s}$	300 m	9 pin sub D	Inexpensive wiring
IEEE488 GPIB		Parallel	$8 \mathrm{Mb} / \mathrm{s}$	20 m	24 pin	Measurement Equipment
Ethernet	Optical/SE Differential	Serial	$1 \mathrm{~Gb} / \mathrm{s}$		RJ8, RJJ45 Optical	Move lots of data packets
USB 2.0	Serial	$12 \mathrm{Mb} / \mathrm{s}$	5 m	4 pin USB	Hot-swappable	
Firewire IEEE1394	3.3V Differential	Serial	$800 \mathrm{Mb} / \mathrm{s}$	46 m	4 pin/6 pin Optical	Hot-swappable
SCSI	3.3V Diff/ Optical	Parallel	$1.28 \mathrm{~Gb} / \mathrm{s}$	12 m	68 pin 80 pin	
eSATA	Serial	$3 \mathrm{~Gb} / \mathrm{s}$			Hot-swappable	

Section 11 - Personnel and Equipment Safety

- NFPA 70E - Safety in the Workplace
- The Voltage Hazard
- Arc Flash
- NFPA 70 - National Electrical Code
- Interlocks
- Personnel Protection Systems (PPS)
- Load Protection Systems-Machine Protection Systems (MPS)
- Power Supply Protection
- Programmable Logic Controllers (PLCs)
- Lockout/Tagout (LOTO)

NFPA 70E-2018-Standard for Electrical Safety in the Workplace

- Addresses employer and employee safety in the workplace
- Focus is on procedures, personnel protective equipment
- Attempts to mitigate effects of three major electrical hazard types - shock, arc flash and arc blast

NFPA 70E - The Voltage Hazard

Electrical Shock Hazard Approach Boundaries

- Limited approach boundary is the distance from an exposed live part within which a shock hazard exists
- Restricted approach boundary is the distance from an exposed live part within which there is an increased risk of shock, due to electrical arcover for personnel working in proximity to the live part

NFPA 70E - Approach boundaries - AC, Table 130.4(D)(a)

Nominal Voltage, Phase to Phase	Limited Approach Boundary		Restricted Approach Boundary
	Exposed Moveable Conductor	Exposed Fixed Circuit Part	
Less than 50	Not Specified	Not Specified	Not Specified
50 to 150	10 ft 0 in .	3 ft 6 in .	Avoid Contact
151 to 750	10 ft 0 in .	3 ft 6 in.	1 ft 0 in .
751 to 15 kV	10 ft 0 in .	5 ft 0 in .	2 ft 2 in .
15.1 kV to 36 kV	10 ft 0 in .	6 ft 0 in .	2 ft 7 in .
36.1 kV to 46 kV	10 ft 0 in .	8 ft 0 in .	2 ft 9 in .
46.1 kV to 72.5 kV	10 ft 0 in .	8 ft 0 in .	3 ft 3 in .
72.6 kV to 121 kV	10 ft 8 in .	8 ft 0 in .	3 ft 4 in .
138 kV to 145 kV	11 ft 0 in .	10 ft 0 in .	3 ft 10 in .
161 kV to 169 kV	11 ft 8 in .	11 ft 8 in .	4 ft 3 in .
230 kV to 242 kV	13 ft 0 in .	13 ft 0 in .	5 ft 8 in .
345 kV to 362 kV	15 ft 4 in .	15 ft 4 in .	9 ft 2 in .
500 kV to 550 kV	19 ft 0 in.	19 ft 0 in .	11 ft 10 in .
765 kV to 800 kV	23 ft 9 in.	23 ft 9 in .	15 ft 11 in.

NFPA 70E - Approach boundaries - DC, Table 130.4(D)(b)

Nominal Potential Difference	(2)	(3)	(4)
	Limited Approach Boundary		Restricted Approach Boundary; Includes Inadvertent Movement Adder
	Exposed Movable Conductor*	Exposed Fixed Circuit Part	
Less than 50 V	Not specified	Not specified	Not specified
$50 \mathrm{~V}-300 \mathrm{~V}$	3.0 m (10 ft 0 in .)	1.0 m (3 ft 6 in .)	Avoid contact
$301 \mathrm{~V}-1 \mathrm{kV}$	$3.0 \mathrm{~m}(10 \mathrm{ft} 0 \mathrm{in}$)	$1.0 \mathrm{~m}(3 \mathrm{ft} 6 \mathrm{in}$.)	0.3 m (1 ft 0 in .)
$1.1 \mathrm{kV}-5 \mathrm{kV}$	3.0 mm (10 ft 0 in .)	$1.5 \mathrm{~mm}(5 \mathrm{ft} 0 \mathrm{in}$.)	0.5 m (1 ft 5 in .)
$5 \mathrm{kV}-15 \mathrm{kV}$	3.0 m (10 ft 0 in .)	1.5 m (5 ft 0 in .)	0.7 m (2 ft 2 in .)
$15.1 \mathrm{kV}-45 \mathrm{kV}$	3.0 m (10 ft 0 in .)	$2.5 \mathrm{~m}(8 \mathrm{ft} 0 \mathrm{in}$.)	0.8 m (2 ft 9 in .)
$45.1 \mathrm{kV}-75 \mathrm{kV}$	3.0 m (10 ft 0 in .)	2.5 m (8 ft 0 in .)	1.0 m (3 ft 6 in .)
$75.1 \mathrm{kV}-150 \mathrm{kV}$	3.3 m (10 ft 8 in .)	3.0 mm (10 ft 0 in .)	1.2 m (3 ft 10 in .)
$150.1 \mathrm{kV}-250 \mathrm{kV}$	3.6 m (11 ft 8 in .)	3.6 m (11 ft 8 in .)	1.6 m (5 ft 3 in .)
$250.1 \mathrm{kV}-500 \mathrm{kV}$	6.0 m (20 ft 0 in .)	6.0 m (20 ft 0 in .)	3.5 m (11 ft 6 in .)
$500.1 \mathrm{kV}-800 \mathrm{kV}$	$8.0 \mathrm{~m}(26 \mathrm{ft} 0 \mathrm{in}$.	$8.0 \mathrm{~m}(26 \mathrm{ft} 0 \mathrm{in}$.)	5.0 m (16 ft 5 in .)

Mitigating Voltage Hazard - Rubber Electrical Insulating Gloves

- They are marked with the class appropriate for the voltage, and should be subject to periodic electrical tests
- Leather protective gloves should be worn outside the rubber gloves to provide protection from cuts, abrasions, or punctures
- Before each use, check for signs of damage or color change. Replace if contamination or any physical damage is evident
- Gloves should be stored in a closed, dry container

The possibility of residual voltage on capacitors is high. Use one or more ground stick to remove the voltage (stored energy)

- Short circuit through air
- Caused when circuit insulation or isolation is compromised
- A burn and explosion hazard, not an electrocution hazard
- Temperature can greatly exceed 5000 F
- Instantaneous, almost too fast for the eye to comprehend
- Arc flashes occur 5-10 times a day in electric equipment in US alone.
- Tool inserted or dropped into a breaker or service area
- Equipment cover removal causes a short
- Loose connections on bus work
- Improper bus work fabrication
- Insulation breakdown due to environmental factors or equipment aging
- Failure to ensure equipment is de-energized before work
- Primarily applications above 208 VAC

Injuries Associated with Arc Flash

- Third Degree Burns, Blindness, Hearing Loss, Nerve Damage, Cardiac Arrest, Concussion, Death

Electrical Shock Hazard Approach Boundaries

- Arc flash hazard - a dangerous condition associated with the release of electrical energy caused by an electrical arc. Typically due to the molten plasma formed by the melting of conductors during an electrical short circuit
- Arc flash protection boundary - The distance from exposed live parts within which a person could receive a second degree (curable) burn ($1.2 \mathrm{cal} / \mathrm{cm}^{2}$ $=5 \mathrm{~J} / \mathrm{cm}^{2}$)
- An arc generates power that radiates out from a fault

$$
P_{a r c}=V_{a r c} * I_{a r c}
$$

- The total energy is the product of the arc power and duration of the arc

$$
E_{a r c}=P_{a r c} * t
$$

- The energy density decreases with distance from the arc
- An arc-flash hazard occurs when the energy density on the torso or face exceeds $1.2 \mathrm{cal} / \mathrm{cm}^{2}$, the energy density at which a second degree burn occurs. Note: This is comparable to holding the flame from a cigarette lighter on your skin for 1 second
- Flash protection boundaries and energies are calculated using NFPA 70E [example Table 130.7(C)(9)(a)] and IEEE1584
- The calculations entail knowing the voltage class of the equipment, some details about its manufacture, the available short circuit and the opening times of the protective circuit breaker(s)
- The hazard/risk category is determined by selecting the row for which $E_{\text {min }} \leq E<E_{\text {max }}$ at the working distance.

