Proton and Ion Linear

 Accelerators
6. Low-Medium-High Energy Beam Transports (LEBT-MEBT-HEBT)

Yuri Batygin
Los Alamos National Laboratory

U.S. Particle Accelerator School

Albuquerque, New Mexico, June 17-28, 2019

LEBT Functions and Requirements

LEBT Purposes:

- Extraction and low - energy acceleration of the beam
- Match beam out of the ion source to the transport channel
- Dispose of electrons emitted along with the ions
- Match beam into the RF Accelerator (RFQ)
- Provide beam diagnostics and test facilities
- Provide fast switching (chopping) before the RF Accelerator to introduce time structure of the beam

Beam Physics Issues:

- Electrostatic vs magnetostatic LEBT
- Minimization of emittance growth
- Beam space charge compensation
- Short neutralization time

Space Charge Effects in the Extraction Region of Particle Sources: Child-Langmuir Law

2.5.2
Plănar Diode with Space Charge (Child-Langmuir Law)

Let us now include the effect of the space charge of the electron current in the diode on the potential distribution and electron motion. To simplify our analysis, we assume that all electrons are launched with initial velocity $\mathbf{v}_{0}=0$ from the cathode (i.e., they are moving on straight lines in the x-direction). This is an example of laminar flow where electron trajectories do not cross and the current density is uniform. We try to find the steady-state solution $(\partial / \partial t=0)$ in a self-consistent form. The electrostatic potential is determined from the space-charge density ρ via Poisson's equation, with $\phi=0$, at $x=0$ and $\phi=V_{0}$ at $x=d$, as in the previous case. The relationship between ρ, the current density \mathbf{J}, and the electron velocity \mathbf{v} follows from the continuity equation ($\nabla \cdot \mathbf{J}=0$ or $\mathbf{J}=\rho \mathbf{v}=$ const). The velocity in turn depends on the potential ϕ and is found by integrating the equation of motion. Thus we have the following three equations:

$$
\begin{align*}
\nabla^{2} \phi & =\frac{d^{2} \phi}{d x^{2}}=-\frac{\rho}{\epsilon_{0}} \quad \text { (Poisson's equation) } \tag{2.129}\\
J_{x} & =\rho \dot{x}=\text { const } \quad \text { (continuity equation) } \tag{2.130}\\
\frac{m}{2} \dot{x}^{2} & =e \phi(x) \quad \text { (equation of motion). } \tag{2.131}
\end{align*}
$$

NATIONAL LABORATORY

[^0]
Space Charge Effects in the Extraction Region of Particle Sources: Child-Langmuir Law (Con.)

Substituting $\dot{x}=[2 e \phi(x) / m]^{1 / 2}$ from (2.131) into (2.130) and $\rho=J_{x} / \dot{x}$ from (2.130) into (2.129) yields

$$
\begin{equation*}
\frac{d^{2} \phi}{d x^{2}}=\frac{J}{\epsilon_{0}(2 e / m)^{1 / 2}} \frac{1}{(\phi)^{1 / 2}} \tag{2.132}
\end{equation*}
$$

where the current density $J=-J_{x}$ is defined as a positive quantity. After multiplication of both sides of Equation (2.132) with $d \phi / d x$, we can integrate and obtain

$$
\begin{equation*}
\left(\frac{d \phi}{d x}\right)^{2}=\frac{4 J}{\epsilon_{0}(2 e / m)^{1 / 2}} \phi^{1 / 2}+C . \tag{2.133}
\end{equation*}
$$

Now $\phi=0$ at $x=0$, and if we consider the special case where $d \phi / d x=0$ at $x=0$, we obtain $C=0$. A second integration then yields (with $\phi=V_{0}$ at $x=d$)

$$
\frac{4}{3} \phi^{3 / 4}=2\left(\frac{J}{\epsilon_{0}}\right)^{1 / 2}\left(\frac{2 e}{m}\right)^{-1 / 4} x .
$$

or

$$
\begin{equation*}
\phi(x)=V_{0}\left(\frac{x}{d}\right)^{4 / 3} \tag{2.134}
\end{equation*}
$$

with the relation

$$
\begin{equation*}
J=\frac{4}{9} \epsilon_{0}\left(\frac{2 e}{m}\right)^{1 / 2} \frac{v_{0}^{3 / 2}}{d^{2}} \tag{2.135}
\end{equation*}
$$

Current-Voltage Curve

Current-voltage relation at constant cathode temperature (from S.Isagawa, Joint Accelerator School, 1996).
Y.K. Batygin LEBT - MEBT- HEBT USPAS 2019

Child-Langmuir Law for Spherical Surfaces

In ion sources, the shape of plasma meniscus is determined by the balance between plasma pressure and applied electrostatic voltage for ion extraction.

To determine shape of plasma memiscus, let us consider self-consistent problem for the beam extracted from spherical emitter of radius R_{1} (plasma) and spherical collector of radius $R_{2}\left(R_{2}<R_{1}\right)$. Saturated current density extracted from the plasma

$$
j=n_{i} e \sqrt{\frac{k T_{e}}{m_{i}}}
$$

NATIONAL LABORATORY

Ion Source Beam Current

Beam current of Los Alamos duoplasmatron proton ion source at extraction voltage $U_{\text {ext }}=27 \mathrm{kV}$ as a function of source arc current: (solid) H^{+}beam current, (dashed) total $\mathrm{H}^{+} / \mathrm{H}_{2}^{+} / \mathrm{H}_{3}^{+}$current.

Child-Langmuir Law for Spherical Surfaces (cont.)

We will assume that all particle have the same extracted velocities, so the current density is $j=\rho v_{r}$ and particle velocity is

$$
v_{r}=\sqrt{\frac{2 q U}{m}}
$$

where U is the potential between two spheres. Therefore, beam space charge density is

On derivation of Child-Langmuir law between spherical surfaces.

Child-Langmuir Law for Spherical Surfaces (cont.)

