LA-UR-16-29654

Proton and Ion Linear Accelerators

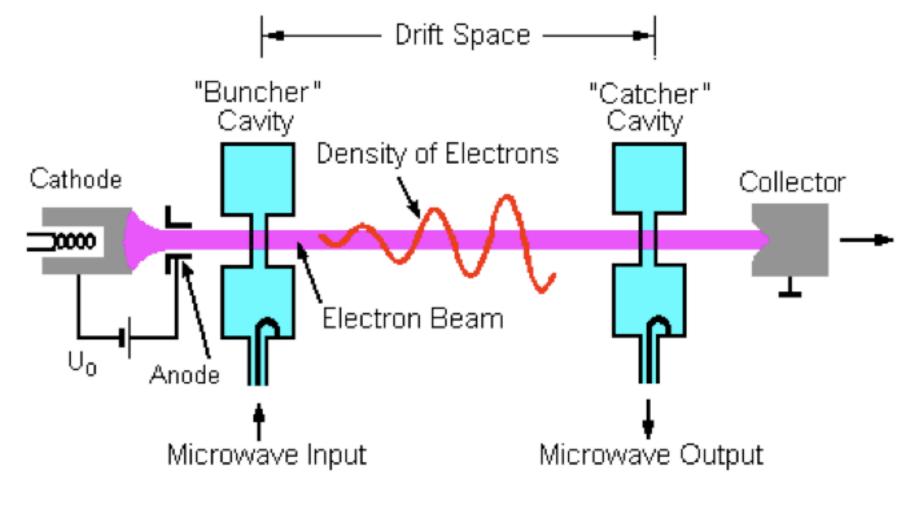
7. Acceleration of Intense Beams in RF Linacs

Yuri Batygin Los Alamos National Laboratory

U.S. Particle Accelerator School

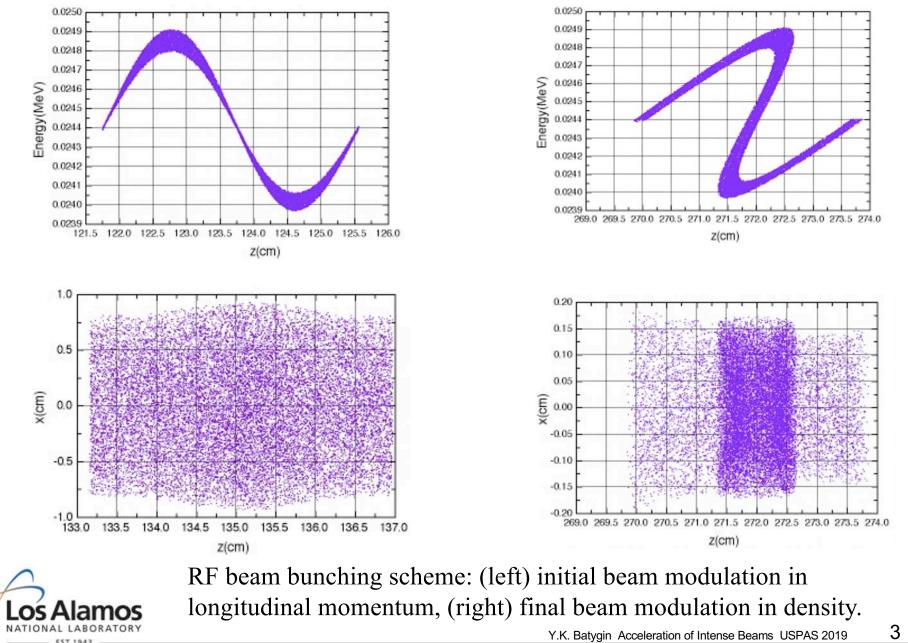
Albuquerque, New Mexico, June 17-28, 2019

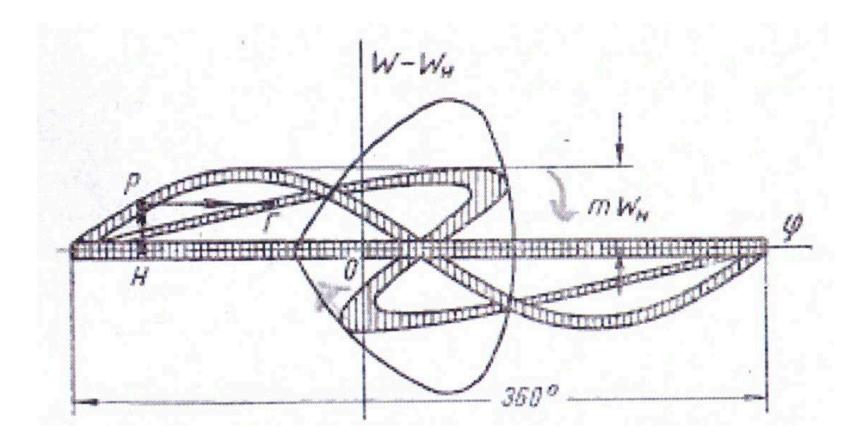
Beam Bunching in RF field



Layout of klystron beam bunching scheme (from http://en.wikipedia.org/wiki/Klystron)

Y.K. Batygin Acceleration of Intense Beams USPAS 2019





Increase on fraction of the beam inside separatrix after beam bunching.

Y.K. Batygin Acceleration of Intense Beams USPAS 2019

Initial particle velocity after extraction voltage U_o

Equation of motion in RF gap of width d and applied voltage U_1

Longitudinal particle velocity in RF gap

Longitudinal particle velocity after RF gap

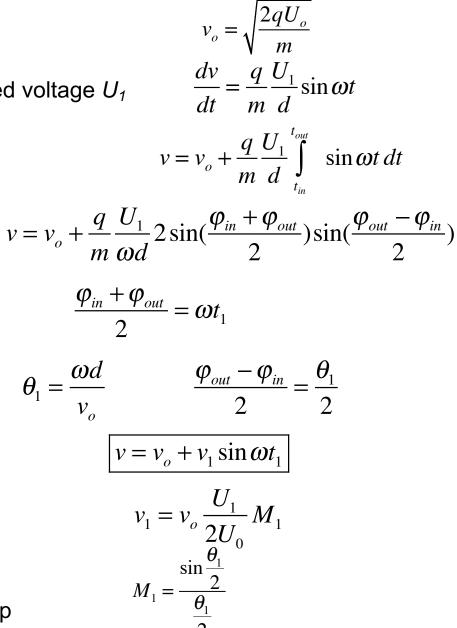
RF phase in the center of the gap

Transit time angle through the gap

Longitudinal particle velocity after RF gap

Amplitude of modulation of longitudinal velocity

Transit time factor of RF gap

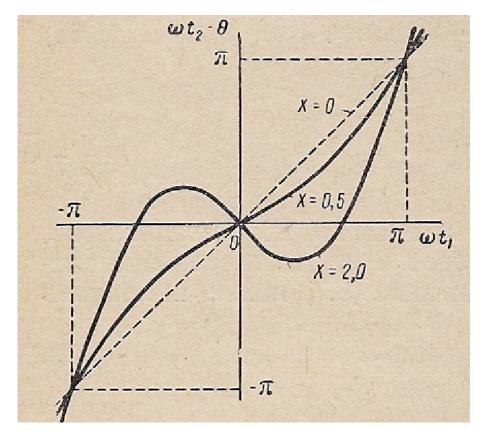


Y.K. Batygin Acceleration of Intense Beams USPAS 2019

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Time of arrival of particle to the second gap

Phase of arrival of particle into the second gap



$$t_{2} = t_{1} + \frac{z}{v_{o} + v_{1}\sin\omega t_{1}} \approx t_{1} + \frac{z}{v_{o}}(1 - \frac{v_{1}}{v_{o}}\sin\omega t_{1})$$

$$\omega t_2 - \omega \frac{z}{v_o} = \omega t_1 - \omega \frac{z v_1}{v_o^2} \sin \omega t_1$$

$$\omega t_2 - \theta = \omega t_1 - X \sin \omega t_1$$

Transit angle between gaps

$$\theta = \omega \frac{z}{v_o}$$

Bunching parameter

$$X = \omega \frac{zv_1}{v_o^2} = \frac{U_1 M_1}{2U_o} \frac{\omega z}{v_o}$$

Phase of arrival of particle into second gap as a function phase of the same particle in the first gap.