$E_{\min }$ $\left(c a l / \boldsymbol{c m}^{2}\right)$	$E_{\max }$ $\left(c a l / \boldsymbol{c m}^{2}\right)$	Hazard/Risk Category
1.2	4	1
4	8	2
8	25	3
25	40	4

- The allowable working distances are determined from:
- Table 130.7(C)(15)(a) for AC systems
- Table 130.7(C)(15)(b) for DC systems
- The appropriate Personal Protective Equipment (PPE) is determined from
- Table 130.7(C)(15)(c) for
- Decrease available energy by using smaller upstream transformer (lower short circuit current)
- Decrease clearing time
- Size breaker trip units more aggressively
- Choose breakers for instantaneous trip times (smaller frame sizes generally trip faster than larger frame sizes)
- Choose breakers with adjustable trip units including adjustments for instantaneous trips
- Protective devices upstream of transformers need to allow "inrush" current when transformer is energized. Using only upstream sensors, it is difficult to be as aggressive as desirable for arc-flash protection downstream of transformer. Add overcurrent devices on transformer secondary
- Insert fast acting breakers or fuses in separate enclosures between the transformer and the equipment that needs to be operated. In general, separate the enclosures contain arc-flash generated in that enclosure
- Increase distance between worker and source of arc-flash
- Use remote controls to operate high arc-flash hazard devices
- Use extension handles on breakers to increase working distance of operation
- Install meters to use for verification that system is de-energized if work is required on system
- Install IR view-ports on panels that need to be monitored for overtemperature
- Install protective devices that sense arcs and not just overcurrent

More information

- http://ieeexplore.ieee.org/servlet/opac? punumber $=8088$
- NFPA 70E 2018 Edition
- http://www.mt-online.com/articles/0204arcflash.cfm
- http://www.eaton.com/ecm/idcplg?IdcService=GET_FILE\&dID=12075
- http://www.eaton.com/ecm/idcplg?IdcService=GET_FILE\&dID=118182
- http://ecatalog.squared.com/pubs/Circuit\ Protection/0100DB0402.pdf

NFPA 70 - 2017, National Electrical Code

National Electrical Code NFPA 70

- Deals with hardware design, inspection and installation
- Most Articles do not pertain directly to power systems, but some examples that do are:

1. Sizing of raceways and conduits to carry power and control cables.
2. Sizing of power cables for ampacity.
3. Discharge of stored energy in capacitors

Example of cable ampacity sizing

A power supply provides 375A to a magnet via cables. The ambient temperature is 45C (104F), maximum and the cables are installed in cable tray. The cable tray fill conforms to the requirements of NEC Article 392.

Use NEC Table 310-15(B)(17) for single conductor cables in free air at 30C. The derating for the 45C ambient is 0.87. The derating for the single copper conductor with 90C insulation and 600 V rating in a cable tray is 0.65 if placed touching other cables in the cable tray. The required amapcity is
Ampacity $=\frac{I P S}{\text { deratings }}=\frac{375 \mathrm{~A}}{0.87 * 0.65}=663 \mathrm{~A}$
From Table 310-15(B)(17) the basic amapcity of 500kcmil cable is $700 \mathrm{~A}>663 \mathrm{~A}$.

Use two 1/C500kcmil cables to connect the PS to the magnet

Example of capacitor bleeder resistor sizing per NEC Article 460. Code requires permanent fixed energy discharge devices on capacitors operating at $>50 \mathrm{~V}$ working voltage
$\cdot \leq 1,000 \mathrm{~V}$, discharge to 50 V or less in 1 minute

- > 1,000 V , discharge to 50 V or less in 5 minutes
- Redundant bleeder resistors recommended

$$
\begin{aligned}
& V_{f}=V_{i} e^{\frac{-t}{R C}} \\
& R=\frac{-t}{C \ln \left(V_{f} / V_{i}\right)}=\frac{-60 * \sec }{500 \mu F \ln (50 \mathrm{~V} / 500 \mathrm{~V})} \\
& R=50 \mathrm{kohm} \\
& P_{R}=\frac{V_{i}^{2}}{R}=\frac{(500 \mathrm{~V})^{2}}{50 \mathrm{k} \Omega}=5 \mathrm{~W}
\end{aligned}
$$

Use two $5 W, 100 \mathrm{k} \Omega$ resistors in parallel

3 Types

- Personnel Protection System (PPS)
- Load Protection - Machine or Magnet Protection System (MPS)
- Power Supply Protection - Power Supply Internal Interlocks

Personnel Protection System (PPS) at SLAC

- Protection from hazards external to power supply (example accelerator housing door opened)
- Hazards are defined as $A C$ voltages $>50 \mathrm{~V}$, and currents $>5 \mathrm{~m} A, D C$ voltages $>100 \mathrm{~V}$, and currents $>40 \mathrm{~mA}$.
- Capacitor energy storage 100 V and 100 J , or 400 V and 1 J , or 0.25 J
- Must be hardwired (recently SLAC introduced PLC-based PPS)
- Two (2) PPS permissives are needed for power supply turn-on
- Two (2) separate and different read-backs are required
- Permissives and read-backs are usually 24 VDC systems
- Permissives and read-backs must be fail-safe
- If PPS is not practical, then energized equipment must be enclosed or live terminals covered

Interlocks - PPS Example

Machine (or magnet) protection systems protect loads from damage.

Magnet Cooling Water Temperature / Flow Sensors

- Usually employ a simple normally closed (NC) contact that opens when a pre- determined temperature has been reached.
- Water flow monitoring switches open when flow drops below a pre-established safe value
- Temperature / Flow switches are wired to the source power supply. If the water temperature is too high or if the flow drops the contacts open and turn the power supply off

Vacuum Interlock System

- Sensors are similar to that described in the magnet cooling water system

Orbit Interlock System

- Sensors consist of Beam Position Monitors and switches. Function is essentially the same in the magnet cooling water system
- Thermal switches - Klixons (a trade name) are NC contact bimetal switches mounted on the load cooling water outlet line. Their contacts open when temperature exceeds a preestablished safe value
- Multiple-winding, multiple water path magnets employ simple series connected Klixons.
- Klixons are wired to the source power supply. If the load overheats, the contacts open and turn off the power supply

Klixon switches

Ground Fault Detection / Protection Systems

- Loads are usually located in crowded, dense areas with a multitude of other equipment. This makes them vulnerable to ground faults
- Power supplies are usually isolated from ground so that a single ground fault does not cause load-catastrophic ground fault current. Fix first fault before the second fault occurs

Internal interlocks protect the power supply itself

- Low input supply voltage
- Phase loss detection
- Output DC over-current
- Low frequency filter inductor temperature
- Heat-sink temperature or heat-sink cooling water flow
- IGBT temperature
- IGBT over-current
- Ground Fault current
- Output over-voltage
- Cabinet or chassis over-temperature

Manufacturers are many

- Allen-Bradley
-Rockwell International (AB)
- Siemens
- General Electric
- IDEC

Programming logic

- Ladder logic
- C language
- LabView
- Functional block diagrams
- Structured text

PLC execution model

Source: Control Engineering and National Instruments

Ladder diagrams evolved in the 1960s when the automobile industry needed a more flexible and self-documenting alternative to relay and timing cabinets. A microprocessor was added and software designed to mimic the relay panels.

Left rail is the "power bus". The right rail is the "ground bus". Power flows through NO or NC contacts to power coils.

Each contact and coil is linked to a Boolean memory location.

Series contacts look like "AND" and parallel contacts look like "OR"

Execution is left to right and top to bottom

Source: Control Engineering and National Instruments

Most widely used to program PLCs

Strengths

- Intuitive - can be learned very quickly by with little or no software training
- Excellent debugging tools, include animation showing live "power flow". This makes the logic easy to understand and debug
- Efficient representation for discrete logic

Weaknesses

- Hierarchical data and logic flow.
- Poor data structure. Rungs are executed in a left-toright, top-to-bottom order. Timing is limited by the PLC processor speed
- Limited execution control
- Arithmetic operations are limited

PLCs implement specific functions such as:

I/O control	Timing	Report generation	Arithmetic
Logic	Communication	Data file manipulation	Counting

PLC Versus Programmable Automation Controllers (PAC)

Consider a PAC upgrade if your application requires:

- advanced control algorithms
- extensive database manipulation
- HMI functionality in one platform
- Integrated custom control routines
- complex process simulation
- very fast CPU processing
- memory requirements that exceed PLC specifications

Lock \& Tag for Personnel Safety During Maintenance

- Procedures and requirements for servicing and maintaining machines and equipment
- Provision for locking off source power, the discharge of stored energy prior and the total deenergization of equipment before working on exposed electrical circuits or other hazardous equipment in which unexpected energization, startup or release of energy could cause injury to personnel

Required by

- Occupational Safety and Health Administration (OSHA) under 29CFR1910.147

Applicability

- For working on exposed electrical circuits that would expose personnel to any electrical hazard as defined by the Codes. All types of equipment containing electrical, mechanical, hydraulic, pneumatic, chemical and/or thermal active or stored energy

Items Locked Out (Off) - Tagged Out (Off)

The power source or power device

Application by

Authorized employee trained in LOTO and qualified to lock-off the equipment

Interlocks As LOTO

Interlocks are not used as a substitute for lock and tag

For Locking and Tagging

- Padlocks, usually red-colored for personal use. Yellow-colored for administrative lock-out
- Tags
- Specialty locks (Kirk-Key Locks) for complex systems
- Master lock boxes

Section 12-Reliability, Availability and Maintainability

- Definition and Importance
- PDF, CDF, MTBF, Exponential Distribution
- Reliability, Series, Parallel, and General Systems
- Glossary of Terms
- Calculation Standards
- Calculations - Power Supply/Power System
- Improvements by Oversizing and Redundancy - Examples
- Fault Modes And Effects Criticality Analysis (FMECA)
- The Reliability Process
- Maintainability - Cold-Swap, Warm-Swap and Hot-swap

Reliability

According to IEEE Standard 90, reliability is the ability of a system or component to perform its required functions under stated conditions for a specified period of time

Availability

The degree to which a system, subsystem, or equipment is operable and in a committable state during a mission (accelerator operation).