Let us substitute space charge density into Poisson's equation in spherical coordinates:

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d U}{d r}\right)=-\frac{1}{\varepsilon_{o}} \frac{j}{\sqrt{\frac{2 q U}{m}}}
$$

Solution of Poisson's equation for concentric spheres is

$$
\frac{j}{U^{3 / 2}}=\frac{4 \sqrt{2}}{9} \varepsilon_{o} \sqrt{\frac{q}{m}} \frac{1}{R_{1}^{2} \alpha^{2}}
$$

where

$$
\alpha=Y-0.3 Y^{2}+0.075 Y^{3},
$$

$$
Y=\ln \frac{R_{2}}{R_{1}}
$$

Child-Langmuir Law for Spherical Surfaces (cont.)

This is the Child-Langmuir law for spherical surfaces. When the distance between emitter and collector is much smaller than the raduses $d=R_{1}-R_{2} \ll R_{1}$, the following approximations can be used:

$$
\begin{aligned}
Y= & \ln \left(\frac{R_{1}-d}{R_{1}}\right) \approx-\frac{d}{R_{1}}-\frac{1}{2}\left(\frac{d}{R_{1}^{2}}\right)^{2}-\frac{1}{2}\left(\frac{d}{R_{1}^{2}}\right)^{3} \\
& \frac{1}{R_{1}^{2} \alpha^{2}} \approx \frac{1}{d^{2}}\left(1-1.6 \frac{d}{R_{1}}\right)
\end{aligned}
$$

With this approximation, Child-Langmuir law is expressed as

$$
\frac{j}{U^{3 / 2}}=\frac{4 \sqrt{2}}{9} \varepsilon_{o} \sqrt{\frac{q}{m}} \frac{1}{d^{2}}\left(1-1.6 \frac{d}{R_{1}}\right)
$$

Child-Langmuir Law for Spherical Surfaces (cont.)

Let us apply now obtained result to the problem of plasma beam extraction from small extraction hole of the radius r_{1}. From Fig the relationship between extraction radius r_{1} and radius R_{1} is

$$
R_{1}=\frac{r_{1}}{\sin \theta} \approx \frac{r_{1}}{\theta}
$$

where θ is associated with initial beam slope.

Scheme of simplified ion optics in beam extraction region (J.R.Coupland et al., Rev.

Sci. Instruments, Vol. 44, No 9, (1973), p. 1258.

Child-Langmuir Law for Spherical Surfaces (cont.)

Beam current density

$$
j=\frac{I}{\pi r_{1}^{2}}
$$

Substitution of expression for beam current density into Child-Langmuir law reads:

$$
\frac{I}{U^{3 / 2}}=\frac{4 \sqrt{2} \pi}{9} \varepsilon_{o} \sqrt{\frac{q}{m}}\left(\frac{r_{1}}{d}\right)^{2}\left(1-1.6 \frac{d}{r_{1}} \theta\right)
$$

Beam perveance:

$$
P_{b}=\frac{I}{U^{3 / 2}}
$$

Child-Langmuir perveance of one dimensional diode $\quad P_{o}=\frac{4 \sqrt{2} \pi}{9} \varepsilon_{o} \sqrt{\frac{q}{m}}\left(\frac{r_{1}}{d}\right)^{2}$

Extracted beam slope (plasma meniscus):

$$
\theta=0.625 \frac{r_{1}}{d}\left(\frac{P_{b}}{P_{0}}-1\right)
$$

If $P_{b} \ll P_{o}$, it corresponds to the extracted beam with negligible intensity, and initial convergence of the beam is defined by extraction geometry only

$$
\theta=-0.625 \frac{r_{1}}{d}
$$

Child-Langmuir Law for Spherical Surfaces (cont.)

According to Child-Langmuir law, the potential inside extraction gap has the following z-dependence:

$$
\mathrm{U}(\mathrm{z})=\mathrm{U}_{\mathrm{ext}}\left(\frac{\mathrm{Z}}{\mathrm{~d}_{\mathrm{ext}}}\right)^{4 / 3}
$$

Inside extraction gap particles move in the field, which, in the first approximation, has only longitudinal component

$$
\mathrm{E}_{\mathrm{z}}=\frac{4}{3} \mathrm{U}_{\mathrm{ext}} \frac{\mathrm{z}^{1 / 3}}{\mathrm{~d}_{\mathrm{ext}}^{4 / 3}}
$$

Outside extraction gap the field drops to zero.

Beam Defocusing in Extraction Gap

Extraction gap showing defocusing effect (S.Humphries, 1999).

Beam Defocusing in Extraction Gap (cont.)

Due to equation

$$
\operatorname{div} \overrightarrow{\mathrm{E}}=\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r} \mathrm{E}_{\mathrm{r}}\right)+\frac{\partial \mathrm{E}_{\mathrm{z}}}{\partial \mathrm{z}}=0
$$

any change in longitudinal field results in appearance of transverse field component, which (in this case) defocuses beam:

$$
\mathrm{E}_{\mathrm{r}}=-\frac{1}{\mathrm{r}} \int_{0}^{\mathrm{r}} \frac{\partial \mathrm{E}_{\mathrm{Z}}}{\partial \mathrm{z}} \mathrm{r}^{\prime} \mathrm{dr}^{\prime} \approx-\frac{\mathrm{r}}{2} \frac{\partial \mathrm{E}_{\mathrm{Z}}}{\partial \mathrm{z}}
$$

Equation of particle motion:

$$
\frac{d^{2} r}{d z^{2}}=-\frac{q}{m v_{z}^{2}} r \frac{1}{2} \frac{\partial E_{z}}{\partial z}
$$

Slope of particle trajectory at the exit of the gap:

$$
\psi=\Delta\left(\frac{d r}{d z}\right)=-\frac{q}{2 m v_{z}^{2}} r \int \frac{\partial E_{z}}{\partial z} d z=\frac{q}{2 m v_{z}^{2}} r E_{z}=\frac{r E_{z}}{4 U_{e x t}}=\frac{r}{3 d}
$$

Beam Defocusing in Extraction Gap (cont.)