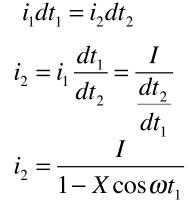
Y.K. Batygin Acceleration of Intense Beams USPAS 2019

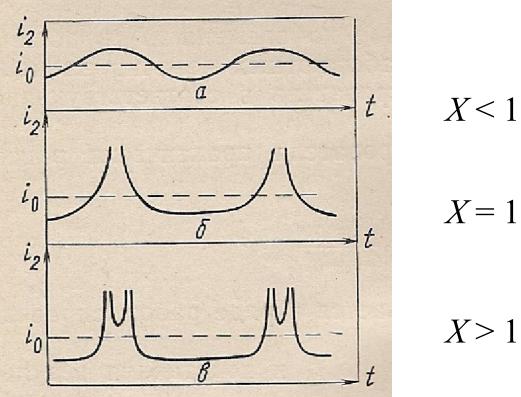
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Conservation of charge

Beam current in the second gap

Beam current in the second gap as a function of RF phase in the first gap and bunching parameter





Current in the second gap as a function of time.

$$x = \omega t_2 - \theta = \omega t_1 - X \sin \omega t_1$$

 $i_2(x) = A_o + \sum_{n=1}^{\infty} A_n \cos nx$

Expansion of the current in the second gap in Fourier series

Phase of arrival of particle into second gap

$$A_{o} = \frac{1}{\pi} \int_{0}^{\pi} i_{2}(x) dx \qquad A_{n} = \frac{2}{\pi} \int_{0}^{\pi} i_{2}(x) \cos nx dx$$

 $dx = \omega dt_2$

Differentiation of RF phase

Constant in Fourier series

Other coefficients in Fourier series

$$A_o = \frac{1}{\pi} \int_o^{\pi} I \frac{dt_1}{dt_2} \omega dt_2 = I$$

$$A_n = \frac{2I}{\pi} \int_{0}^{\pi} \cos(n\omega t_1 - nX\sin\omega t_1) d\omega t_1 = 2IJ_n(nX)$$

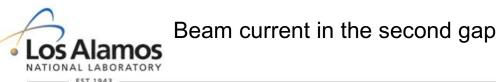
Bessel function (integral representation)

Beam current in the second gap

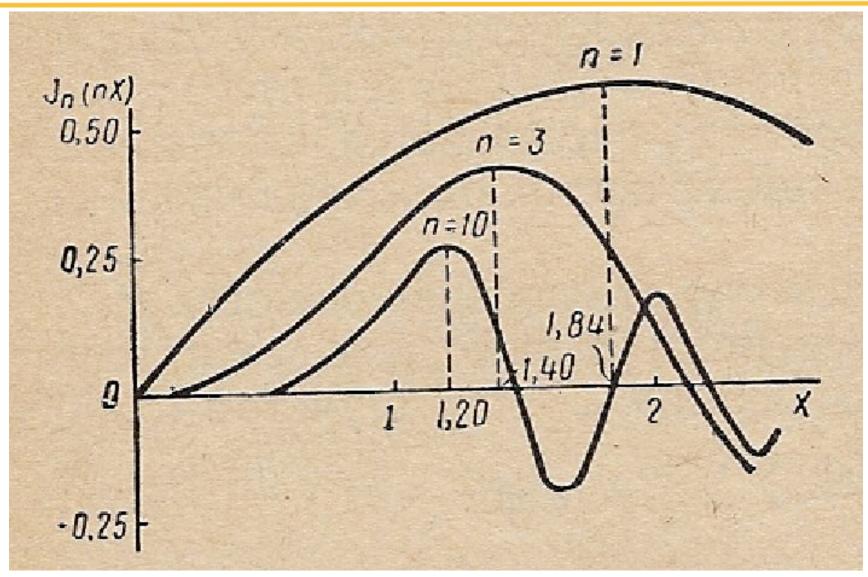
 $J_n(z) = \frac{1}{\pi} \int_{-\infty}^{n} \cos(n\varphi - z\sin\varphi) d\varphi$

$$i_2(x) = I + 2I \sum_{n=1}^{\infty} J_n(nX) \cos nx$$

Y.K. Batygin Acceleration of Intense Beams USPAS 2019

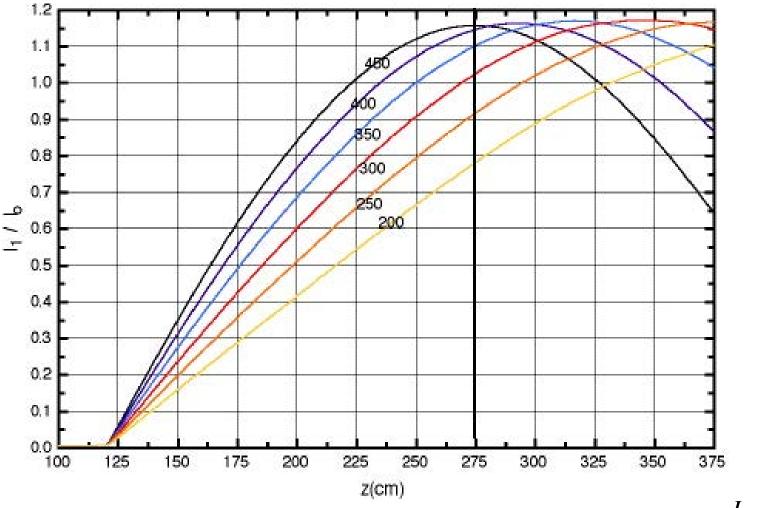


Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA



Bessel functions determine amplitude of the fist, third and tenth harmonics of induced current in two-resonator buncher.

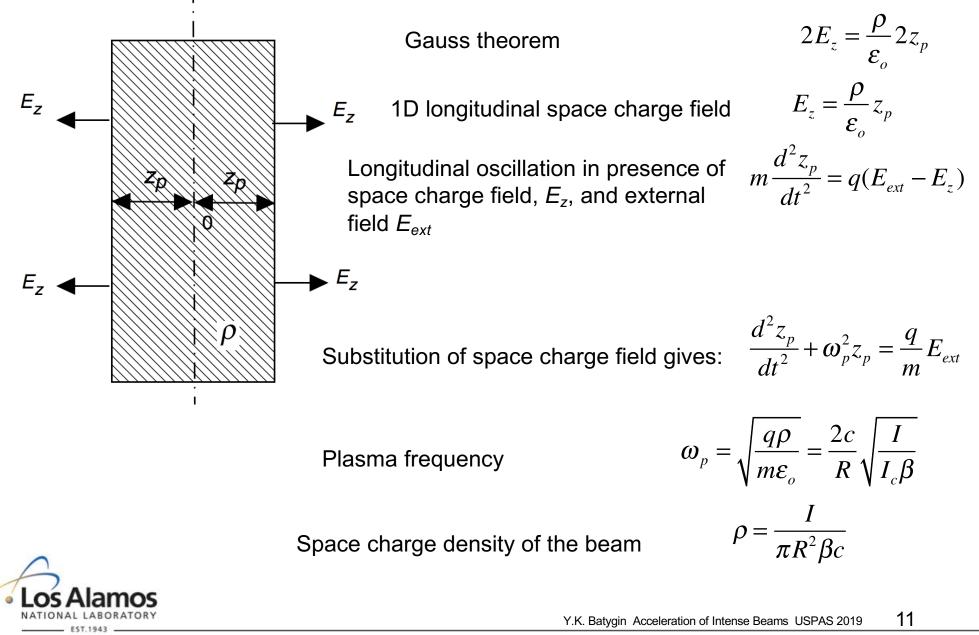
Y.K. Batygin Acceleration of Intense Beams USPAS 2019



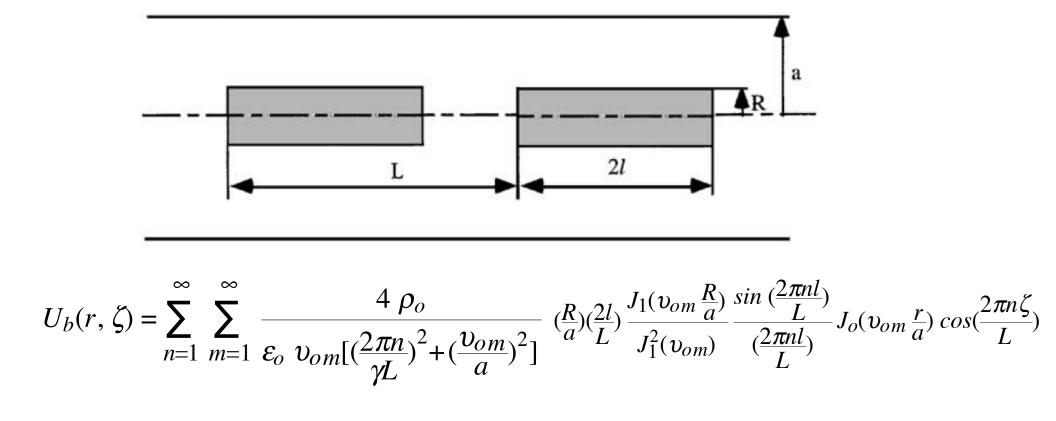
The first harmonic of the induced beam current in the second gap $\frac{I_1}{I} = 2J_1(X)$ as a function of z for different values of voltage at first gap.

The optimal value of bunching parameter is $X_{opt} = 1.84$.