The ratio of the time a unit is functional during a given interval to the length of the interval. Availability $=M T B F /(M T B F+M T T R)$

Importance

Accelerators are expensive. They are expected to perform to justify their cost. Reliability is important because accelerators are expected to perform like industrial factories; i.e., to be online at all times. In particular, accelerator power supplies are expected to be available when needed, day after day, year after year. Reliability must be considered when subsystems are complex or when they contain a large part count. An accelerator composed of a large number of systems or parts simply will not function without considering reliability.

Consequences

Failures lead to annoyance, inconvenience and a lasting user dissatisfaction that can play havoc with the accelerator's reputation. Frequent failure occurrences can have a devastating effect on project performance and funding.

In this section we attempt to estimate the lifetime of complex systems. Each component of these systems will fail at a random time . Knowing the failure rates of the components, we use probability theory to estimate the system reliability (probability of success) and lifetime

We begin by introducing the non-negative probability density funtion (PDF), $f(t)$. We then define a cumulative distribution function $(C D F), F(t)$ which has specific properties

- There is no probability that the component has failed before being built, so $F(-\infty)=0$
- It is certain that at some point in time the component will fail, so with $F(t)$ normalized, $F(\infty)=1$
- $F(t)$ is an increasing function of t.
- Lastly $0 \leq F(t) \leq 1$

The CDF can be expressed in terms of the PDF, $F(t)=\int_{-\infty}^{t} f(t) d t$ or more typically $F(t)=\int_{0}^{t} f(t) d t$ $f(t)$ is normalized such that $F(t)=\int_{-\infty}^{\infty} f(t) d t=1$

The probability that the component (hence system) has failed between t_{1} and t_{2} is $\int_{t_{1}}^{t_{2}} f(t) d t=F\left(t_{2}\right)-F\left(t_{1}\right)$
The average value of time that components of this type will fail is given by $\langle t\rangle=t \int_{0}^{t} f(t) d t=M T B F=M T T F$ where MTBF and MTTF are the mean time between failure or mean time to fail, respectively

One probability density (distribution) function is the exponential distribution. It accurately predicts the lifetime of a component with an exponential decay, e.g., the lifetime of radioactive particles. Although there are other distributions that might be more appropriate, the exponential works reasonably well for a large class of components and is easy to use.
$f(t)=\lambda e^{-\lambda t}$ where $\lambda=$ failure rate of the component (number of failures $/$ time)
$\int_{0}^{\infty} \lambda e^{-\lambda t} d t=1$
$F(t)=\int_{0}^{t} \lambda e^{-\lambda t} d t=1-e^{-\lambda t}$
where $1-e^{-\lambda t}=$ probability of failure
lastly $\langle t\rangle=1 / \lambda=M T B F=$ time (usually hours)

We now define the reliability $R_{i}(t)$ of the $i^{\text {th }}$ component as the probability that the component is still functioning after a time t. We also define a complementary function $Q_{i}(t)$ that gives the probility that the component has failed
$Q_{i}(t)=1-e^{-\lambda t}$ and since probability of failure $=1-$ reliability we see that
$R_{i}(t)=e^{-\lambda t}=$ reliability (probability of success)

A series system is such that all subsystems or elements must work in order for the entire system to work. For such a system the total system reliability is the product of the individual component reliabilities
$R_{T}=R_{1} * R_{2} * \ldots * R_{n}=\prod_{1}^{n} R_{i}=$ probability of system success

The probability of system failure is
$Q_{T}=1-R_{T}=1-\prod_{1}^{n} R_{i}=1-\prod_{1}^{n}\left(1-Q_{i}\right)$

For a two component system $R_{T}=R_{1} * R_{2}$
and $Q_{T}=1-\left(1-Q_{1}\right)\left(1-Q_{2}\right)=Q_{1}+Q_{2}-Q_{1} * Q_{2}$
The probability of system failure is less than the sums of the probabilities for each component because of the subtraction of the failure probability products

A parallel system is such that only one subsystem or element must work in order for the entire system to work. For such a system it is easier to calculate the total system reliability by first calculating the probability of the total system failure, since all elements must fail in order for the entire system to fail. Therefore
$R_{T}=1-Q_{T}=1-\prod_{1}^{n} Q_{i}=1-\prod_{1}^{n}\left(1-R_{i}\right)$

A general system will not be simply series or parallel. It might have some redundancy, meaning that some, but not all, of the subsystems need to work for the entire system to be functional. We break the system into individual components and examine every possible combination of the states, working or failed. These combinations are all mutually exclusive, so we just sum the probabilies of each functioning combination to get the probability of system success.

Consider a parallel system of 3 identical units requiring 2 to work for a functioning system
There are $2^{n}=8$ mutually exclusive states to examine
$Q_{1} * Q_{2} * Q_{3}, \quad Q_{1} * Q_{2} * R_{3}, Q_{1} * R_{2} * Q_{3}, Q_{1} * R_{2} * R_{3}$, $R_{1} * Q_{2} * Q_{3}, \quad R_{1} * Q_{2} * R_{3}, R_{1} * R_{2} * Q_{3}, R_{1} * R_{2} * R_{3}$

Of these states the fourth, sixth, seventh and eighth describe a functing system. Therefore the total system reliability is
$R_{T}=Q_{1} * R_{2} * R_{3}+R_{1} * Q_{2} * R_{3}+R_{1} * R_{2} * Q_{3}+R_{1} * R_{2} * R_{3}$
Recognizing that $Q_{i}+R_{i}=1$
$R_{T}=Q_{1} * R_{2} * R_{3}+R_{1} * Q_{2} * R_{3}+R_{1} * R_{2} * Q_{3}+R_{1} * R_{2} *\left(1-Q_{3}\right)$
$R_{T}=Q_{1} * R_{2} * R_{3}+R_{1} * Q_{2} * R_{3}+R_{1} * R_{2}$

The counting on the previous page gets complicated very quickly. Fortunately the calculations can be expressed in a combinational formula which gives the system reliability for m of n components connected in parallel

$$
R_{T}=\sum_{k=m}^{n} \frac{n!}{(n-k)!k!}\left(R_{k}\right)^{k}\left(Q_{k}\right)^{n-k}
$$

For a system described by an exponential distribution
$R_{T}=\sum_{k=m}^{n} \frac{n!}{(n-k)!k!}\left(e^{-\lambda_{k} t}\right)^{k}\left(1-e^{-\lambda_{k} t}\right)^{n-k}$

Failure rate is constant
Mission time
Probability Density Function (PDF) $\quad f(t)=\lambda e^{-\lambda t}$
Cumulative Density Function (CDF) $\quad F(t)=1-e^{-\lambda t}$
Reliability (Success probability) $\quad R(t)=e^{-\lambda t}$