Finally, divergence of the extracted beam is as follows:

Condition for extracted

$$
\left.\omega=|\theta+\psi|=\left\lvert\, 0.625 \frac{r_{1}}{d} \frac{P_{b}}{P_{o}}-1\right.\right)+\frac{r_{1}}{3 d}\left|=\left|0.29 \frac{r_{1}}{d}\left(1-2.14 \frac{P_{b}}{P_{o}}\right)\right|\right.
$$ beam with zero divergence

Ratio of beam perveance to Chald-Langmuir perveance (matching parameter) is used to

$$
\eta=\frac{P_{b}}{P_{o}}=\frac{9}{\sqrt{2} S^{2}} \frac{I}{I_{c}}\left(\frac{m c^{2}}{q U_{e x t}}\right)^{3 / 2}
$$ characterize conditions for the best extracted beam quality

Aspect ratio:

$$
P_{b}=0.47 P_{o}
$$

$$
S=\frac{r_{1}}{d}
$$

Nonlinear Effects in Beam Optics (Lejeune, 1983)

Fig. 32. Schematic representation of the three main graphs which characterize the performance of a triode extraction optics: rms divergence ($\bar{\omega}$), rms emittance ($\bar{\epsilon}$), and transmission factor $(\bar{\eta})$ as functions of the matching factor (Π / P). These graphs may be summarized by the minimum values of $\bar{\omega}$ and $\bar{\epsilon}$ and the respective optimal values of Π / P, as well as by the sensitivity factor Q, the definition of which is illustrated in Fig. 21.

FIG. 24. Schematic illustration of the mechanism that produces an S-shaped emittance pattern for the beam emergent from an extraction optics if the radius of curvature of the plasma meniscus is not uniform. In the upper part of the figure are shown particular trajectories nor mally emitted from the rim of the plasma meniscus, where the radius of curvature varies strongly. In the lower diagrams the evolution of the beam emittance pattern is shown for several mean ingful cross sections: (a) in the emitter section if the plasma meniscus is planar and without transverse thermal spread, (b) after the action of the concave plasma meniscus, (c) in the en trance plane of the extraction lens, (d) in the exit plane of this lens, and (e) in the probing section after a drift.

Nonlinear Optics: Simulations (Whealton et. al, 1980)

244
CLAUDE LEJEUNE

Fig. 11. Equipotential contours and ion trajectories in the region of the classical sheath edge Σ of a triode extraction optics. They are obtained from the ORNL nonlinear theory and code C (see text) (courtesy of Whealton and Whitson, 1980, and Gordon and Breach). The emissive surface (S^{\prime}) equivalent to the plasma is represented by the linear line on the left of the figure. The leftmost potential contour is halfway between the plasma and the screen potential and is illustrative of the position of the classical sheath edge Σ. The second contour just to the right of this is at the screen potential, and the third is at four times the difference between the plasma and the screen.

- EST. 1943

EST. 1943

FIG. 4. Ion trajectories and potential distributions for a converged solution to Eqs. (9)-(12) showing the source-plasma sheath and nonlinear aberrrations near the plasma electrode; $5=0.75, \Gamma=4$, and $j=0.45 j_{0}$.

FIG. 5. Emittance diagram showing the slope and the position of exiting orbits for the case shown in Fig. 4.

Experimental Analysis of Extracted Beam Emittance (J.Aubert et al, 1983)

Beam-plasma interface and beam emittance

Figure 2. Principle of the computer-controlled experimental set-up.

Figure 3. Beam-plasma interface for different values of the dimensionless parameter Π / P (a) and corresponding emittance contours (b). The intensity of the argon beam is constant $(2 \mathrm{~mA})$; the variation of Π / P is obtained from the variation of the accel voltage. (c) Fractional normalised emittance enclosed within equidensity contours and emittance of the circumscribing ellipse as functions of Π / P. The equidensity contours are defined by the quoted percentage of the maximum density. 19

LANL Proton Beam Brightness as a Function of Matching Parameter

Normalized beam brightness as a function of matching parameter: (a) $I=10 \ldots 24 \mathrm{~mA}, U_{\text {ext }}=27 \mathrm{kV}$, (b) $U_{\text {ext }}=24$ $\ldots .30 \mathrm{kV}, I=18.5 \mathrm{~mA}$, (c) $I=14 \ldots 17.5 \mathrm{~mA}, U_{\text {ext }}=22 \mathrm{kV}$, (d) $U_{\text {ext }}=19.5 \ldots .27 \mathrm{kV}$ at $I=14.5 \mathrm{~mA}$.
Y.B. et al, Rev. Sci. Instr., 85, 103301 (2014)

LANL Proton Beam Emittance versus Beam Intensity

Optimal Conditions for Proton Beam Extraction

Extraction voltage versus $\mathrm{H}+$ beam current for maximizing beam brightness. Dots: experimental results.

Repeller Electrode: Three Electrode Extraction

- Extraction electric field is attractive for neutralizing particles resulting in beam decompensation
- Repelling electrode (trapping electrode) is inserted upstream of the extraction electrode. This electrode creates a potential barrier to keep the neutralizing particles within the beam by preventing them to be attracted toward the ion source.

Three electrode beam extraction system (B.Piosczyk, FZ Karlsruhe).

Four-Electrode Extraction System

Four-Electrode Extraction System

Layout of ion source and extraction system. Duoplasmatron source is on the left. Extraction electrodes are in the center and the $1^{\text {st }}$ LEBT solenoid is on the right. Pumps are above and below electrodes.