Beam Bunching in Presence of Space Charge Forces

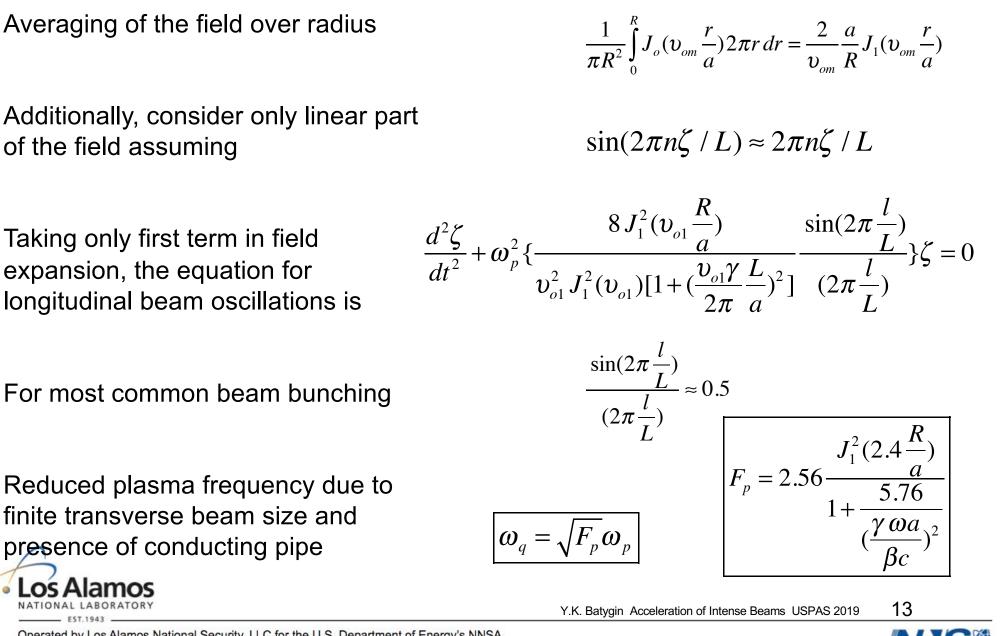


Space Charge Field of the Train of Cylindrical Bunches

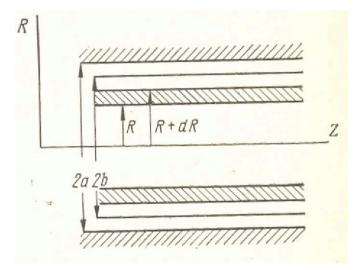


Space charge potential of the train of the bunches (Y.B., NIM-A 483 (2002) 611–628)

Reduced Plasma Frequency



Longitudinal Bunched Beam Oscillations in Presence of Conducting Tube



Longitudinal plasma oscillations in tube

$$\frac{d^2 z_p}{dt^2} + \omega_q^2 z_p = 0$$

Longitudinal particle oscillations under space charge forces

$$z_p = B_o \sin \omega_q (t - t_1)$$

Longitudinal velocity of particle oscillations under space charge forces:

Constant B_o is defined from initial conditions for particle velocity after first RF gap:

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

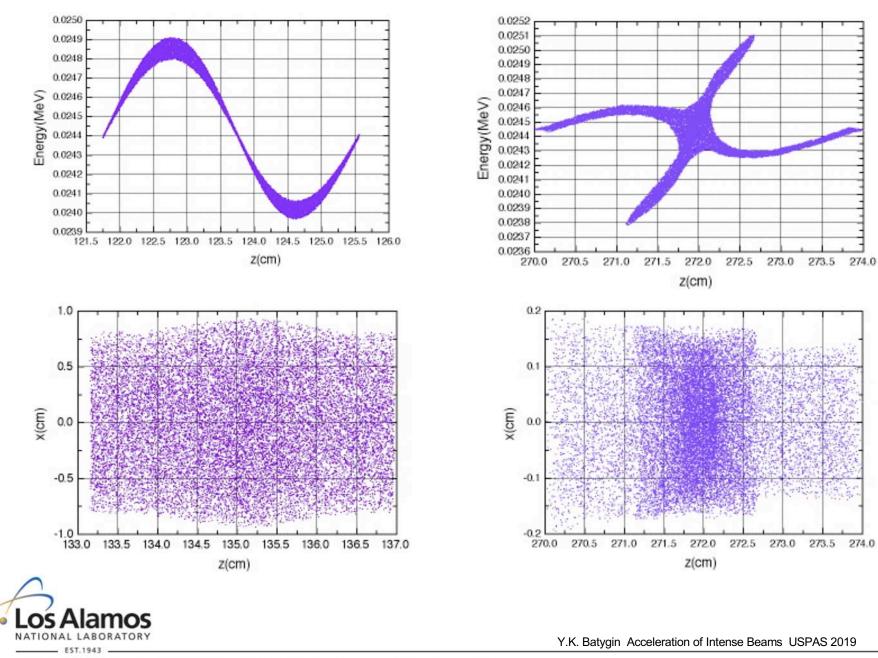
$$\frac{dz_p}{dt} = B_o \omega_q \cos \omega_q (t - t_1)$$

$$\frac{dz_p}{dt}(t_1) = B_o \omega_q = v_1 \sin \omega t_1$$

$$B_o = \frac{v_1}{\omega_q} \sin \omega t_1$$

Y.K. Batygin Acceleration of Intense Beams USPAS 2019

Effect of Space Charge Repulsion on Beam Bunching



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Effect of Space Charge Repulsion on Beam Bunching

Finally, particle oscillations under space charge forces in the moving system

Particle drift

Multiply by ω

RF phase in the second gap

Modified bunching parameter in presence of space charge forces

orces
$$z_{p} = \frac{v_{1}}{\omega_{q}} \sin \omega_{q} (t - t_{1}) \sin \omega t_{1}$$

$$z = v_{o}(t_{2} - t_{1}) + z_{p}$$

$$z = v_{o}(t_{2} - t_{1}) + \frac{v_{1}}{\omega_{q}} \sin \omega_{q}(t_{2} - t_{1}) \sin \omega t_{1}$$

$$\frac{\omega z}{v_{o}} = \omega t_{2} - \omega t_{1} + \frac{\omega v_{1}}{\omega_{q} v_{o}} \sin \omega_{q}(t_{2} - t_{1}) \sin \omega t_{1}$$

$$\omega t_{2} - \theta = \omega t_{1} - X' \sin \omega t_{1}$$

$$X' = \frac{\omega v_{1}}{\omega_{q} v_{o}} \sin \omega_{q}(t_{2} - t_{1})$$

$$\overline{X' = X} \frac{\sin(\omega_{q} \frac{z}{v_{o}})}{\omega_{q} \frac{z}{v_{o}}}$$

$$\sin(\omega_{q} \frac{z}{v_{o}}) = 1$$

$$\omega_{q} \frac{z}{v_{o}} = \frac{\pi}{2}$$

Condition for maximum bunching:

Y.K. Batygin Acceleration of Intense Beams USPAS 2019

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

 $X'_{opt} = \frac{U_1 M_1}{2U_o} (\frac{\omega}{\omega_a}) \quad \frac{I_1}{I} = 2J_1 (X'_{opt})$

Hamiltonian of Particle Motion in RF Field

Equations of motion in equivalent traveling wave:

$$\frac{dz}{dt} = \frac{p_z}{m\gamma}$$

$$\frac{dp_z}{dt} = qE I_o(\frac{k_z r}{\gamma}) \cos\varphi$$

$$\frac{dr}{dt} = \frac{p_r}{m\gamma}$$

$$dp_r = q(E - \beta_0 R) = -q^E I_o(\frac{k_z r}{\gamma})$$

$$\frac{dp_r}{dt} = q(E_r - \beta cB_\theta) = -q\frac{E}{\gamma}I_1(\frac{\kappa_z}{\gamma})\sin\varphi$$

Traveling wave can be represented by an effective potential of accelerating field

$$U_a = \frac{E}{k_z} I_o(\frac{k_z r}{\gamma}) \sin(\omega t - k_z z)$$

Actually, equations for particle momentum

 $\frac{d\vec{p}}{dt} = -q \, gradU_a$

Y.K. Batygin Acceleration of Intense Beams USPAS 2019

Hamiltonian of Particle Motion in RF Field (cont.)

Equations of particle motion around synchronous particle in presence of space charge forces

$$\frac{dp_{\zeta}}{dt} = qE[I_o(\frac{k_z r}{\gamma})\cos(\varphi_s - k_z \zeta) - \cos\varphi_s] + qE_c(r,\zeta)$$
$$\frac{d\zeta}{dt} = \frac{p_{\zeta}}{m\gamma^3}$$

Space charge field is expressed through potential of self-field of a bunch

$$E_c(r,\zeta) = -\frac{1}{\gamma^2} \frac{\partial U_b}{\partial \zeta}$$

$$U_{el} - \beta c A_{zmagn} = \beta c G(z) \frac{x^2 - y^2}{2}$$

Hamiltonian of particle motion in RF field with quadrupole focusing:

$$H = \frac{p_x^2 + p_y^2}{2m\gamma} + \frac{p_\zeta^2}{2m\gamma^3} + \frac{qE}{k_z} [I_o(\frac{k_z r}{\gamma})\sin(\varphi_s - k_z \zeta) + k_z \zeta \cos\varphi_s] + q\beta cG(z)\frac{x^2 - y^2}{2} + q\frac{U_b}{\gamma^2}]$$

Hamiltonian of Small Amplitude Particle Motion in RF Field

For small bunches

 $k_z R_x << 1, \ k_z R_y << 1, \ k_z R_z << 1$

$$sin(\varphi_s - k_z\zeta) \approx sin\varphi_s - (k_z\zeta)cos\varphi_s - \frac{1}{2}(k_z\zeta)^2sin\varphi_s$$
$$I_o(\frac{k_zr}{\gamma}) \approx 1 + \frac{1}{4}\left(\frac{k_zr}{\gamma}\right)^2$$

Hamiltonian describes particle dynamics in three-dimensional linear external field

$$H = \frac{p_x^2 + p_y^2}{2m\gamma} + \frac{p_{\zeta}^2}{2m\gamma^3} + m\gamma^3 \Omega^2 \frac{\zeta^2}{2} + q\beta cG(z) \frac{x^2 - y^2}{2} - m\gamma \Omega^2 \frac{(x^2 + y^2)}{4} + q\frac{U_b}{\gamma^2}$$

Generalization of KV approach for 3-dimensional case is not possible.