Expected time to failure (MTBF)
λ
t (hr)
(dimensionless)
(dimensionless)
(dimensionless)

$$
E(T)=\int_{-\infty}^{\infty} t f(t) d t=\frac{1}{\lambda} \quad(h r)
$$

Failure rate of N series critical

$$
\lambda_{\text {composite }}=\sum_{i=1}^{N} \lambda_{i} \quad\left(h r^{-1}\right)
$$

components
Re liability of N series components $\quad R_{T}(t) \quad=\prod_{i=1}^{N} e^{-\lambda_{i} t}=\prod_{i=1}^{N} R_{i}(t) \quad$ (dimensionless)
Failure N series components $\quad Q_{T}(t) \quad=1-R_{T}(t)=1-\prod_{i=1}^{N}\left(1-Q_{i}(t)\right)$ (dimensionless)
Reliability of Nparallel components $\quad R_{T}(t) \quad=1-\prod_{i=1}^{N}\left(1-R_{i}(t)\right)$
The reliability of parallel connected m out of n components
$R_{\text {System }}(t)=\sum_{k=m}^{n}\left(\frac{n!}{(n-k)!k!}\right)\left(e^{-\lambda_{k} t}\right)^{k}\left(1-e^{-\lambda_{k} t}\right)^{n-k}$
$\lambda_{k}=$ constant $=$ failure rate of individual component
$k=$ index counter, $\quad m=$ minimum number of components needed for operation
$n=$ total number of components in the system
Special cases occurs when $m=n$ or when $m=n=1$
$R(t)=e^{-n \lambda t}$

$$
R(t)=e^{-\lambda t}
$$

```
MTBF of series critical components
\(M T B F=1 / \lambda_{\text {composite }}\)
(hr)
MTBF of \(N\) series identical components
Mean time to repair or recover is
MTTR
Availability is
\(A=\frac{M T B F}{M T B F+M T T R}\)
\(A_{\text {composite }}=\prod_{i=l}^{N} A_{i}\)
\(A_{\text {composite }}=A^{N}\)
(dimensionless)
Availabilty of series components
Availbilty of identical components
\(M T B F_{\text {composite }}=M T B F_{i} / N\)
Availability is
\(A=\frac{M T B F}{M T B F+M T T R}\)
(dimensionless)
Availabilty of series components
\(A_{\text {composite }}=\prod_{i=l}^{N} A_{i}\)
\(A_{\text {composite }}=A^{N}\)
(dimensionless)
```

Availability	Ratio of operating time to operating + downtime A=MTBF/(MTBF+MTTR). This is a dimensionless number
$M T B F$	Mean time between failures in hours
$M T B F_{O}$	The increased MTBF in hours that considers equipment operation at lower than rated power levels
$M T B F_{R}$	MTBF with operation at ratings - in hours
$M T T R$	The mean time to repair and recover beam in hours
$R(t)$	Reliability or probability of success over the mission time (Typically 9 months $=6600$ hours $)$
$\lambda, \lambda_{0}, \lambda_{R}$	Failure rates in hr ${ }^{-1}$. These are the reciprocals of the MTBFs
$1 / 1$	One full rated power supply. Rated power $=$ delivered power
$1 / 2$	One out of two redundant power module configuration
$2 / 3$	Two out of three redundant power module configuration
$3 / 4$	Three out of four redundant power module configuration
$4 / 5$	Four out of five redundant power module configuration

A. At least 1 of 4 parallel identical power supplies in an accelerator must continue to operate for the system to be successful. Let $R_{i}=0.9$. Find the probability of success.
B. Repeat for at least 2 out of 4 success
C. Repeat for at least 3 out of 4 success
D. Repeat for 4 out of 4 success

Solution:

- Infant mortality manufacturing defects, dirt, impurities. Infant mortality reduced for customer by burn-in and stress-screening
- Stable wear-out statistics, manufacturing anomalies, out-of tolerance conditions
- Wear-out failure dry electrolytic capacitors, aged and cracked cable insulation

Reliability Calculation Standards

$\begin{aligned} & \text { MIL-HDBK-217F } \\ & \text { (USA) } \end{aligned}$	- Internationally used - Parts count - Parts stress - Broad in scope - Pessimistic
Telcordia (Bellcore) (USA)	- National use - Parts count - Parts stress - Narrow scope (telecommunications) - Optimistic
CNET 93 (France)	- Limited to France - Parts count - Parts stress - Broad in scope
$\begin{aligned} & \text { HRD5 } \\ & (U K) \end{aligned}$	- Limited to UK - Parts count - Parts stress - Broad in scope

Parts Count

- Appropriate failure rate is assigned to each part in the subsystem (power supply) that is mission critical
- Failure rates are functions of environment (Ground fixed $\Pi_{\text {GF }}$ /Ground benign $\Pi_{G B}$ /Ground mobile, $\Pi_{G M}$) and ambient temperature $\left(\Pi_{T}\right)$
- The parts count method is simple and used early in system design when detailed information is unknown
- Failure rates are summed and the following information is obtained

$$
M T B F=\frac{1}{\sum \lambda} \quad R(t)=e^{-\sum \lambda t}
$$

Parts Stress - Same as the Parts Count method, except it takes into account more detailed information about the components and their operating stresses. The detailed information is implemented via additional Π reliability factors, such as:

$$
\begin{array}{ll}
\Pi_{G B}=\text { ground benign } & 0<\Pi_{G B}<\infty \\
\Pi_{T}=\text { ambient temperature } & 0<\Pi_{T}<\infty \\
\Pi_{M Q}=\text { manufacturing quality } & 0<\Pi_{M Q}<\infty \\
\Pi_{V S}=\text { voltage stress factor } & 0<\Pi_{V S}<\infty \\
\Pi_{I S}=\text { current stress factor } & 0<\Pi_{I S}<\infty \\
\Pi_{P S}=\text { power stress factor } & 0<\Pi_{P S}<\infty \\
\lambda_{\text {resultant }}=\lambda_{\text {initial }} * \Pi_{G B} * \Pi_{T} * \Pi_{M Q} * \Pi_{V S} * \Pi_{I S} * \Pi_{P S}
\end{array}
$$

Component Description	Qty	λ	$\boldsymbol{\pi}{ }_{\boldsymbol{G B}}$	π_{T}	π MQ	$\pi{ }^{\prime}$ S	$\pi{ }_{\text {IS }}$	$\pi_{\text {PS }}$	Mission Loss	Total Rate $\lambda_{T} 10^{-6}$
Circuit Breaker/Contactor/Fuse	5	0.42	1.00	1.10	1.00	1.01	1.05	1.10	Yes	2.695
3 Phase Transformer	1	0.05	1.00	1.10	1.00	1.50	1.50	1.50	Yes	0.186
Input/Output Filter Choke	2	0.02	1.00	1.10	1.10	1.42	1.60	1.75	Yes	0.144
Secondary/DC Link Fuse	2	0.08	1.00	1.10	1.89	1.02	0.95	0.90	Yes	0.291
Main Filter Capacitor	8	0.23	1.00	1.12	1.50	1.25	1.25	1.05	Yes	5.057
Damping Capacitors/Resistor	15	0.02	1.00	1.10	1.00	1.00	1.00	1.00	No	0.000
IGBT/Diode	8	0.03	1.00	1.10	1.50	1.00	1.00	1.00	Yes	0.330
Heatsink Assembly	1	0.01	1.00	1.10	1.00	1.00	1.00	1.00	Yes	0.011
Gate Driver/PWM	2	0.50	1.00	1.10	1.00	1.10	1.10	1.15	Yes	1.524
Logic Board	1	3.50	1.00	1.10	1.00	1.00	1.00	1.00	Yes	3.850
Output Filter Capacitor	6	0.25	1.00	1.10	1.00	1.25	1.25	1.00	Yes	2.578
MTBF and Total Failure Rate								60,000		16.667

A "typical commercial" 5 kW , switch-mode power supply consists of the components below with the listed failure rates. It also has critical electromechanical safety features amounting to 10% of the total number of components. The power supply operates at 50C ambient temperature. Assuming no derating for the elevated ambient temperature or other stress factors, calculate the power supply MTBF.

- 2 each ICs, plastic linear, $\lambda=3.64$ failures per million hours each
- 1 each opto-isolator, $\lambda=1.32$ failures per million hours each
- 2 each hermetic sealed power switch transistors, $\lambda=0.033$ failures per million hours each
- 2 each plastic power transistors, $\lambda=0.026$ failures per million hours each
- 4 each plastic signal transistors, $\lambda=0.0052$ failures per million hours each
- 2 each hermetic sealed power diodes, $\lambda=0.064$ failures per million hours each
- 8 each plastic power diodes, $\lambda=0.019$ failures per million hours each
- 6 each hermetic sealed switch diodes, $\lambda=0.0024$ failures per million hours each
- 32 each composition resistors, $\lambda=0.0032$ failures per million hours each
- 3 each potentiometers, commercial, $\lambda=0.3$ failures per million hours each
- 8 each pulse type magnets, 130C rated, $\lambda=0.044$ failures per million hours each
- 12 each ceramic capacitors, commercial, $\lambda=0.042$ failures per million hours each
- 3 each film capacitors, commercial, $\lambda=0.2$ failures per million hours each
- 9 each Al electrolytics, commercial, $\lambda=0.48$ failures per million hours each

Single System Availabilty		
Component	MTBF	Availability
PS Controller	110,000	0.9999818
Power Supply	60,000	0.9999667
Transductor 1	381,500	0.9999948
Transductor 2	381,500	0.9999948
Cables	14,000,000	0.9999999
System	32,184	0.9999379

Relex by Relex Software

See Reference Appendix for web link to this manufacturers products

RelCalc by T-Cubed

See Reference Appendix for web link to this manufacturers products

Two types - Standby and Active

1. Standby - the redundant parts are off and only operate when the first part fails. This requires more vigilance on the part of the control system and is not covered here.
2. Active - the redundant part(s) are on, albeit operating at a reduced power level until asked to assume increased or full load. This is easier to implement than Standby redundancy and is the more common method. We will examine this further