Divergence of the Beam in 4-Electrode Extractor (J.Kim et al, J.Appl. Physics, 49(2) (1978), p. 517)

FIG. 1. Schematic of a two-stage four-electrode accelerating column with definitions of some relevant parameters and nomenclature.

$$
\begin{aligned}
\theta= & 0.62 S\left[\frac{P}{P_{0}}-0.40\left(\frac{a_{2}}{a_{1}}\right) \frac{\Gamma^{2}}{f(1+\Gamma)}+0.53\left(\frac{a_{2}}{a_{1}}\right)-1\right] \\
& +0.31 S\left(\frac{P}{P_{0}}\right)\left[1+\left(\frac{t_{1}}{t_{2}}\right)+0.35\left(\frac{a_{1}}{a_{2}}\right)\right. \\
& \left.\times\left(f+\frac{z_{3}+t_{2}+t_{3}}{z_{1}}\right)(1+0.50 \Gamma)^{-1.5}\right] .
\end{aligned}
$$

where P is the perveance in the extraction gap, P $=I / V_{\text {ext }}^{3 / 2}$ and P_{0} is the Child-Langmiur ${ }^{7}$ space-chargelimited perveance for the one-dimensional diode of length z_{1} with no electrons, $P_{0}=\left(\frac{1}{9} \pi\right)\left(a_{1}^{2} / z_{1}^{2}\right) \epsilon_{0}(2 e / M)^{1 / 2}$, where ϵ_{0} is the permittivity of the vacuum.

Parameters of High-Intensity LEBT

Location	Particle, Energy	Type	Beam current, mA	Rms beam emittance $(\pi \mathrm{mm}$ $\mathrm{mrad})$	Chopper
SNS	$\mathrm{H}^{-}, 65 \mathrm{keV}$	2 Einzel lenses	35	$0.22 / 0.18$	40 kV Electrode chopper
J-Park	$\mathrm{H}^{-}, 50 \mathrm{keV}$	2 Solenoids	35	0.22	Induction cavity
BNL	$\mathrm{H}^{-}, 35 \mathrm{keV}$	2 Solenoids	100	0.4	
FNAL	$\mathrm{H}^{-}, 35 \mathrm{keV}$	2 Solenoids	45	0.3	Einzel lens chopper
LANSCE	$\mathrm{H}^{-}, 80 \mathrm{keV}$	2 solenoids	17	0.2	Electrostatic deflector
CERN Linac4	$\mathrm{H}^{-}, 45 \mathrm{keV}$	2 solenoids	40	0.25	Electrostatic deflector
JHF 1996	$\mathrm{H}^{-}, 50 \mathrm{keV}$	2 solenoids	16	0.1	
ISIS	$\mathrm{H}^{-}, 65 \mathrm{keV}$	3 solenoids	60	0.55	
ESS	$\mathrm{H}^{+}, 75 \mathrm{keV}$	2 solenoids	55	0.2	

Electrostatic LEBT

Pro:

- no transient time for space charge compensation
- no repelling electrode for the neutralizing particle trapping is needed- design of electrostatic LEBTs are simplified
- the beam lines are compact, which tends to minimize the beam losses by charge exchange

Con:

- no space charge compensation (neutralizing particles are attracted or re- pulsed by the electric field induced by the focusing elements).
- vulnerable to beam losses that can lead to high voltage breakdowns and beam trips
- Einzel lenses intrinsically induce optical aberrations that creates beam halo and emittance growth
- Electrostatic LEBTs are intensity limited. Beam divergence and size will increase rapidly with its intensity (especially for current of several tens of mA). Its seems difficult to operate the LEBT with a higher current than the design current without expecting beam losses or dramatic emittance growth.

NATIONAL LABORATORY

SNS LEBT and Parameters of the Beam

Los Alamos
NATIONAL LABORATORY
Figure 1. The 9-m long SNS front-end beamline.

SNS Injector Beam Parameters

FIG. 5. (Color online) Emittance and twiss parameters dependence on the beam intensity.

IG. 8. (Color online) Evolution of the emittance and twiss parameters over ie 1.0 ms beam pulse duration.

SNS Injector Beam Parameters

FIG. 6. (Color online) Phase-space plots of (a) 20 and (b) 55 mA beams.

FIG. 7. (Color online) Emittance dependences on (a) e-dump voltage with the extractor at ground and (b) extractor voltage with the e-dump set at -58.8 kV . Y.K. Batygin LEBT - MEBT- HEBT USPAS 2019

Los Alamos
 NATIONAL LABORATORY

Magnetostatic LEBT

Pro:

- beam is neutralized by the ionization on the residual gas
- smaller emittance growth due to nonlinear space charge forces than that in electrostatic LEBT
- beam emittance can be improved with a higher pressure in the beam line
- for positive ion beam, an additional source of neutralizing particles exists: secondary electrons are produced when a beam hits the beam pipes
- magnetic lenses have less spherical aberrations than electrostatic lenses with the same focal length

Con:

- In a magnetic LEBT the rise time of the pulsed beams is dominated by the space charge compensation transient time (several tens of $\mu \mathrm{s}$)
- a fast chopping system have to be inserted to reach a rise time in the order of the hundreds of ns.

NATIONAL LABORATORY

Layout of New LANSCE 35 keV H+ Injector

Los Alamos
 NATIONAL LABORATORY

LANSCE H- 80 keV Low Energy Beam Transport

NATIONAL LABORATORY

Interaction of the Beam with Residual Gas

Due to presenece of residual gas atoms or molecluse in transport channel, there is a constant interaction of beam particles with atoms or molecules of residual gas. Particle-residual gas interaction processes can be divided by elastic (single and multiple Coulomb scattering) and inelastic processes (ionization, electron capture, electron lost) where projectile particle loses it's energy.

Every process is characterized by cross section (similar to geometrical cross section of interacting particles) which depend on type of interacting particles and energy of incoming particles.