Bunched Beam in RF Field: Problems with Ellipsoidal Bunch Model

- There is no 6D distribution function which results in 3D uniformly charged ellipsoid in linear field (see F.Sacherer Thesis, 1968).
- 2. RF fields across separatrix are essentially non-linear.

LOS Alamos

-TOT-

UCKT-T0424

APPENDICES

A. The Nonexistence of Uniformly Charged

Three-Dimensional Beams

We are given an ensemble of three-dimensional harmonic oscillators with the Hamiltonian

$$H(\overrightarrow{p}, \overrightarrow{q}) = p^{2} + q^{2} , \qquad 0 \leq H \leq 1 .$$
 (A1)

Because of the inequality, the accessible region in phase space is a six-dimensional unit sphere; in configuration space it is a 3-sphere. Does there exist a spherically symmetric distribution $f(p^2 + q^2)$ that has a uniform projection onto the 3-sphere? The following necessary condition for the existence of such a distribution has been found by Maurice Neuman.

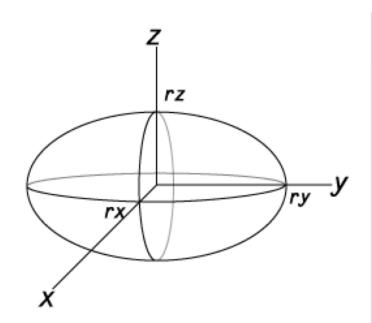
<u>Theorem</u>: The spherically symmetric distribution $f(p^2 + q^2)$ does not exist if its projection $\rho(q^2) = \int f(p^2 + q^2) d^3p$ violates any of the following inequalities:

The maximum permissible value of $\rho(\tau)$, which corresponds to the equal sign, is shown in Fig. (Al). An immediate consequence of this theorem is the nonexistence of a spherically symmetric distribution $f(p^2 + q^2)$ with a uniform projection, $\rho(q^2) = \text{constant}$.

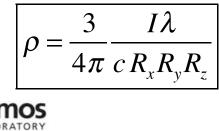
Y.K. Batygin Acceleration of Intense Beams USPAS 2019

Potential of 3D Uniformly Charge Ellipsoid

While there is no complete 6D self-consistent treatment of bunched beam dynamics in linear field, we can formally include linear space charge into equations of motion.



Space charge density:



EST.1943 _____

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Potential of 3D uniformly charge ellipsoid:

$$U_b(x,y,\zeta) = -\frac{\rho}{2\varepsilon_o} [M_x x^2 + M_y y^2 + M_z \gamma^2 \zeta^2]$$

Coefficients:

$$M_{x} = \frac{1}{2} \int_{0}^{\infty} \frac{R_{x}R_{y}\gamma R_{z} ds}{(R_{x}^{2} + s)\sqrt{(R_{x}^{2} + s)(R_{y}^{2} + s)(\gamma^{2}R_{z}^{2} + s)}}$$
$$M_{y} = \frac{1}{2} \int_{0}^{\infty} \frac{R_{x}R_{y}\gamma R_{z} ds}{(R_{y}^{2} + s)\sqrt{(R_{x}^{2} + s)(R_{y}^{2} + s)(\gamma^{2}R_{z}^{2} + s)}}$$
$$M_{z} = \frac{1}{2} \int_{0}^{\infty} \frac{R_{x}R_{y}\gamma R_{z} ds}{(\gamma^{2}R_{z}^{2} + s)\sqrt{(R_{x}^{2} + s)(R_{y}^{2} + s)(\gamma^{2}R_{z}^{2} + s)}}$$

3D Envelope Equations

3D envelope equations

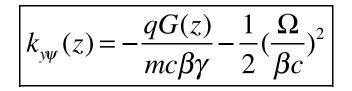
$$\frac{d^2 R_x}{dz^2} - \frac{\varepsilon_x^2}{\left(\beta\gamma\right)^2 R_x^3} + k_{x\psi}(z)R_x - 3\frac{I}{I_c}\frac{M_x\lambda}{\beta^2\gamma^3 R_y R_z} = 0$$

$$\frac{d^2 R_y}{dz^2} - \frac{\varepsilon_y^2}{(\beta \gamma)^2 R_y^3} + k_{y\psi}(z)R_y - 3\frac{I}{I_c}\frac{M_y\lambda}{\beta^2 \gamma^3 R_x R_z} = 0$$

$$\frac{d^2 R_z}{dz^2} - \frac{\varepsilon_z^2}{(\beta \gamma^3)^2 R_z^3} + \frac{\Omega^2}{(\beta c)^2} R_z - 3 \frac{I}{I_c} \frac{M_z \lambda}{\beta^2 \gamma^3 R_x R_y} = 0$$

Focusing functions in presence of RF field:

 $\left| k_{x\psi}(z) = \frac{qG(z)}{mcB\gamma} - \frac{1}{2} \right|$



Y.K. Batygin Acceleration of Intense Beams USPAS 2019 22

3D Averaged Envelope Equations

3D averaged envelope equations

$$\frac{d^2 \overline{R}_x}{dz^2} - \frac{\varepsilon_x^2}{(\beta \gamma)^2 \overline{R}_x^3} + \frac{\mu_{o\psi}^2}{S^2} \overline{R}_x - 3 \frac{I}{I_c} \frac{M_x \lambda}{\beta^2 \gamma^3 \overline{R}_y \overline{R}_z} = 0$$

$$\frac{d^2 \overline{R}_y}{dz^2} - \frac{\varepsilon_y^2}{(\beta \gamma)^2 \overline{R}_y^3} + \frac{\mu_{o\psi}^2}{S^2} \overline{R}_y - 3 \frac{I}{I_c} \frac{M_y \lambda}{\beta^2 \gamma^3 \overline{R}_x \overline{R}_z} = 0$$

$$\frac{d^2 \overline{R}_z}{dz^2} - \frac{\varepsilon_z^2}{(\beta \gamma^3)^2 \overline{R}_z^3} + \frac{\mu_{ol}^2}{S^2} \overline{R}_z - 3 \frac{I}{I_c} \frac{M_z \lambda}{\beta^2 \gamma^3 \overline{R}_x \overline{R}_y} = 0$$

Smoothed focusing function in presence of RF field:

$$\mu_{o\psi} = \mu_o \sqrt{1 - \frac{\mu_{ol}^2}{2\mu_o^2}} \qquad \qquad \mu_{o\psi} = \mu_s$$

Rms Beam Emittance of Ellipsoid Bunch

Introduce spherical coordinates

 $0 \le r \le 1, \ 0 \le \varphi \le 2\pi, \ 0 \le \theta \le \pi$ according to transformation: $x = R_x r \cos \varphi \sin \theta$ $y = R_y r \sin \varphi \sin \theta$ $\zeta = R_z r \cos \theta$

Volume element is transformed as

 $dxdyd\zeta = R_x R_y R_z r^2 \sin\theta \, dr \, d\varphi \, d\theta$

Rms beam size:

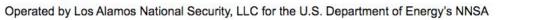
$$< x^{2} > = \frac{R_{x}^{3}R_{y}R_{z}}{V_{e}} \int_{0}^{1} r^{4} dr \int_{0}^{2\pi} \cos^{2}\varphi d\varphi \int_{0}^{\pi} \sin^{3}\theta d\theta = \frac{R_{x}^{2}}{5}$$

Ellipsoid size is related to rms size:

Assuming elliptical beam distribution in transverse momentum, the emittance of uniform bunched beam :

$$R_x = \sqrt{5 < x^2 >}$$

$$\varepsilon = 5\varepsilon_{rms}$$



Uniformly Charged Spheroid

Consider matched beam, $\overline{R}_x^{"} = \overline{R}_y^{"} = R_z^{"} = 0$, with equal transverse emittances $\varepsilon_x = \varepsilon_y = \varepsilon$ and equal averaged transverse sizes $\overline{R}_x = \overline{R}_y = R$. Such beam is a uniformly charged spheroid. For such spheroid, coefficients in

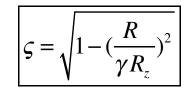
$$M_x = M_y = \frac{(1 - M_z)}{2}$$

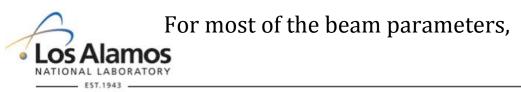
Potential of the uniformly charged spheroid

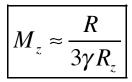
$$U_b(r,\zeta) = -\frac{\rho}{2\varepsilon_o} [M_z \gamma^2 \zeta^2 + \frac{1 - M_z}{2} r^2]$$

where
$$M_z = \frac{\gamma R^2 R_z}{2} \int_{0}^{\infty} \frac{ds}{(R^2 + s)(\gamma^2 R_z^2 + s)^{3/2}} = \frac{1 - \zeta^2}{\zeta^2} (\frac{1}{2\zeta} \ln \frac{1 + \zeta}{1 - \zeta} - 1)$$

where ς is the eccentricity of spheroid:







Y.K. Batygin Acceleration of Intense Beams USPAS 2019

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

3D Matched Beam

Equilibrium envelope equations

Equilibrium conditions can be

Depressed transverse and longitudinal phase advances per focusing period

$$\mu_{\psi}^2 = \mu_{o\psi}^2 \left[1 - \frac{3}{2} \frac{I}{I_c (\beta \gamma)^3} \left(\frac{\beta \lambda}{R_z}\right) \left(\frac{S}{R}\right)^2 \frac{(1 - M_z)}{\mu_{o\psi}^2}\right]$$

$$\mu_l^2 = \mu_{ol}^2 \left[1 - \frac{3I}{I_c (\beta \gamma)^3} \left(\frac{\beta \lambda}{R_z}\right) \left(\frac{S}{R}\right)^2 \frac{M_z}{\mu_{ol}^2}\right]$$

Y.K. Batygin Acceleration of Intense Beams USPAS 2019

rewritten as

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Transverse and Longitudinal Beam Current Limit

Transverse current limit

$$I_{\max, t} = \frac{I_c}{3\pi} (\beta \gamma)^3 (\frac{a}{S})^2 \frac{\mu_{o\psi}^2 |\varphi_s|}{(1 - M_z)} (1 - \frac{\varepsilon^2}{\varepsilon_{\psi}^2})$$

Longitudinal current limit

$$I_{max,l} = \frac{I_c}{6\pi} (\beta\gamma)^3 (\frac{a}{S})^2 \frac{\mu_{ol}^2 |\varphi_s|}{M_z} (1 - \frac{\varepsilon_z^2}{\widehat{\varepsilon}_{acc}^2})$$

Transverse normalized acceptance

$$\varepsilon_{\psi} \approx \frac{\beta \gamma a^2 \mu_{o\psi}}{S}$$

Longitudinal normalized acceptance

$$\widehat{\varepsilon}_{acc} \approx \frac{1}{2\pi} \beta^2 \gamma^3 (\frac{\Omega}{\omega}) \varphi_s^2 \lambda$$

Y.K. Batygin Acceleration of Intense Beams USPAS 2019

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Transverse and Longitudinal Beam Current Limit (cont.)

Focusing period usually contains N accelerating periods, $S=N\beta\lambda$. The value of transverse limited beam current can be re-written as

$$I_{\max, t} = \frac{4}{3} \left(\frac{mc^2}{qZ_o}\right) \beta \gamma^3 \frac{\left|\varphi_s\right| \mu_{o\psi}^2}{(1 - M_z)N^2} \left(\frac{a}{\lambda}\right)^2 \left(1 - \frac{\varepsilon^2}{\varepsilon_{\psi}^2}\right)$$

Using the approximation for ellipsoid parameter

and expression for longitudinal phase advance, the longitudinal beam current limit can be written as

$$M_z \approx \frac{R}{3\gamma R_z}$$

$$I_{max,l} = \frac{2\beta\gamma E|\sin\varphi_s|\varphi_s^2 a}{Z_o} (1 - \frac{\varepsilon_z^2}{\widehat{\varepsilon}_{acc}^2})$$

 $Z_{o} = (c\varepsilon_{o})^{-1} = 376.73\Omega$

The impedance of free space

Y.K. Batygin Acceleration of Intense Beams USPAS 2019

Condition for Equal Tune Depression in Transverse and Longitudinal Directions

Depressed transverse phase advance

$$\frac{\mu_{\psi}^2}{\mu_{o\psi}^2} = 1 - \frac{3}{2} \frac{I}{I_c (\beta \gamma)^3} (\frac{\beta \lambda}{R_z}) (\frac{S}{R})^2 \frac{(1 - M_z)}{\mu_{o\psi}^2}$$

 $\frac{\mu_l^2}{\mu_{\perp}^2} = 1 - \frac{3I}{I(\beta\gamma)^3} (\frac{\beta\lambda}{R}) (\frac{S}{R})^2 \frac{M_z}{\mu_{\perp}^2}$

Depressed longitudinal phase advance

Condition for equal tune depression in transverse and longitudinal directions:

Coefficient of ellipsoid providing equal tune depression (Y.B., NIM-A 483 (2002), 611-628)

Ratio of ellipsoid semi-axis providing equal tune depression

$$\frac{2\mu_{o\psi}^2}{(1-M_z)} = \frac{\mu_{ol}^2}{M_z}$$

$$M_z = \frac{\mu_{ol}^2}{2\mu_o^2}$$

$$\frac{R}{3\gamma R_z} \approx \frac{\mu_{ol}^2}{2\mu_o^2}$$

29

Equal Transverse and Longitudinal Beam Current Limit

Equal depressed tune in transverse and longitudinal directions

$$\frac{\mu_{\psi}^2}{\mu_{o\psi}^2} = \frac{\mu_l^2}{\mu_{ol}^2} = 1 - \frac{3}{2\mu_o^2} \frac{I}{I_c (\beta\gamma)^3} (\frac{\beta\lambda}{R_z}) (\frac{S}{R})^2$$

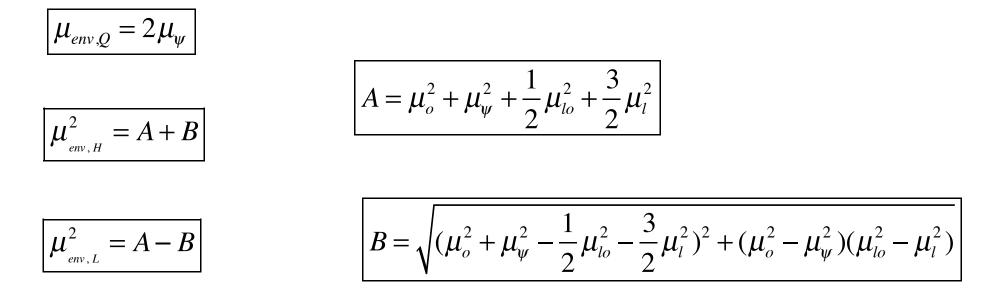
Equal current limit in transverse and longitudinal directions for negligible beam emittance with respect to acceptance of the channel (R is the beam radius which maximum value is R_{max} = a)

$$I_{\max} = \frac{I_c}{3\pi} (\beta \gamma)^3 (\frac{R}{S})^2 \mu_o^2 |\varphi_s| = \frac{2\beta \gamma E |\sin \varphi_s| \varphi_s^2 R}{Z_o}$$

Envelope Modes of Mismatched Bunched Beam

Deviation from matched solution $R_x = \overline{R}_x + \xi_x$ $R_y = \overline{R}_y + \xi_y$ $R_z = \overline{R}_z + \xi_z$

results in excitation of envelope modes with eigenfrequencies [M.Pabst, K.Bongart, A.Letchford, Proceedings EPAC98, p.146]:



Y.K. Batygin Acceleration of Intense Beams USPAS 2019 31

Beam Funneling

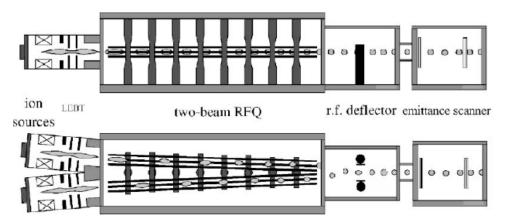
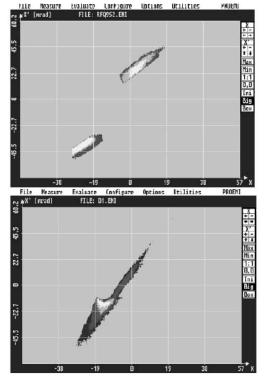


Fig. 4. Layout of the Two-Beam RFQ Funneling Experiment.



Beam Funneling Experiment at Frankfurt University (A.Schempp, NIM-A 464 (2001) p.395)

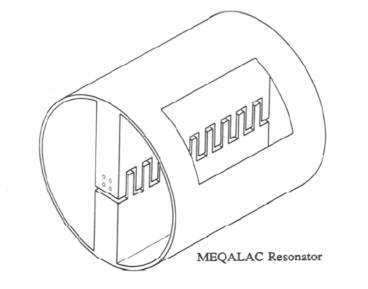
Fig. 6. Emittance of a beam with deflector off (a) and with single gap funnel (b).

Beam funneling is a technique to combine two and more beams in one beam. According to Liouville's theorem, additional particles cannot be inserted into 6-dimensional (6D) phase-space volume already occupied by other particles. However, 2D and 4D projections of beams can be overlapped.

Parameters of the Two-Beam RFQ Funnel Experiment

Two-beam FRQ	He ⁺
f_0 (MHz)	54
Voltage (kV)	10.5
Tin (keV)	4
Tout (MeV)	0.16
Length (m)	2
Angle between beam axes (mrad)	75
Multigap funneling deflector	
f_0 (MHz)	54
Voltage (kV)	6
Length (cm)	54
Single gap funneling deflector	
f_0 (MHz)	54
Voltage (kV)	23
Length (cm)	2.54

Beam Funneling (cont.)