The general, exponential form of the Binomial Distribution for m out of n parts is
$R(t)=\sum_{k=m}^{n}\left(\frac{n!}{(n-k)!k!}\right)\left(e^{-\lambda t}\right)^{k}\left(1-e^{-\lambda t}\right)^{n-k}$
$\lambda=$ constant=failure rate
$k=$ index counter
$m=$ minimum number of power modules needed for operation
$n=$ total number of power modules in the system

Special cases occurs when $m=n$ or when $m=n=1$
$R(t)=e^{-n \lambda t} \quad R(t)=e^{-\lambda t}$

Binomial Expansion 2 out of 3 example

$$
\begin{aligned}
& R_{2 / 3}(t)=\sum_{k=m=2}^{n=3}\left(\frac{n!}{(n-k)!k!}\right)\left(e^{-\lambda t}\right)^{k}\left(1-e^{-\lambda t}\right)^{n-k} \\
& k=2
\end{aligned}
$$

$$
\frac{3!}{1!2!} e^{-2 \lambda t}\left(1-e^{-\lambda t}\right)=3 e^{-2 \lambda t}\left(1-e^{-\lambda t}\right)
$$

3 cases, probability of success, probability of failure
$k=3$
$\frac{3!}{0!3!} e^{-3 \lambda t}\left(1-e^{-\lambda t}\right)^{0}=1 e^{-3 \lambda t}$
1 case, probability of success, no failure

s	\square	$\square s$	1 Case

$R_{2 / 3}(t)=3 e^{-2 \lambda t}-2 e^{-3 \lambda t}$

Derivation

When $\lambda(t)$ is a function of time
General form $R(t)=e^{-\lambda(t) t}$

$$
\begin{aligned}
& \frac{d R(t)}{d t}=-\frac{d \lambda(t)}{d t} e^{-\lambda(t) t}-\lambda(t) e^{-\lambda(t) t} \\
& \frac{d \lambda(t)}{d t} \text { is } \ll \lambda(t) \\
& \frac{d R(t)}{d t}=-\lambda(t) e^{-\lambda(t) t} \text { but } e^{-\lambda(t) t}=R(t) \\
& \begin{aligned}
\lambda(t) & =\frac{-\frac{d R(t)}{d t}}{R(t)} \text { If } \lambda \text { is a constant then the above reduces to } \lambda(t)=\lambda \\
\operatorname{MTBF}(t) & =\frac{R(t)}{-\frac{d R(t)}{d t}}
\end{aligned}
\end{aligned}
$$

For the m out of n case, where $m \neq n$
n quantity of $\frac{m}{n}$ rated power supplies. Each power supply operates at $\frac{m}{n}$ rated P_{R}
$P_{O}=\frac{m}{n} P_{R}$
$M T B F_{O}=\frac{P_{R}}{P_{O}} M T B F_{R}=\frac{n}{m} M T B F_{R} \quad \lambda_{O}=\frac{m}{n} \lambda_{R}$ linear relationship is conservative
$R_{O m / n}(t)=\sum_{k=m}^{n}\left(\frac{n!}{(n-k)!k!}\right)\left(e^{-\lambda_{O} t}\right)^{k}\left(1-e^{-\lambda_{O} t}\right)^{n-k}=n e^{-m \lambda_{O} t}-m e^{-n \lambda_{O} t}$
$\operatorname{MTBF}_{O m / n}(t)=\frac{n e^{-m \lambda_{O} t}-m e^{-n \lambda_{O} t}}{m n \lambda_{O} e^{-m \lambda_{O} t}-m n \lambda_{O} e^{-n \lambda_{O} t}} \quad\left(U \operatorname{sing} M T B F=\frac{R(t)}{-\frac{d R(t)}{d t}}\right)$
$A_{O m / n}(t)=\frac{M T B F_{O m / n}(t)}{M T B F_{O m / n}(t)+M T T R}$

For the case of 1 power supply with a power rating equal to the required operational power
$P_{R}=P_{o}$
$M T B F_{R}=M T B F_{o}$
$\lambda_{R}=\lambda_{o}$
$R_{O}=e^{-\lambda O_{O} t}=e^{-\lambda_{R} t}$
$A_{O}=\frac{M T B F_{O}}{M T B F_{O}+M T T R}=\frac{M T B F_{R}}{M T B F_{R}+M T T R}$

For the $m=1$ out of $n=2$ case
2- full rated rated power supplies. Each power supply operates at $\frac{1}{2}$ rated P_{R}
$M T B F_{O}=\frac{P_{R}}{P_{O}} M T B F_{R}=2 M T B F_{R} \quad \lambda_{O}=\frac{1}{2} \lambda_{R}$
$R_{O 1 / 2}(t)=2 e^{-\lambda_{O} t}-e^{-2 \lambda_{O} t}$
$\operatorname{MTBF}_{O 1 / 2}(t)=\frac{2 e^{-\lambda_{O} t}-e^{-2 \lambda_{O} t}}{2 \lambda_{O} e^{-\lambda_{O} t}-2 \lambda_{O} e^{-2 \lambda_{O} t}}$
$A_{O 1 / 2}(t)=\frac{M T B F_{O 1 / 2}(t)}{M T B F_{O 1 / 2}(t)+M T T R}$

For the $m=2$ out of $n=3$ case
3-1/2 rated power supplies. Each power supply operates at 2/3 rated P_{R}

$$
\begin{aligned}
& {M T B F_{O}} \frac{P_{R}}{P_{O}}{M T B F_{R}=\frac{3}{2} M T B F_{R} \quad \lambda_{O}=\frac{2}{3} \lambda_{R}}_{R_{O 2 / 3}(t)=3 e^{-2 \lambda_{O} t}-2 e^{-3 \lambda_{O} t}}^{M_{O 2 / 3}(t)=\frac{3 e^{-2 \lambda_{O} t}-2 e^{-3 \lambda_{O} t}}{6 \lambda_{O} e^{-2 \lambda_{O} t}-6 \lambda_{O} e^{-3 \lambda_{O} t}}} \\
& A_{O 2 / 3}(t)=\frac{M T B F_{O 2 / 3}(t)}{M T B F_{O 2 / 3}(t)+M T T R}
\end{aligned}
$$

For the $m=3$ out of $n=4$ case
4-3/4 rated power supplies. Each power supply operates at $3 / 4$ rated P_{R}

$$
\begin{aligned}
& {M T B F_{O}}^{P_{R}} \frac{P_{O}}{P_{O}} M T B F_{R}=\frac{4}{3} M T B F_{R} \quad \lambda_{O}=\frac{3}{4} \lambda_{R} \\
& R_{O 3 / 4}(t)=4 e^{-3 \lambda_{O} t}-3 e^{-4 \lambda_{O} t} \\
& M_{O 3 / 4}(t)=\frac{4 e^{-3 \lambda_{O} t}-3 e^{-4 \lambda_{O} t}}{12 \lambda_{O} e^{-3 \lambda_{O} t}-12 \lambda_{O} e^{-4 \lambda_{O} t}} \\
& A_{O 3 / 4}(t)=\frac{M T B F_{O 3 / 4}(t)}{M T B F_{O 3 / 4}(t)+M T T R}
\end{aligned}
$$

For the $m=4$ out of $n=5$ case
5-4/5 rated power supplies. Each power supply operates at $4 / 5$ rated P_{R}

$$
\begin{aligned}
& {M T B F_{O}}=\frac{P_{R}}{P_{O}} M T B F_{R}=\frac{5}{4} M T B F_{R} \quad \quad \lambda_{O}=\frac{4}{5} \lambda_{R} \\
& R_{O 4 / 5}(t)=5 e^{-4 \lambda_{O} t}-4 e^{-5 \lambda_{O} t} \\
& M T B F_{O 4 / 5}(t)=\frac{5 e^{-4 \lambda_{O} t}-4 e^{-5 \lambda_{O} t}}{20 \lambda_{O} e^{-4 \lambda_{O} t}-20 \lambda_{O} e^{-5 \lambda_{O} t}} \\
& A_{O 4 / 5}(t)=\frac{M T B F_{O 4 / 5}(t)}{M T B F_{O 4 / 5}(t)+M T T R}
\end{aligned}
$$