Cross Section

Cross section of the process is the ratio of rate of event per unit time $\frac{d N}{N d t}$ to flux density of interacting particles $n_{g} v$, where n_{g} is the density and v is velocity:

$$
\sigma=\frac{d N}{N d t} \frac{1}{n_{g} v}
$$

Particularly, losses of beam current I in the target of thickness $d z$ with density of n_{g} atoms per m^{3} are proportional to I, n_{g}, and $d z$:

$$
d I=-I \sigma n_{g} d z
$$

with the solution $\quad I=I_{o} \exp \left(-\sigma n_{g} z\right)=I_{o} \exp \left(-\frac{t}{\tau}\right)$
where beam lifetime is expressed as $\tau=\frac{1}{\sigma n_{g} v}$

On definition of cross section.

Ionization of Residual Gas

Important phenomenon of low-energy beam interaction with residual gas is ionization of residual gas resulting in creation of electron-ion pairs, which neutralize space charge of primary beam.

Time required for ionization of residual gas by the incoming beam with velocity of βc

$$
\tau_{N}=\frac{1}{n_{s} \sigma_{i} \beta c}
$$

n_{s} is the density of scattering gas centers, σ_{i} is the ionization cross section.

Number of molecules per unit volume at pressure p and temperature T determined from the ideal gas law:

$$
n_{g}=\frac{p}{k T}
$$

Boltzman constant

$$
k=1.38 \times 10^{-23} \mathrm{~J} \cdot \mathrm{~K}^{-1}
$$

Density of scattering centers for residual gas containing 2 atoms per molecule (H_{2})

$$
n_{s}=2 n_{g}
$$

Ionization Cross Section: Thomson Model

Direct ionization is a results of the interaction of an incident particle having energy ε with a valence electron of neutral atom or molecule. Ionization happens when the energy transferred to the valence electron exceeds the ionization potential l. The process definitely includes quantum effects, but can be estimated from simple classical Thomson model of the atom. Ionization cross section (Thomson formula):

$$
\sigma_{\mathrm{i}}=\frac{1}{\left(4 \pi \varepsilon_{0}\right)^{2}} \frac{\pi e^{4}}{\varepsilon}\left(\frac{1}{I}-\frac{1}{\varepsilon}\right)
$$

Thomson formula in general case should be multiplied by number of valence electrons Z_{v}. When $\varepsilon=2$ I, the Thomson cross section has a maximum:

$$
\sigma_{0}=Z_{\mathrm{v}} \pi e^{4} / I^{2}\left(4 \pi \varepsilon_{0}\right)^{2}
$$

Maximum cross section is close to geometrical atomic cross section: for molecular nitrogen $\sigma_{0}=10^{-16} \mathrm{~cm}^{2}$, for argon $\sigma_{0}=3 \times 10^{-16} \mathrm{~cm}^{2}$.

Ionization Cross Section: Thomson Model (cont.)

Figure 2.11 The reduced cross sections of ionization of atoms and ions by electron impact with valence s electrons versus the reduced electron energy. Experiment: 1- [95]; 2 - [96]; 3 - [97]; 4 - [98]; 5 - [99];

- [103]; 11 - [104]; 12 - [105]. Approximation $f(x)=10(x-1) /[\pi x(x+8)]$ is given by the solid curve and approximation $f(x)=10(x-1) /[\pi(x+0.5)(x+8)]$ is represented by the dashed curve.

Ionization Cross Sections of H^{+}on Different Gases

FIG. 13. Cross sections for ejection of electrons in $\mathrm{H}^{+}+\mathrm{H}_{2}$ collisions. The solid curve is the recommended fit. Experimen-

FIG. 16. Cross sections for ejection of electrons in $\mathrm{H}^{+}+\mathrm{O}_{2}$ collisions. The solid curve is the recommended fit. Experimen-

FIG. 14. Cross sections for ejection of electrons in $\mathrm{H}^{+}+\mathrm{N}_{2}$ collisions. The solid curve is the recommended fit. Experimen-

FIG. 11. Cross sections for ejection of electrons in $\mathrm{H}^{+}+\mathrm{Xe}$ collisions. The solid curve is the recommended fit. Experimental data: \triangle, Fedorenko et al. (1960); \otimes, Toburen (1974).

Space Charge Neutralization: 80 keV H- Beam in H_{2} Residual Gas with Pressure of $\mathrm{P}=3.5 \times 10^{-6}$ Torr

Density of H_{2} molecules under the $\quad n_{g}=\frac{p}{k T}=1.1 \cdot 10^{17} \frac{1}{\mathrm{~m}^{3}}$
pressure of $p=3.5 \cdot 10^{-6}$ Torr
$\left(4.6 \cdot 10^{-4}\right.$ Pascal)
Ionization Cross Section for $80 \mathrm{keV} \quad \sigma_{i}=2.1 \cdot 10^{-20} \mathrm{~m}^{2}$
Neutralization time $\tau_{N}=\frac{1}{2 n_{g} \sigma_{i} \beta c}=57 \mu \mathrm{~s}$
Ionization cross-section of H_{2} by H^{-} (red, Ref. [1]) and H^{+}(blue, Ref [2]) collisions.

Space charge neutralization factor is determined by a ratio of effective beam current to full beam current:

$$
\eta=1-\frac{I_{e f f}}{I_{o}}
$$

Space charge neutralization dependence on time

$$
\eta=1-\exp \left(-\frac{t}{\tau_{N}}\right)
$$

Measured Space Charge Neutralization of H^{-} Beam within Pulse Length (H_{2} Residual Gas with Pressure of $P=3.5 \times 10^{-6}$ Torr)

Space charge neutralization of $80 \mathrm{keV} \mathrm{H}^{-}$beam as a function of beam pulse length.

Space charge neutralization of $35 \mathrm{keV} \mathrm{H}^{-}$beam as a function of beam pulse length.

Effect of Space Charge Neutralization on Beam Parameters

Variation of 80 keV H - beam parameters during pulse length.