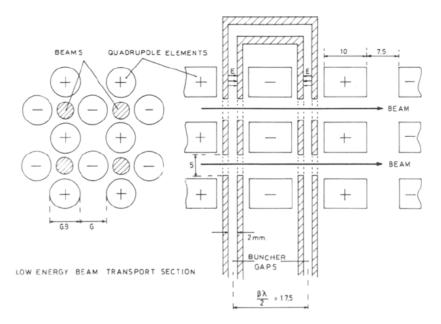


Fig. 3. Characteristic dimensions (in mm) of the LEBT section and of the two-gap buncher.

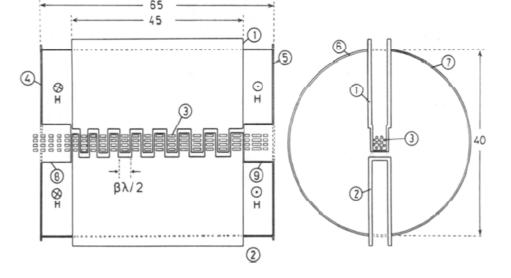


Fig. 4. The 40 MHz MEQALAC acceleration structure. All dimensions are in cm.

FOM-MEQUALAC Experiment (R.W.Thomae et.al, AIP Conference Proceedings 139 (1985), p. 95)

Parameters of FOM-MEQUALAC Experiment

Parameter	1	2	3	4	Dim.
Particle	He ⁺	DD		N ⁺	
Injection energy	40	80	80	40	keV
Exit energy	120	1000	2000	1000	keV
RF frequency	40	80	27	25	MHZ
Synchronous phase	-38	-30	-20	-20	•
Gap electric field amplitude	2.6	12.0	14.2	12.0	MV/m
Width RF gaps	0.2	0.4	0.5	0.4	cm
Number of gaps	20	23	33	24	-
Number of channels	4	25	36	64	-
Overall beam dimensions	4	35	35	65	cm ²
Length resonator	65	150	200	170	cm
Diameter resonator	40	40	100	80	cm
Quality factor	1800	2500	3700	2800	-
Parallel resonance resistance R _{po}	16	28	110	38	MΩ
Rpo,eff	8.1	17	79	27	MΩ
$\beta\lambda/2$ first cell	1.75	1.95	1.60	1.81	cm
$\beta\lambda/2$ last cell	2.80	6.10	6.50	7.40	cm
Quad spacing/length; g/1	0.75	0.95	1.30	0.81	-
Channel radius	0.30	0.30	0.25	0.30	cm
Quadrupole voltage ± U	2.6	6.3	6.7	3.3	kV
Zero current µ _{oT}	60	60	60	60	•
Zero current µ _{oL}	19.8	27.6	30.5	35.8	•
Depressed µ _T	24.0	24.0	24.0	24.0	0
Depressed µI	7.9	11.0	12.2	14.3	•
Channel acceptance a _T	108 π	97 π	95 π	104 π	mm mrad
Channel acceptance aL	270 π	112 π	100 π	130 π	mm mrad
IT time averaged	2.9	7.7	3.1	1.6	πА
It time averaged	3.1	7.6	3.2	2.3	mA
Total current	11.6	190	110	102	mA
Acceleration efficiency	54	78	83	74	z

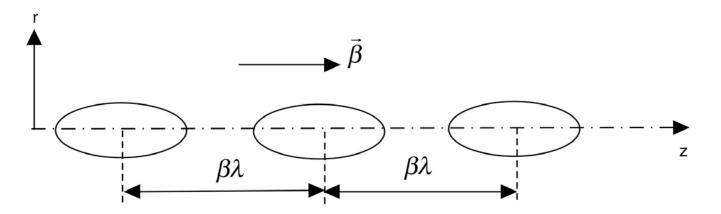
EST. 1943

Y.K. Batygin Acceleration of Intense Beams USPAS 2019 34

Space Charge Dominated Bunched Beam in RF Field*

- 1. Beam is accelerated in traveling wave with constant amplitude *E*
- 2. Beam is bunched at RF frequency $\omega = \frac{2\pi c}{\lambda}$. Particles between bunches are removed.
- 3. Focusing is provided by a continuous z-independent focusing structure
- 4. Beam is matched with the structure, i.e. there are no envelope oscillations (both transverse and longitudinal)

What is the self-consistent particle distribution within the bunch and what is the limited beam current?



Sequence of bunches in RF field.

* Y.B., NIM-A 483 (2002), 611-628.

Equation for Field of Moving Bunch

The space charge density distribution of a moving bunched beam has the form $\rho = \rho (x, y, z - v_s t)$. The moving bunch creates an electromagnetic field with a scalar potential $U_b = U_b (x, y, z - v_s t)$ and a vector potential $\overrightarrow{A_b} = \overrightarrow{A_b} (x, y, z - v_s t)$, which obey the wave equations:

$$\Delta U_b - \frac{1}{c^2} \frac{\partial^2 U_b}{\partial t^2} = -\frac{\rho}{\varepsilon_o},\tag{5.50}$$

$$\Delta \overrightarrow{A}_{b} - \frac{1}{c^{2}} \frac{\partial^{2} \overrightarrow{A}_{b}}{\partial t^{2}} = -\mu_{o} \vec{j}, \qquad (5.51)$$

where $\vec{j} = \rho \vec{v}_s$ is the current density of the beam. The current density has only longitudinal component

$$j_x = j_y = 0, \qquad j_z = v_s \ \rho \ (x, \ y, \ z - v_s t) , \qquad (5.52)$$

and, therefore, the vector potential has only a longitudinal component A.

In a moving coordinate system where particles are static, the vector potential of the beam is zero, $\overrightarrow{A} = 0$. According to the Lorentz transformation, the longitudinal component of the vector potential in the laboratory system is $A_z = \beta_s U_b / c$ while transverse components $A_x = 0$, $A_y = 0$. Therefore, to find solution of the problem it suffice to solve only equation for the scalar potential (5.50). Substitution of the value A_z into the wave equation (5.51) gives the equation for the scalar potential:

$$\frac{\partial^2 U_b}{\partial x^2} + \frac{\partial^2 U_b}{\partial y^2} + \frac{\partial^2 U_b}{\gamma^2 \partial \zeta^2} = -\frac{1}{\varepsilon_o} \rho (x, y, \zeta).$$
(5.53)

Self - Consistent Problem for Bunched Beam

Equation (5.53) has to be solved together with the Vlasov equation for the beam distribution function:

$$\frac{df}{dt} = \frac{1}{m\gamma} \left(\frac{\partial f}{\partial x} p_x + \frac{\partial f}{\partial y} p_y + \frac{\partial f}{\gamma^2 \partial \zeta} p_\zeta\right) - q\left(\frac{\partial f}{\partial p_x} \frac{\partial U}{\partial x} + \frac{\partial f}{\partial p_y} \frac{\partial U}{\partial y} + \frac{\partial f}{\partial p_\zeta} \frac{\partial U}{\partial \zeta}\right)$$
(5.54)

where $U = U_{ext} + \gamma^{-2}U_b$ is a total potential of the structure. Eqs (5.53), (5.54) define the selfconsistent distribution of a stationary beam which acts on itself in such a way, that this distribution is conserved.

The general approach to find a stationary, self-consistent beam distribution function is to represent it as a function of Hamiltonian f = f(H) and then to solve Poisson's equation. Because the Hamiltonian is a constant of motion for a stationary process, any function of Hamiltonian is also a constant of motion which automatically obeys Vlasov's equation. A convenient way is to use an exponential function $f = f_o \exp(-H/H_o)$:

$$f = f_o \exp\left(-\frac{p_x^2 + p_y^2}{2 m \gamma H_o} - \frac{p_z^2}{2 m \gamma^3 H_o} - q \frac{U_{ext} + U_b \gamma^{-2}}{H_o}\right).$$
(5.55)

Hamiltonian of Averaged Particle Motion in RF Field

Particle motion is governed by the single-particle Hamiltonian (Kapchinsky, "Theory of resonance linear accelerators", Harwood, 1985):

$$H = \frac{p_x^2 + p_y^2}{2 m \gamma} + \frac{p_z^2}{2 m \gamma^3} + q U_{ext} + q \frac{U_b}{\gamma^2}$$

$$U_{ext} = \frac{E}{k_z} \left[I_o(\frac{k_z r}{\gamma}) \sin(\varphi_s - k_z \zeta) - \sin\varphi_s + k_z \zeta \cos\varphi_s \right] + G_t \frac{r^2}{2}$$

 p_x, p_y transverse momentum

 $p_z = P_z - P_s$ longitudinal momentum deviation from synchronous particle $\zeta = z - z_s$ deviation from synchronous particle φ_s synchronous phase

 $k_z = \frac{2\pi}{\beta\lambda}$

 U_{ext}

 U_{b}

E

 G_{t}

wave number

potential of external fieldspace charge potential of the beamamplitude of accelerating wavegradient of the focusing field

Beam Equipartitioning in RF field

Let us rewrite the distribution function, Eq. (5.55)

$$f = f_o \exp\left(-2\frac{p_x^2 + p_y^2}{p_t^2} - 2\frac{p_z^2}{p_t^2} - q\frac{U_{ext} + U_b\gamma^{-2}}{H_o}\right),$$
(5.56)

where $p_t = 2 \sqrt{\langle p_x^2 \rangle} = 2 \sqrt{\langle p_y^2 \rangle}$ and $p_l = 2 \sqrt{\langle p_z^2 \rangle}$ are double root-mean-square (rms) beam sizes in phase space. Transverse, ε_t , and longitudinal, ε_l , rms beam emittances are:

$$\varepsilon_t = 2 \frac{p_t}{mc} \sqrt{\langle x^2 \rangle} = 2 \frac{p_t}{mc} \sqrt{\langle y^2 \rangle}, \qquad (5.57)$$

$$\varepsilon_z = 2 \frac{p_l}{mc} \sqrt{\langle \zeta^2 \rangle} \,. \tag{5.58}$$