Active Redundancy Power Supply Reliability Summary

	$P S$	Redundant Power Supplies		
$1 F R$	$\lambda_{O}=\lambda_{R}$	$R_{O}=e^{-\lambda} O^{t}$	$M T B F_{O}=M T B F_{R}$	$A_{o}=\frac{M T B F_{O}}{M T B F_{O}+M T T R}$
1/2	$\lambda_{O}=\frac{1}{2} \lambda_{R}$	$R_{O 1 / 2}=2 e^{-\lambda_{O} t}-e^{-2 \lambda_{O} t}$	$\operatorname{MTBF}_{O / / 2}(t)=\frac{2 e^{-\lambda} O^{t}-e^{-2 \lambda} O^{t}}{2 \lambda_{O} e^{-\lambda_{O}^{t}}-2 \lambda_{O} e^{-2 \lambda_{O} t}}$	$A_{O / / 2}(t)=\frac{M T B F_{O / / 2}(t)}{M T B F_{O I / 2}(t)+M T T R}$
2/3	$\lambda_{O}=\frac{2}{3} \lambda_{R}$	$R_{02 / 3}=3 e^{-2 \lambda_{O} t}-2 e^{-3 \lambda_{O} t}$	$\operatorname{MTBF}_{02 / 3}(t)=\frac{3 e^{-2 \lambda_{O} t}-2 e^{-3 \lambda_{O} t}}{6 \lambda_{O} e^{-2 \lambda_{O} t}-6 \lambda_{O} e^{-3 \lambda_{O} t}}$	$A_{02 / 3}(t)=\frac{M T B F_{O 2 / 3}(t)}{M T B F_{O 2 / 3}(t)+M T T R}$
3/4	$\lambda_{O}=\frac{3}{4} \lambda_{R}$	$R_{03 / 4}=4 e^{-3 \lambda_{O} t}-3 e^{-4 \lambda_{O} t}$	$\operatorname{MTBF}_{03 / 4}(t)=\frac{4 e^{-3 \lambda_{O} t}-3 e^{-4 \lambda_{o} t}}{12 \lambda_{O} e^{-3 \lambda_{O} t}-12 \lambda_{O} e^{-4 \lambda_{O} t}}$	$A_{03 / 4}(t)=\frac{M T B F_{03 / 4}(t)}{M T B F_{03 / 4}(t)+M T T R}$
4/5	$\lambda_{O}=\frac{4}{5} \lambda_{R}$	$R_{04 / 5}=5 e^{-4 \lambda_{O} t}-4 e^{-5 \lambda_{O} t}$	$M T B F_{o 4 / s}(t)=\frac{5 e^{-4 \lambda} o^{t}-4 e^{-5 \lambda_{0} t}}{20 \lambda_{0} e^{-4 \lambda} o^{t}-20 \lambda_{0} e^{-5 \lambda_{0} t}}$	$A_{O+/ 5}(t)=\frac{M T B F_{O 4 / 5}(t)}{M T B F_{O / / 5}(t)+M T T R}$

Time in hours

Two inverter stages in an uninterruptible power supply are to be connected in parallel. each is capable of full-load capability. The calculated failure rate of each stage is $l=200$ failures per million hours.
A. What is the probability that each inverter will remain failure free for a mission time of 1000 hours and
B. What is the probability that the system will operate failure free for 1000 hours?

Solution:

For a critical mission, 3 power supplies, each capable of supplying the total required output, are to be paralleled. The power supplies are also decoupled such that a failure of any power supply will not affect the output. The calculated failure rate of each power supply is 4 per million hours.
A. What is the probability that each power supply will operate failure free for 5 years?
B. What is the probability that the system will operate failure free for 5 years? That is, only 1 out of the 3 power supplies is needed in order for the system to operate. Solution below.

SLAC Next-Generation

Dave MacNair
SLAC National Accelerator Laboratory
Power Conversion Department (PCD)

Redundant Power Supply

Redundancy is Essential

Assumptions

- MTTR and MTBFs of components on previous slide
- Only power supply is redundant
- For one case the power supply and PSC are hot swappable

Time in hours

Assumptions

- MTTR and MTBFs of components on two slides back
- Only power supply is redundant

It is clear that redundancy and hot swap are needed

Non-redundant - PEP II, SPEAR 3, LCLS (1994-2006)
-Power supply quantity is hundreds, not thousands

- Power supply availability budget is modest 98\%
- Non-redundant supplies satisfied availability budget
- Redundant power systems not readily available from industry
- Redundant systems would not fit within cost and schedule constraints

Redundant - KEK ATF 2 (2006-2008)

- Mock-up of ILC Final Focus accelerator
- Magnet power supplies ILC-like

- During power module loss measured 6 A magnet current drop at 150 A
- 100 Gauss drop at 3.1 kilogauss. 200mS recovery with no overshoot, no re-standardize needed

Goals

- All components $N+1$ modular and redundant
- Power module hot-swappable
- Unipolar or bipolar output from a single unipolar bulk voltage source
- Imbedded controller with digital current regulation
- Capable of driving superconducting magnets
- High bandwidth for use in BBA or closed orbit correction systems
- High stability and precision output current
- High accuracy read-backs
- Scalable to higher output levels

Applications

- ILC and other future accelerators

- Input: 48 V
- Output V: 0 to 40V
- Output I: 0 to $33 A$
- Output P: 0 to $1,320 \mathrm{~W}$
- 2"X4" X 8 "

To date

- Five power modules with embedded controllers have been built
- The modules have been tested individually and run as pairs
- Demonstrated
- 4 modules, $40 \mathrm{~V}, 100 \mathrm{~A}, 4,000 \mathrm{~W}$ unipolar output then reconfigure
- 4 modules, $40 \mathrm{~V}, 33 \mathrm{~A}, 1,320 \mathrm{~W}$ bipolar output

Future

- Design the outer current control loop components
- Demonstrate operation of a completely redundant power supply

Confidence Levels

- MTBF previously discussed relates to the laws of large quantities and 50\% confidence limits
- Confidence intervals are bounded with upper and lower limits. The broader the limits, the higher the confidence
- Electronic equipment, a one-sided, lower limit is appropriate
$t=$ time in hours
$f=$ number of failures
$M T B F_{\text {Predicted }}=t / f$
K_{L} from chi-square distribution
$M T B F_{L L}=M T B F_{\text {Predicted }} * K_{L}$

Failures	Lower Limit K_{L}				
f	60%	70%	80%	90%	95%
1	0.620	0.530	0.434	0.333	0.270
2	0.667	0.600	0.515	0.422	0.360
3	0.698	0.630	0.565	0.476	0.420
4	0.724	0.662	0.598	0.515	0.455
5	0.746	0.680	0.625	0.546	0.480
500	0.965	0.954	0.942	0.930	0.915

Excerpted and abridged from W. Grant Ireson, Reliability Handbook, McGraw-Hill, NY 1966

If a power supply is to operate for 3 years before the first failure, what is the MTBF prediction for an 80% confidence level? Repeat for a 90% confidence level.

Solution:

$$
3 \text { years }=26280 \text { hours }=\text { MTBF }
$$

From the confidence limit table $K_{L}=0.434$ for 80% and $f=1$
Therefore, $\quad M_{80}=M T B F * 0.434 \geq 11,406$ hours
For $\quad M^{2} F_{90 \%}=$ MTBF $* 0.333 \geq 8,751$ hours

FMECA is

- A systematic way to prioritize the addressing of system "weak links".
- An inductive, bottoms-up method of analyzing a system design or manufacturing process in order to properly evaluate the potential for failures

It Involves

- Identifying all potential failure modes, determining the end effect of each potential failure mode, and determining the criticality of that failure effect.

3 Major Iterations

- Used in the Design, Fabrication and Operation Stages

It is desired to claim with 90% confidence that the actual MTBF of a power supply is 2500 hours. What must be the predicted MTBF?

$\boldsymbol{S E} \boldsymbol{V}=$ Severity
 OCC=Occurrence

$\boldsymbol{D E T}=$ Detection (A numerical subjective estimate of the effectiveness of the controls to detect the cause or failure mode $10=$ uncertain, 1 absolute certainty)

RPN=Risk Priority

Number $=S E V^{*} O C C^{*} D E T$

Part Name/ \#	Part Function	Potential Failure Mode	Potential Effects of Failure	S	Potential Causes of Failure	O	Design Evaluation Technique	D	R P N	W	W H Y
Coils	Provide magnetic field	coil to coil or coil to magnet steel short	magnet goes off line	5	coils moved during installation of magnet or adjacent beamline component, or alignment of magnet	5	protype test	1	25	3	2
Coils	Provide magnetic field	klixon trip due to overheating	magnet goes off line	5	inadequate water pressure differential across magnet	5	prototype test, calculation	1	25	1	2
Coils	Provide magnetic field	klixon trip due to overheating	magnet goes off line	5	too many loads on water circuit	5	prototype test, calculation	1	25	1	2
Coils	Provide magnetic field	klixon trip due to overheating	magnet goes off line	5	conducter sclerosis	3	n/a	1	15	4	9
Coils	Provide magnetic field	klixon trip due to overheating	magnet goes off line	5	foreign object in water line or coil which blocks water flow	2	n/a	1	10	4	8
Coils	Provide magnetic field	klixon trip due to overheating	magnet goes off line	5	damaged (crimped) coil which restricts water flow	2	n/a	1	10	3	8
Coils	Provide magnetic field	water leak	magnet goes off line due to ground fault	5	water hose brakes because of radiation damage	5	n/a	1	25	4	3
Coils	Provide magnetic field	water leak	magnet goes off line due to ground fault	5	corrosion in aluminum/copper conductor	2	n/a	1	10	4	9
Coils	Provide magnetic field	water leak	magnet goes off line due to ground fault	5	erosion of coil from excess water velocity	4	n/a	1	20	4	2
Coils	Provide magnetic field	water leak	magnet goes off line due to ground fault	5	break in braze joint between copper block and coil	3	prototype test	1	15	3	8
Fittings	Make water connection	water leak	magnet goes off line due to ground fault	5	cracked fittings from incorrect installation procedure	4	n/a	1	20	3	8
Jumpers	Connection between coils	short at jumper	magnet goes off line due to ground fault	5	sloppy installatio	5	n/a	1	25	3	8
Jumpers	Connection between coils	short at jumper	magnet goes off line due to ground fault	5	poor design	5	design review, prototype	1	25	1	2
Jumpers	Connection between coils	loose jumpers	excessively high temperatures leading to melting of materials	5	poor design or incorrect procedures used at installation	5	n/a	1	25	3	8