Effect of the Beam Space Charge Neutralization on Residual Gas

(Left)Measured vertical beam emittance at TBEM3 and (right) BEAMPATH simulations at different values of beam pulse length (simulations performed with current $I=15 \mathrm{~mA}$ for $t=50-100 \mathrm{~ms}$ and with current $I=0$ for $\tau \geq 150 \mu \mathrm{~s}$.)
$\tau=50 \mu \mathrm{~s}$

$\tau=150 \mu \mathrm{~s}$

$\tau=660 \mu \mathrm{~s}$

Low Pressure (Vacuum) Measuring Devices

Tubulated hot-cathode ionization gauge.

Electrons emitted from the filament move several times in back and forth movements around the grid before finally entering the grid. During these movements, some electrons collide with a gaseous molecule to form a pair of an ion and an electron. The number of these ions is proportional to the gaseous molecule density multiplied by the electron current emitted from the filament, and these ions pour into the collector to form an ion current. Since the gaseous molecule density is proportional to the pressure, the pressure is estimated by measuring the ion current.

Important parameter of IGs is sensitivity whch indicate that each gas component contributes to total pressure with certain weight:

$$
S=\frac{p_{\text {gauge }}}{p_{\text {true }}}
$$

IG is usually calibrated with sensitivity $\mathrm{S}=1$ for N_{2}.
Table Gas Sensitivity (T.Anderson, Accelerator Vacuum 101)

- LOSA: | Gas | H 2 | CH 4 | H 2 O | CO | N 2 | C 2 H | O 2 | Ar | C 3 H | CO 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Residual Gas Analyzer

NATIONAL LABORATORY

Pressure Units

Pressure units						
V.t.E	Pascal	Bar	Technical atmosphere	Standard atmosphere	Torr	Pounds per square inch
	(Pa)	(bar)	(at)	(atm)	(Torr)	(psi)
1 Pa	$\equiv 1 \mathrm{~N} / \mathrm{m}^{2}$	10^{-5}	1.0197×10^{-5}	9.8692×10^{-6}	7.5006×10^{-3}	1.450377×10^{-4}
1 bar	10^{5}	$\equiv 10^{6} \mathrm{dyn} / \mathrm{cm}^{2}$	1.0197	0.98692	750.06	14.50377
1 at	0.980665×10^{5}	0.980665	$\equiv 1 \mathrm{kp} / \mathrm{cm}^{2}$	0.9678411	735.5592	14.22334
1 atm	1.01325×10^{5}	1.01325	1.0332	$\equiv p_{0}$	$\equiv 760$	14.69595
$\begin{gathered} 1 \\ \text { Torr } \end{gathered}$	133.3224	1.333224×10^{-3}	1.359551×10^{-3}	1.315789×10^{-3}	$\approx 1 \mathrm{~mm}_{\mathrm{Hg}}$	1.933678×10^{-2}
1 psi	6.8948×10^{3}	6.8948×10^{-2}	7.03069×10^{-2}	6.8046×10^{-2}	51.71493	$\equiv 1 \mathrm{lb} \mathrm{F}^{\text {fin }}{ }^{2}$

Los Alamos
 NATIONAL LABORATORY

Residual Gas Spectrum

Neutralization Time ($\mu \mathrm{s}$) for $35 \mathrm{keV} \mathrm{H}^{+}$Beam in Different Gases

$$
\tau_{n}=\frac{1}{\sigma_{i} n_{\text {gas }} v}
$$

Gas	Ionization Cross Section $\left(10^{-20} \mathrm{~m}^{2}\right)$	10^{-5} Torr
H_{2}	1.67	36
He	0.494	243
Ne	1.09	110.3
$\mathrm{~N}_{2}$	5.0	11.9
O_{2}	4.41	13.6
Ar	5.11	23.5
Kr	7.24	16.6
Xe	11.9	10.1
CO	5.78	20.8

Improvement of 66 mA 95 keV H+ SILHI Source Beam Emittance by Heavy Gas Injection in LEBT (Rev. Sci. Instr., 71, 3, p. 1413, 2000)

FIG. 2. $\varepsilon \mathrm{rms}$ norm $=0.33 \pi \mathrm{~mm}$ mrad for a 66 mA 95 keV H beam ($P_{\text {real }}=4.3 \times 10^{-5} \mathrm{Torr}$).

FIG. 3. $\varepsilon \mathrm{rms}$ norm $=0.11 \pi \mathrm{~mm} \operatorname{mrad}\left(r, r^{\prime}\right)$ for a $66 \mathrm{~mA} 95 \mathrm{keV} \mathrm{H}^{+}$beam with Kr injection ($P_{\text {real }}=5.2 \times 10^{-5}$ Torr) .

Cross Section for Stripping H- in Different Gases (Atomic Data for Controlled Fusion Research, ORNL-5206)

Single stripping cross-section σ_{-10}
of $750 \mathrm{keV} \mathrm{H}^{-}$in different gases

Gas	Cross section, cm 2
H_{2}	$7 \cdot 10^{-17}$
He	$5 \cdot 10^{-17}$
$\mathrm{~N}_{2}$	$3 \cdot 10^{-16}$
O_{2}	$4 \cdot 10^{-16}$

750 keV H- Beam Performance Under Different Vacuum Conditions

$7 \cdot 10^{-7}$ Torr
$3 \cdot 10^{-5}$ Torr

TDEM1 emittance scan with (left) nominal vacuum of 7e-07 Torr and (right) with vacuum of 3e-05 Torr.
Beam transmission through LEBT as a function of vacuum conditions:
(1)4.6e-07 Torr,
(2)7.4e-06 Torr,
(3)1.3e-05 Torr,
(4)4.9e-05 Torr.