The value of H_o can be expressed as a function of the beam parameters:

$$16H_{o} = \frac{mc^{2}}{\gamma} \frac{\varepsilon^{2}}{\langle x^{2} \rangle} = \frac{mc^{2}}{\gamma} \frac{\varepsilon^{2}}{\langle y^{2} \rangle} = \frac{mc^{2}}{\gamma^{3}} \frac{\varepsilon^{2}}{\langle \zeta^{2} \rangle}.$$
 (5.59)

Equation (5.59) can be rewritten as

$$\frac{\varepsilon}{R} = \frac{\varepsilon_z}{\gamma R_z},\tag{5.60}$$

Y.K. Batygin Acceleration of Intense Beams USPAS 2019 39

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Self-Consistent Solution for Beam Distribution

The first approximation to self-consistent space charge dominated beam potential is:

$$V_b = -\frac{\gamma^2}{1+\delta} V_{ext}$$

where parameter $\delta \approx \frac{1}{b_{\varphi}k} \ll 1$

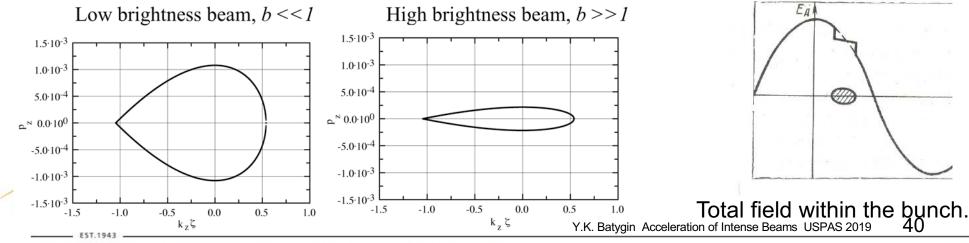
and b_{φ} is a dimensionless beam brightness of the bunched beam:

 $b_{\varphi} = \frac{2}{\beta \gamma} \frac{I}{BI_c} \frac{R^2}{\varepsilon_t^2}$

The Hamiltonian corresponding to the self-consistent bunch distribution is as follows:

$$H = \frac{p_x^2 + p_y^2}{2 m \gamma} + \frac{p_z^2}{2 m \gamma^3} + q \left(\frac{\delta}{1 + \delta}\right) U_{ext}.$$

Equation (5.88) indicates that in the presence of an intense, bright bunched beam ($\delta \ll 1$) the stationary longitudinal phase space of the beam becomes narrow in momentum spread, while the phase width of the distribution remains the same in the first approximation.



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Analogy with Plasma Physics: Debye Screening

screening. If a positive test charge of magnitude Ze is placed in a plasma, it attracts electons and repels ions in such a way that its Coulomb electrostatic potential $\phi_c \approx Ze/4\pi\varepsilon_0 r$ is attenuated at distances beyond a Debye length. To calculate this effect, we solve for the potential $\phi(r)$ generated by such a test charge. Assuming the plasma to be in thermal equilibrium, the distribution functions of electrons and ions are of the Maxwell-Boltzmann form

$$f(\mathbf{x}, \mathbf{v}) = n_0 \exp\left(-\frac{mv^2}{2k_{\rm B}T} + \frac{e_j\phi}{k_{\rm B}T}\right),$$
(1.8.1)

and the densities are $n_j(r) = n_0 \exp(e_j \phi(r)/k_B T)$. Here $\phi(r)$ is the potential generated by the test charge, which is as yet unknown. Since this potential must satisfy Poisson's equation

$$\nabla^2 \phi = \frac{1}{\varepsilon_0} \rho(r), \tag{1.8.2}$$

with the charge density $\rho(r) = \sum_j e_j n_j(r)$, it follows that, assuming spherical symmetry, ϕ satisfies the equation

$$\frac{1}{r^2} \frac{d}{dr} r^2 \frac{d\phi}{dr} = \frac{2n_0 e^2}{\varepsilon_0 k_B T} \phi ; \qquad (1.8.3)$$

here we have assumed that the potential is small enough that $e\phi/k_BT \ll 1$.

Taking the solution of Eq. (1.8.3) which vanishes as $r \to \infty$, we obtain

$$\phi = \frac{A}{r} \exp\left(-r/\lambda_{\rm D}\right),\tag{1.8.4}$$

where $\lambda_{\rm D} \equiv (\epsilon_0 kT/2n_0 e^2)^{1/2}$ is known as the Debye length, and A is not yet determined. To evaluate the constant A, we must match the potential to the 'bare' Coulomb potential of the test charge, $\phi_{\rm c} = Ze/4\pi\epsilon_0 r$, at a distance r from the charge which is small compared to the average interparticle distance $n_0^{-1/3}$. The result is that $A = Ze/4\pi\epsilon_0$, provided that $n_0^{-1/3} \ll \lambda_{\rm D}$. Eq. (1.8.4) then shows that, at distances greater than a Debye length, the potential of a test charge in a plasma is exponentially attenuated below the value it would have in a vacuum. This cutoff of the potential has important implications for the collisional events in a plasma,

Space Charge Density of the Bunch

The self consistent space charge density distribution of a matched beam can be found from Poisson's equation:

$$\rho(r,\zeta) = -\varepsilon_o \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial U_b}{\partial r}\right) + \frac{\partial^2 U_b}{\gamma^2 \partial \zeta^2}\right]$$

$$\rho(r,\zeta) = 2\gamma^2 G_t \varepsilon_o \left\{ 1 - \frac{\delta}{\sqrt{(1+\delta)^2 - 2V_{ext}}} - \frac{\delta^2}{32\gamma} \frac{\varepsilon^2}{\langle x^2 \rangle} \left(\frac{mc^2}{qG_t a^2} \right) \frac{\left(\frac{\partial V_{ext}}{\partial \xi}\right)^2 + \left(\frac{\partial V_{ext}}{\gamma \partial \eta}\right)^2}{\left[\left(1+\delta\right)^2 - 2\delta V_{ext}\right]^{3/2}} \right\}$$

Space charge density of stationary bunch is close to constant

$$\rho(r,\zeta) \approx 2 \frac{\gamma^2}{1+\delta} G_t \varepsilon_o.$$

Stationary Bunch Profile

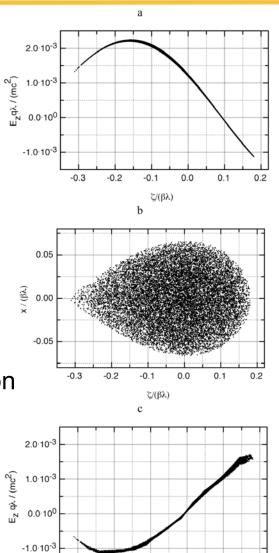
Equation $U_{ext}(r, z) = const$ gives the family of equipotential lines of the space charge field of the beam:

$$I_{o}(\frac{k_{z}r}{\gamma})sin(\varphi_{s}-k_{z}\zeta) - sin\varphi_{s} + k_{z}\zeta cos\varphi_{s} + \frac{G_{t}k_{z}}{2E}r^{2} = const$$

Bunch boundary is not an equipotential surface; therefore $U_{ext}(r, z) = const$ does not coincide with bunch profile. To find the self-consistent bunch profile, consider a uniformly populated bunch with boundary defined by the following nonlinear equation

$$I_o(\frac{k_z R}{\gamma})sin(\varphi_s - k_z \zeta) + sin\varphi_s - (2\varphi_s - k_z \zeta)cos\varphi_s + C(k_z R)^2 = 0$$

The self-consistent bunch profile in real space is close to separatrix shape in longitudinal phase space



Stationary self-consistent particle distribution in RF field, $\phi_s = -60^\circ$, C=3.8: (a) RF field, (b) particle distribution, (c) space charge field of the beam. 43

0.1

0.2

0.0

-0.1

ζ/(βλ)

-0.2

-0.3

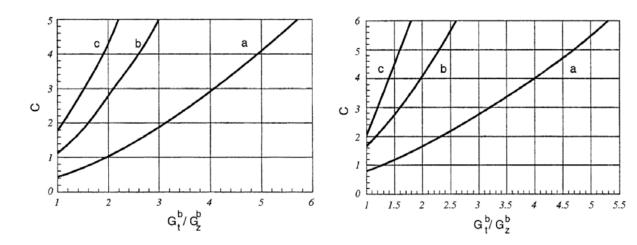
Bunch Profile as a Function of Accelerator Parameters

Parameter C can be expressed as a function of ratio of effective transverse gradient:

$$G_{t, eff} = G_t (1 - \frac{G_z}{2 \gamma^2 G_t})$$

and longitudinal gradient

$$G_z = 2\pi \frac{E|\sin \varphi_s|}{\beta \lambda}$$



Coefficient C in bunch shape for $\varphi_s = -30^\circ$ as a function of ratio of transverse and longitudinal gradients of space charge field of the beam: a) $\gamma = 1$, b) $\gamma = 3$, c) $\gamma = 6$. Coefficient C in bunch shape for $\varphi_s = -60^\circ$ as a function of ratio of transverse and longitudinal gradients of space charge field of the beam: a) $\gamma = 1$, b) $\gamma = 3$, c) $\gamma = 6$.