Cold swap - input bus and power supply must be off when it is exchanged
Warm swap - input bus is on but power supply is off when exchanged
Hot swap - input bus is on and power supply is on when exchanged.
Typically used with redundant, full rated power supplies

Section 13 - Power Supply Specifications

Power Supply Specifications

List of Specifications to be given to the Power Supply Designer	
Requirement	Example
1. Site conditions	Elevation, ambient temperature range, humidity, seismic requirements
2. Intended use and system	Storage ring accelerator dipole magnet power supply
3. Function	DC or pulsed, voltage or current source
4. Load parameters and description	Inductance, capacitance and resistance
5. Output ratings	Maximum voltage, current, operating or pulse time, pulse width and repetition rate
6. Input voltage and phases	208V, $1 \phi \quad$ 208V, 3ϕ 480V, 3ϕ
7. Efficiency	Up to 94\% achievable at full load output

List of Specifications to be given to the Power Supply Designer	
Requirement	Example
8. Input power factor	Up to 0.99 achievable for 1 phase PS with active PF correction Up to 0.95 achievable for 6 pulse Up to 0.97 achievable for 12 pulse
9. Input line THD	$\begin{array}{\|l\|} <5 \% \text { voltage } \\ <24 \% \text { current } \end{array}$
10. Conducted EMI 10kHz to 30 MHz	MIL-STD-461E FCC Class A Industrial FCC Class B Residential
11. Line regulation	0.05% of rated output voltage change for a 5% line voltage change. Recovery in $500 \mu S$
12. Short-term (1 to 24 hour) stability	Allowable voltage or current deviation 10s of ppm achievable
13. Output voltage ripple (PARD)	DC to 1 MHz , peak-to-peak, 0.05% of rated voltage output

Power Supply Specifications

List of Specifications to be given to the Power Supply Designer	
Requirement	Example
14. Output pulse amplitude stability	1 nanosecond for solid-state converters. 10s of nanoseconds for thyratron triggers
15. Output pulse - to pulse deviation in time (jitter)	0.05 \% of rated output voltage change for 10\% line change. Recovery in 500 μ S
16. Load regulation	Analog, mixed analog-digital, all digital Communication bus
17. Type of control system	Turn off power supply if: -Low input voltage - loss of input phase - Output over voltage - over current -Excessive ground current •Insufficient cooling air flow - cabinet over temperature
18. Interlocks	

Power Supply Specifications

List of Specifications to be given to the Power Supply Designer	
Requirement	Example
18. Interlocks (continued)	- Insufficient cooling water flow - cooling water over temperature - MPS fault -PPS violated - Cabinet doors open
19. Cooling methods	Water cooling for biggest power dissipating devices (IGBTs, rectifiers, chokes) $<50 \mathrm{~kW}$ - all air cooled $>50 \mathrm{~kW}$ - some measure of water cooling
20. Front panel controls	-Local / remote operation - Output voltage or current - Ground current limit - Output current limit

Power Supply Specifications

List of Specifications to be given to the Power Supply Designer	
Requirement	Example
21. Front panel displays	•Output voltage •Output current •Ground current - Voltage or current mode - Current limited operation
22. Component deratings	Voltage, current and power
23. Mean time between failure (MTBF)	MTBF $=1 /$ (sum of all parts failure rates)
24. Mean time to repair or beam recovery (MTTR)	Establish from MTBF and operational Availability requirement
25. Availability	Establish from MTBF MTTR
26. Maintainability	Replace or repair in the field or repair in the shop

Power Supply Specifications

List of Specifications to be given to the Power Supply Designer	
Requirement	\quad Example

I to 4 \mathrm{~W} / \mathrm{cu} in\end{array}\right|\)

Section 14-References

References And Useful Textbooks

References	Used in
Elements Of Power System Analysis, Stevenson, McGraw-Hill	Textbook
IEEE 610 - IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. Institute of Electrical and Electronics Engineers. New York, NY: 1990	Textbook
"Power Electronic Converter Harmonics", Derek Paice, Wiley- IEEE Press, 1999 ISBN: 978-0-7803-5394-7	Textbook
Rectifier Circuits Theory And Design, Johannes Schaefer, John Wiley 1965	Textbook
Switchmode Power Supply Handbook, Keith Billings, McGraw- Hill, February 1999, ISBN 0070067198	Textbook
"Fundamentals of Power Electronics" by Robert W. Erickson and Dragan Maksimovic, Springer, Second Edition, 2001. (Course text provided by the USPAS to the student at the school.)	Textbook
EMI and Emissions: Rules, Regulations and Options, Daryl Gerke and Bill Kimmel, Electronic Design News, February 2001	Section 3
Gert	

References And Useful Textbooks

References	Used in
Principles of Power Electronics; Kassakian, Schlecht, Verghese, Addison-Wesley, 1991	Textbook
Elements of Power Electronics; Philip T. Krein, Oxford University Press, 2015	Textbook
Power Electronics: Converters, Applications, and Design; Mohan, Undeland, Robbins, Wiley, 2002	Textbook
Linear Control System Analysis and Design; D'Azzo and Houpis, McGraw-Hill, 1988	Textbook
Modern Control Engineering; Ogata, Pearson, 2010	Textbook
Digital Control of Dynamic Systems; Franklin, Powell, Workman, Ellis-Kagle Press, 1998	Textbook
Fields and Waves in Communications Electronics; Ramo, Whinnery, van Duzer, John Wiley, 1994	Textbook

References And Useful Textbooks

References	Used in
Introduction to Linear Algebra; Gilbert Strang, SIAM, 2016	Textbook
Elementary Differential Equations: Boyce, DiPrima, Meade, John Wiley, 2017	Textbook
Advanced Engineering Mathematics; Edwin Kreyszig, John Wiley, 2011	Textbook

References	Used in
EMI Control Methodology and Procedures, Michelle Mardiguian, Interference Control Technologies, 1989	Section 3
IEEE 519 - 2014 "Standard Practices and Requirements for Harmonic Control in Electrical Power Systems"	Section 3
Circuit Techniques for Improving the Switching Loci of Transistor Switches in Switching Regulators, E.T. Calkin and B.H. Hamilton, IEEE Transactions On Industry Applications, July 1976	Section 4
How to Select a Heatsink http://www.aavidthermalloy.com/technical/papers/pdfs/select.pdf	Section 4
IGBT Theory https://en.wikipedia.org/wiki/Insulated-gate_bipolar_transistor	Section 4
Magnetics Designer for Transformers, chokes and inductors, Intusoft Corporation http://www.i-t.com/engsw/intusoft/magdesgn.htm	Section 4

References And Useful Textbooks

References	Used in
Power Electronics Modeling Software, Integrated Engineering Software, CASPOC http://www. integratedsoft.com	Section 4
LTspice simulator for switching regulators, Linear Technologies, https://www.analog.com/en/design-center/design-tools-and- calculators/ltspice-simulator.html	Section 4
PSPICE circuit simulator, Micro-Cap, Spectrum Software, http://www.spectrum-soft.com	Section 4
Zero Voltage Switching Resonant Power Conversion http://www.ti.com/lit/an/slua159/slua159.pdf	Section 4
SCSI Technology https://allpinouts.org/pinouts/cables/parallel/scsi-technology/	Section 5
Tablpe,//www.vibralifondata.com/Laplace	
Transforms	Section 6
Table of Fourier Transforms http://mathworld.wolfram.com/FourierTransform.html	Section 6

References And Useful Textbooks

References	Used in
MIL-STD-1629A "Procedures for Performing a Failure Mode, Effects, and Criticality Analysis" 1980	Section 7
RelCalc by T-Cubed	Section 7
Relex by Relex Software	Section 7

Section 15 - Homework Problems

Calculate the output voltage in the circuit shown below.