Los Alamos
 NATIONAL LABORATORY

Design of Magnetostatic LEBT

Initial Data:
Beam Current I_{o}
Space charge neutralization factor η
Effective beam current $\quad I=I_{o}(1-\eta)$
Unnormalized beam emittance \ni

Initial envelope parameters $\quad R_{s}, R_{s}^{\prime}$
Final envelope parameters $\quad R_{f}, R_{f}^{\prime}$
Distance between solenoids L

To Be Determined:
Solenoid Geometry and Fields
Distances d_{1}, d_{2}
Y.B. et al, NIM-A 753 (2014) 1-8

Minimization of Beam Size in LEBT

Consider beam with negligible current, but with finite value of beam emittance (emittance-dominated beam). Evolution of beam radius R along drift space z between solenoids as a function of initial radius R_{o} and slope of the envelope $R_{o}{ }_{0}$ is given by integration of envelope equation assuming $I=0$:

$$
\begin{equation*}
\frac{R}{R_{o}}=\sqrt{\left(1+\frac{R_{o}^{\prime}}{R_{o}} z\right)^{2}+\left(\frac{\ni}{R_{o}^{2}}\right)^{2} z^{2}} \tag{5.1}
\end{equation*}
$$

From the symmetry point of view it is clear, that matched beam has a minimum size, or waist, $R_{\text {min }}=R_{o}$ in the middle point of the drift space between lenses, and maximum size $R_{\max }$ inside focusing elements. At the waist point, $R_{o}^{\prime}=0$. Therefore from Eq. (5.1)

$$
\begin{equation*}
R_{\max }^{2}=R_{\min }^{2}+\left(\frac{\ni L}{2 R_{\min }}\right)^{2} \tag{5.2}
\end{equation*}
$$

Equation $\partial R_{\max } / \partial R_{\min }=0$ determines minimal value of $R_{\text {max }}$ as a function of beam emittance and distance between lenses

$$
\begin{equation*}
\frac{\partial R_{\max }}{\partial R_{\min }}=\frac{1}{\sqrt{R_{\min }^{2}+\left(\frac{\ni L}{2 R_{\min }}\right)^{2}}}\left[R_{\min }-\frac{1}{R_{\min }^{3}}\left(\frac{\ni L}{2}\right)^{2}\right]=0 \tag{5.3}
\end{equation*}
$$

Minimization of Beam Size in LEBT (Con.)

Solution of Eq. (5.3) is

$$
\begin{equation*}
R_{\min }(0)=\sqrt{\frac{\ni L}{2}} \quad R_{\max }(0)=\sqrt{\ni L} \tag{5.4}
\end{equation*}
$$

which coincides with periodic solution of matched beam with zero current at phase advance of $\mu_{o} \approx \pi / 2$. Eq. (5.4) determines the minimum value of $R_{\max }$ at given value of beam emittance and given distance between solenoids L.
Consider now space-charge dominated regime, where beam emittance is negligible. Analysis of beam dynamics in drift space determines the condition for transporting beam with maximum current through drift space restricted by aperture $R_{\max }$ and distance L :

$$
\begin{equation*}
R_{\max }=\frac{L}{1.082} \sqrt{\frac{I}{I_{c}(\beta \gamma)^{3}}}, \quad R_{\min }=\frac{R_{\max }}{2.35} \tag{5.5}
\end{equation*}
$$

In more general case, when both beam emittance and beam current are not negligible, precise value of $R_{\text {max }}$ is determined by variation of the value of $R_{\text {min }}$ at the middle point between solenoids, $z=z_{0}$, and searching for the smallest value of the beam size at the center of solenoids $R_{\max }$ via an exact solution of the envelope equation in drift space between solenoids.

Determination of Lens Parameters and Distances d_{1}, d_{2}

After determination of the minimal value of $R_{\max }$, the distances d_{1}, d_{2} are defined by integration of envelope equation in drift space

$$
\frac{d^{2} R}{d z^{2}}-\frac{\ni^{2}}{R^{3}}-\frac{P^{2}}{R}=0
$$

to establish points where the beam radius evolves from initial value of R_{o} to $R_{\max }$:

$$
\begin{equation*}
z=\frac{R_{o}^{2}}{2 \ni} \int_{1}^{\left(\frac{R_{\text {max }}}{R_{o}}\right)^{2}} \frac{d s}{\sqrt{\left[1+\left(\frac{R_{o} R_{o}^{\prime}}{\ni}\right)^{2}\right] s+\left(\frac{P R_{o}}{\ni}\right)^{2} s \ln s-1}} . \tag{5.7}
\end{equation*}
$$

In Eq. (5.7), the values of R_{o}, R_{o}^{\prime} correspond to either R_{s}, R_{s}^{\prime} or R_{f}, R_{f}^{\prime}. Envelope equation has the first integral:

$$
\left(\frac{d R}{d z}\right)^{2}=\left(\frac{d R}{d z}\right)_{o}^{2}+\left(\frac{\ni}{R_{o}}\right)^{2}\left(1-\frac{R_{o}^{2}}{R^{2}}\right)+P^{2} \ln \left(\frac{R}{R_{o}}\right)^{2}
$$

which determines divergence of the beam as a function of initial beam parameters, beam current, and beam emittance. Slopes of beam envelopes at solenoids $R_{1}^{\prime}, R_{2}^{\prime}$ can be found from the first integral of envelope equation in drift space:

$$
\begin{equation*}
R^{\prime}=\sqrt{\left(R_{o}^{\prime}\right)^{2}+\left(\frac{\ni}{R_{o}}\right)^{2}\left[1-\left(\frac{R_{o}}{R}\right)^{2}\right]+\frac{2 I}{I_{c}(\beta \gamma)^{3}} \ln \left(\frac{R}{R_{o}}\right)^{2}} . \tag{5.8}
\end{equation*}
$$