Transverse and Longitudinal Bunch Sizes

(5.96)

(5.97)

For a long bunch, $\beta \lambda >> R_{max}$, the Bessel function can be approximated as $I_o(\chi) \approx 1 + \chi^2/4$, and bunch boundary is given by:

$$R(\zeta) = \frac{\beta\lambda}{2\pi} \sqrt{\frac{(2\varphi_s - k_z\zeta)\cos\varphi_s - \sin\varphi_s - \sin(\varphi_s - k_z\zeta)}{C + \frac{1}{4\gamma^2}\sin(\varphi_s - k_z\zeta)}}.$$

Transverse bunch size, R_{max} , is determined from the equatio $\partial R(\zeta)/\partial \zeta = 0$:

$$R_{max} = \frac{\beta\lambda}{2\pi} \sqrt{\frac{2\left(\varphi_s \cos\varphi_s - \sin\varphi_s\right)}{C + \frac{1}{4\gamma^2}\sin\varphi_s}}.$$

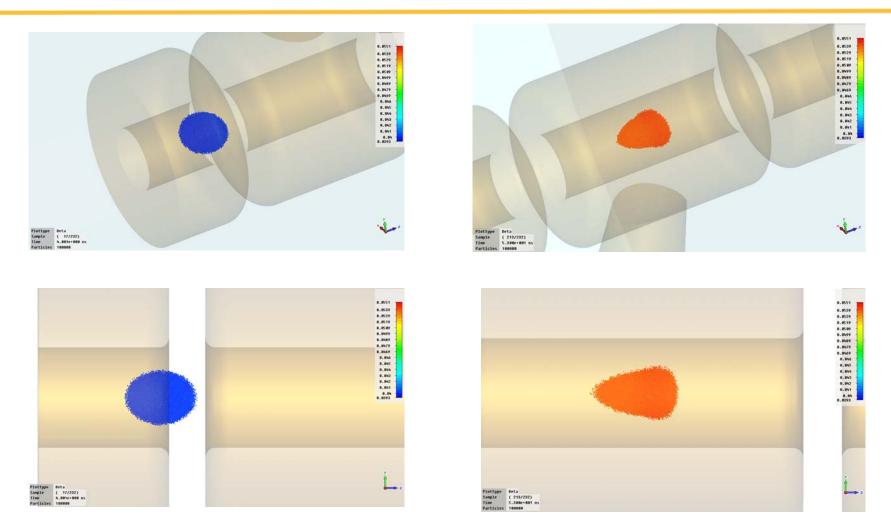
The ratio of transverse to longitudinal bunch sizes for a give value of synchronous phase, φ_s , is:

$$\frac{R_{max}}{l_b} = \frac{1}{3|\varphi_s|} \sqrt{\frac{2\left(\varphi_s \cos\varphi_s - \sin\varphi_s\right)}{C + \frac{1}{4\gamma^2}\sin\varphi_s}}.$$
(5.98)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

 $\int_{\mathbb{Q}}^{0.05} 0.00 \qquad R_{max}$ $\int_{-0.05}^{0.00} 0.3 \quad -0.2 \quad -0.1 \quad 0.0 \quad 0.1 \quad 0.2 \quad U_{b} \approx \beta \lambda \frac{3\varphi_{s}}{2\pi}$

Initial and Final Bunch in RF Field



(Left) initial and (right) final beam distribution in RF field. (Courtesy of Sergey Kurennoy.)

Kapchinsky Model for Self-Consistent Bunched Beam

<< 1. Restricting ourselves in the expansion of a modified 324 Bessel function to the first two terms

$$I_0\left(\frac{\omega r}{\gamma v_s}\right) \approx 1 + \frac{\omega^2}{4\gamma^2 v_s^2} r^2,$$

we can write potential function (4.7) in the form

$$V(x, y, \zeta) = \frac{ev_s E}{\omega} \left[\sin\left(\varphi_s - \frac{\omega}{v_s} \zeta\right) + \frac{\omega\zeta}{v_s} \cos\varphi_s \right] \\ + \frac{m_0 \gamma}{2} \left[\Omega_r^2 + \frac{e\omega E}{2m_0 \gamma^3 v_s} \sin\left(\varphi_s - \frac{\omega}{v_s} \zeta\right) \right] r^2.$$

By ignoring the dependence of the defocusing force produced by the accelerating wave on the variable component of the particle phase, we can represent the potential function as a sum of two terms $V(x, y, \zeta) = V_z(\zeta) + V_r(x, y)$. The

• Los Alamos NATIONAL LABORATORY

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

I. M. KAPCHINSKIY

first term

$$V_{z}(\zeta) = \frac{ev_{s} E}{\omega} \left[\sin\left(\varphi_{s} - \frac{\omega}{v_{s}} \zeta\right) + \frac{\omega\zeta}{v_{s}} \cos\varphi_{s} \right], \qquad (4.13)$$

which depends only on the longitudinal coordinate of the particle, coincides (to within a constant factor) with potential function (1.41). The second term

$$V_r(x, y) = (m_0 \gamma/2) \left[\Omega_r^2 - e\omega E \right] \sin \varphi_s \left[\frac{2m_0 \gamma^3 v_s}{r^2} \right] r^2, \qquad (4.14)$$

which depends only on the transverse coordinates, is the potential function for the equilibrium particle in a "smoothed out" external field. In Section 3.1 we showed by using a

With this simplifying assumption, the Coulomb potential of the bunch can be represented as a sum of two independent functions $U_C(x, y, \zeta) = U_Z(\zeta) + U_r(x, y)$. Because of the axial symmetry of the fields, the potential U_r is a function of only the radius r. The two independent integrals of motion can be separated by using the simplifying assumptions discussed above;

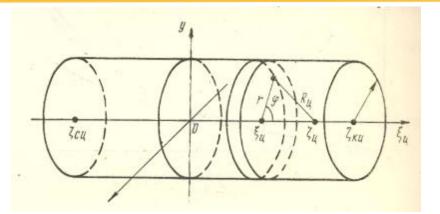
$$H_{z} = \frac{p_{z}^{2}}{2m_{0}\gamma^{3}} + V_{z}(\zeta) + (e/\gamma^{2}) U_{z}(\zeta); \qquad (4.15)$$

$$H_r = \left[(p_x^2 + p_y^2)/2m_0 \gamma \right] + V_r (r) + (e/\gamma^2) U_r (r).$$
 (4.16)

Y.K. Batygin Acceleration of Intense Beams USPAS 2019

47

Representation of the Bunch as a Uniformly-Charged Cylinder with Variable Density Along z



Transverse distribution

326

I. M. KAPCHINSKIY

The microcanonical phase-density distribution $f_1(H_r)$ = $\delta(H_r - H_1)$ can be used in four-dimensional transverse-oscillation phase space. In this case,

$$\rho(r, \zeta) = en_0 \int_{-\infty}^{\infty} f_2(H_z) dp_z \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(H_r - H_1) dp_x dp_y.$$

Although the space-charge density in each beam cross section is constant, it nonetheless depends on the longitudinal coordinate. A bunch can be represented as a circular cylinder of finite length. Since the charge density inside the cylinder depends only on the longitudinal coordinate, the cylindrical bunch has flat end-faces. The cyl-

The law governing the charge-density distribution along the longitudinal axis of the bunch duplicates the behavior of the separatrix. The maximum charge density of a cylin- NNSA

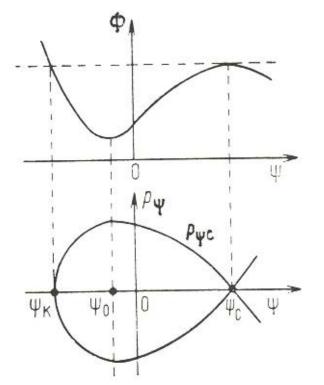
Longitudinal distribution

side the separatrix. Specifically, we assume that the phase density on the ψ , p_{ψ} plane inside the separatrix is constant. Since $H_{\rm Z}$ < $H_{\rm C}$ for the phase trajectories inside the separatrix and $H_{\rm Z}$ > $H_{\rm C}$ for the phase trajectories outside it, we can write

$$f_2(H_z) = \begin{cases} 1 \text{ for } H_z \leq H_c; \\ 0 \text{ for } H_z > H_c. \end{cases}$$
(4.26)

Separatrix as a Function of Beam Current

Analysis based on Kapchinsky's model for beam distribution indicates that synchronous phase is shifted in space charge dominated beam and phase width of the bunch decreases with current but much slower than the vertical size of the separatrix.



0.5 0.14 0.4 0.35 0.3 0.54 0.2 0.70 0.2 0.86 0.1 0.2 0.86 0.8 1 1.2 Ψ

k=0

The potential function and separatrix of the beam with high space-charge density (from Kapchinsky, 1985).

The separatrix shape for different values of space charge parameter (from Kapchinsky, 1985).