Referring to the one-line diagram below, determine the line currents in the:
A. Generator
B. Transmission Line
C. M1
D. M2

A 1000kVA, 12.47 kV to $480 \mathrm{~V}, 60 \mathrm{~Hz}$ three phase transformer has an impedance of 5%. Calculate:
a. The actual impedance and leakage inductance referred to the primary winding
b. The actual impedance and leakage inductance referred to the secondary winding
c. The magnetizing inductance referred to the primary winding
A waveform $v(t)$ was analyzed and found to consist of 6 components as shown here.

a. Write the mathematical expression for each component in terms of $\omega=(2 * \pi) / T$
b. Show the harmonic content graphically by plotting the frequency spectrum
c. Give the numerical result of

$$
\begin{array}{ll}
b_{3}=\frac{2}{T} \int_{0}^{T} v(t) \sin 3 \omega t d t & \text { Help }: \int \sin ^{2}(3 \omega t) d t=\frac{t}{2}-\frac{\sin 6 \omega t}{12 \omega} \\
b_{4}=\frac{2}{T} \int_{0}^{T} v(t) \sin 4 \omega t d t & \text { Help }: \int \cos (4 \omega t) \sin (4 \omega t) d t=\frac{\sin (4 \omega t)^{2}}{8 \omega}
\end{array}
$$

Each waveform below can be written as a Fourier series. The result depends upon the choice of origin. For each of the 6 cases, state the type of symmetry present, non-zero coefficients and the expected harmonics.

A uniform magnetic field B is normal to the plane of a circular ring 10 cm in diameter made of \#10 AWG copper wire having a diameter of 0.10 inches. At what rate must B change with time if an induced current of $10 A$ is to appear in the ring? The resistivity of copper is about $1.67 \mu \Omega-c m$.

Note: Use the 10 cm dimension as the ring diameter.

A 10kW power supply with 3-phase 480V input has an efficiency of 90% and operates with a leading power factor of 0.8 . The power supply output is 100 V . Determine the size of an added inductor to improve the power factor to 1.00. Below is the circuit diagram.

Assume ideal components in the phase-controlled circuit above. For a purely resistive load:
A. Explain how the circuit operates
B. Draw the load voltage waveform and determine the boundary conditions of the delay angle α
C. Calculate the average load voltage and average load current as a function of α
D. Find the RMS value of the load current.

Given the following:

- Input voltage waveform

- Losses transformer

- Two SCRs, two diodes, each with conducting voltage drop of 1 V .
- Inductor, lossless, with very large inductance

- Resistor, 10 ohms, capable of very large power dissipation
- Circuit operating under steady-state conditions (i.e. all transients have subsided)

Problem
A. With the SCRs triggering retard angle at zero degrees, arrange the circuit to provide a full-wave, rectified, and properly low-pass filtered DC output of 200 V into the 10 ohm load resistor.
B. Calculate the load current and power
C. Determine the needed transformer turns ratio.
D. Calculate the circuit efficiency

Increase the SCRs trigger retard angle to 90 degrees and F. Calculate the new output voltage, current, and power
G. Determine the new circuit efficiency

Given the circuit below:

$h(t)=\frac{v_{\text {out }}(t)}{v_{\text {in }}(t)} \quad H(j \omega)=\frac{V_{\text {out }}(j \omega)}{V_{\text {in }}(j \omega)}$

Sketch $|H(j \omega)|$ versus ω

A 100 kW power supply is 80% efficient. Approximately 50% of the power supply heat loss is removed by cooling water.

- How much heat is dissipated to building air and how much heat is removed by the water system.
- Calculate the water flow rate needed to limit the water temperature rise to $8^{\circ} \mathrm{C}$ maximum.

A collider has several equal strings of 77 superconducting magnets, each with $71.4 m H$ inductance, carrying 15 kA of current. If one, or more quenches, all the energy from the other magnets will dissipate their energies into the quenched magnet, thus destroying it. Design a switched dump resistor to discharge the current at a maximum rate, dI/dt, of 300A/s to prevent damage to the superconducting magnet in the event of a quench. Refer to the circuit diagram below.

1. What is the energy stored in each magnet and in the string when running at its design value?
2. What is the total inductance of the string?
3. Write the equation that describes the resistor current after closing the switch.
4. Find the resistor value to limit the maximum rate of decrease of current in the magnets to $150 \mathrm{~A} / \mathrm{s}$
5. What is the maximum voltage generated across the resistor?
6. What is the time constant of this circuit?
7. Design a steel dump resistor that has little thermal conductance to the outside world (adiabatic system). Calculate how much steel mass (weight) will limit the temperature increase of the resistor to $500^{\circ} \mathrm{K}$.

$$
\begin{aligned}
& \text { Help } \\
& Q=M C_{p} \Delta T \\
& Q=\text { heat (energy) into the system expressed in joules } \\
& M=\text { mass or weight of the resistor } \\
& C_{p}=\text { specific heat of material }=0.466 \frac{J}{g m *^{o} K} \text { for steel } \\
& \Delta T=\text { Temperature rise of the resistor }
\end{aligned}
$$

[^0]A. A transmission line can be formed using lumped Ls and Cs. Calculate the delay of a line composed of 8 sections of inductances $L=4 \mathrm{mH}$ per section and capacitance $C=40 \mathrm{pF}$ per section.
B. The frequency of a signal applied to a two-wire transmission cable is 3 GHz . What is the signal wavelength if the cable dielectric is air? Hint relative permittivity of air is 1
C. What is the signal wavelength if the cable dielectric has a relative permittivity of 3.6?

For the transmission line shown below, calculate the Reflection Coefficients Γ, the reflected voltages and the voltage and current along the line versus time.

A controlled impedance transmission line often drives a kicker. The kicker is usually well modeled as an inductor. A matching circuit can be built around the kicker and its inductance so that this circuit, including the kicker magnet, has constant, frequency independent, impedance which is matched to the transmission line.

Assuming that the transmission line impedance is Z_{0} and the kicker inductance is $L_{\text {Kicker }}$ derive the values of R1, R2, and C necessary to make a frequency independent (constant) impedance Z_{0}.

A. What is the significance of the value $\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}$?
B. What is the significance of the values $\frac{1}{\sqrt{\mu_{0} \varepsilon_{O}}}$ and $\sqrt{L^{*} C}$?
C. Calculate the speed of light in mediums with dielectric constants of:

$$
\varepsilon_{r}=1 \quad \varepsilon_{r}=2 \quad \varepsilon_{r}=4 \quad \varepsilon_{r}=8 \quad \varepsilon_{r}=16
$$

A. At least 1 of 4 parallel identical power supplies in an accelerator must continue to operate for the system to be successful. Let $R_{i}=0.9$. Find the probability of success.
B. Repeat for at least 2 out of 4 succes
C. Repeat for at least 3 out of 4 success
D. Repeat for 4 out of 4 success

Solution:

A "typical commercial" 5 kW , switch-mode power supply consists of the components below with the listed failure rates. It also has critical electromechanical safety features amounting to 10% of the total number of components. The power supply operates at 50C ambient temperature. Assuming no derating for the elevated ambient temperature or other stress factors, calculate the power supply MTBF.

- 2 each ICs, plastic linear, $l=3.64$
- 1 each opto-isolator, $l=1.32$
- 2 each hermetic sealed power switch transistors, $l=0.033$
- 2 each plastic power transistors, $l=0.026$
- 4 each plastic signal transistors, $l=0.0052$
- 2 each hermetic sealed power diodes, $l=0.064$
- 8 each plastic power diodes, $l=0.019$
- 6 each hermetic sealed switch diodes, $l=0.0024$
- 32 each composition resistors, $l=0.0032$
- 3 each potentiometers, commercial, $l=0.3$
- 8 each pulse type magnets, 130 C rated, $l=0.044$
- 12 each ceramic capacitors, commercial, $l=0.042$
- 3 each film capacitors, commercial, $l=0.2$
- 9 each Al electrolytics, commercial, $l=0.48$

Two inverter stages in an uninterruptible power supply are to be connected in parallel. each is capable of full-load capability. The calculated failure rate of each stage is $l=200$ failures per million hours.
A. What is the probability that each inverter will remain failure free for a mission time of 1000 hours and
B. What is the probability that the system will operate failure free for 1000 hours?

For a critical mission, 3 power supplies, each capable of supplying the total required output, are to be paralleled. The power supplies are also decoupled such that a failure of any power supply will not affect the output. The calculated failure rate of each power supply is 4 per million hours.
A. What is the probability that each power supply will operate failure free for 5 years?
B. What is the probability that the system will operate failure free for 5 years? Solution below.

It is desired to claim with 90% confidence that the actual MTBF of a power supply is 2500 hours. What must be the predicted MTBF?

[^0]: Based on "LHC Magnet Quench Protection System, L.Coull, et.al, 13th International Conference on Magnet Technology, Victoria, Canada, 1993