Determination of Lens Parameters and Distances d_{1}, d_{2}

The values of $R_{1 d}^{\prime}, R_{2 d}^{\prime}$ are determined by the first integral assuming $R_{o}=R_{\min }, R_{o}^{\prime}=0$. Then, focal lengths of solenoids f_{1}, f_{2}, are determined by the total change in the slope of the beam at each solenoid:

$$
\begin{equation*}
f_{1}=\frac{R_{\max }}{\left|R_{1 d}^{\prime}\right|+\left|R_{1}^{\prime}\right|}, \quad f_{2}=\frac{R_{\max }}{\left|R_{2 d}^{\prime}\right|+\left|R_{2}^{\prime}\right|} . \tag{5.9}
\end{equation*}
$$

After that, the magnetic field within each solenoid is determined from thin lens approximation as

$$
\begin{equation*}
B_{o}=\frac{2 m c \beta \gamma}{q \sqrt{f D}} . \tag{5.10}
\end{equation*}
$$

Minimization of Emittance Growth in Lens due to Spherical Aberrations

The emittance growth due to spherical aberrations is estimated as:

$$
\frac{\ni}{\ni_{o}}=\sqrt{1+K\left(\frac{C_{\alpha} R^{4}}{f \ni_{o}}\right)^{2}}
$$

where the coefficient $K=0.05 \ldots 0.5$ depends on the beam distribution. Let us restrict the emittance growth due to spherical aberrations to a value of 10%. Assuming that the beam has a waterbag distribution ($K=0.114$), the spherical aberration coefficient C_{α} is restricted to be

$$
\frac{C_{\alpha} R^{4}}{f \ni_{o}}<1.35 \quad \text { or } \quad C_{\alpha}<1.35 \frac{f \ni_{o}}{R^{4}}
$$

The field distribution within a solenoid is well approximated as

$$
B(z)=\frac{B_{o}}{1+\left(\frac{z}{d}\right)^{4}}
$$

where B_{0} is the maximum field in solenoid, and d is the filed profile characteristic length. The spherical aberration coefficient C_{α} can be expressed in terms of a characteristic
parameter d as

$$
C_{\alpha}=\frac{5}{12 d^{2}}
$$

Then, the characteristic length of field distribution, d, has to be larger than
$d>\sqrt{\frac{5}{12 C_{\alpha}}}$
Y.K. Batygin LEBT - MEBT- HEBT USPAS 2019

Example of Solenoid Design

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Physical length	25 cm,
Effective length D	17.63 cm,
Aperture radius	5.4 cm,
Coil current density	$3.1 \mathrm{Amps} / \mathrm{mm}^{2}$
Maximum current density required for cooling	$10 \mathrm{Amps} / \mathrm{mm}^{2}$

Solenoid and axial field distribution.
Y.K. Batygin LEBT - MEBT- HEBT USPAS 2019

File prefix: Sol2.PoU
Plot type: Contour lines Quantity: raThet

\qquad

Separation of Beam Components in LEBT

Dynamics of 2- component

 beam in LEBT with collimatorMeasured H^{+}transverse phase space at 750 keV for the LANSCE duoplasmatron source. H_{2}^{+}beam is also observed. Beam current is 15.9 mA . Ratio of $\varepsilon_{\text {total }} / \varepsilon_{r m s}=5.7$. Straight lines are used to restrict phase space area where beam emittance is determined.

Los Alamos
 NATIONAL LABORATORY

Bending Magnet for Removing Electrons from H- Beam

The separation angle between two beam components after a dipole bending magnet with bending angle, a, is given by:

$$
\Delta \alpha=\alpha\left(1-\frac{q_{1}}{q_{2}} \frac{p_{2}}{p_{1}}\right)
$$

Wien Filter

In a Wien filter, a crossing $E \times B$ field is used to separate the beams. The primary beam is not deflected because of the balance between the electric and magnetic Lorentz force:

$$
\begin{equation*}
\int \vec{F}_{d e f l} d z=q \int(\vec{E}+\vec{v} \times \vec{B}) d z=0 \tag{32}
\end{equation*}
$$

The fields in the Wien filter are selected to cancel out for the primary, desired beam but act as a filter for other beam components, where the conditions of Eq. (32) are not met. The separation angle between 2 components after a Wien filter with field $E_{\text {Wien }}=\beta_{1} c B_{\text {Wien }}$ is

$$
\begin{equation*}
\Delta \alpha=\frac{E_{\text {Wien }} L_{\text {Wien }} q_{2}}{m_{2} \gamma_{2}\left(\beta_{2} c\right)^{2}}\left(1-\frac{\beta_{1}}{\beta_{2}}\right) . \tag{33}
\end{equation*}
$$

Wien Filter

Los Alamos
 NATIONAL LABORATORY

Mismatch Effect in Wien Filter

Figure 4: Calculated deflecting forces for on-axis particles (Curve a,b: matched case, c : without shimming).

The beam can pass the chopper without deflection, if the Wien condition is satisfied along the system:

$$
\begin{equation*}
\int \vec{F}_{d e f l} d z=\int q \cdot\left(\vec{E}+\vec{v}_{p} \times \vec{B}\right) d z=0 \tag{1}
\end{equation*}
$$

But a local mismatch between both fields can still lead to a transverse offset. This effect will be minimized by installing shims and shorting tubes at the dipole while the electric deflector will utilize curved plates and shims. The calculated deflecting forces for on-axis particles travelling in longitudinal direction are presented in Fig. 4. Electric and magnetic fields were computed using CST EMS [6].

Figure 7: Drawing of chopper dipole with tilted and curved poles.
Y.K. Batygin LEBT - MEBT- HEBT USPAS 2019

Beam Chopping

Pulse structure of LANSCE beam

Time structure of different currents in LINAC (P.Forck, 2011)

NATIONAL LABORATORY
LANSCE slow wave transmission line chopper

Injection of Long Pulse into Proton Storage Ring

PSR Layout

NATIONAL LABORATORY
Y.K. Batygin LEBT - MEBT- HEBT USPAS 2019

Chopper pulse

BEAMPATH Simulation of LANSCE Beam Chopping

1

2

3

4

Y.K. Batygin LEBT - MEBT- HEBT USPAS 2019

Effect of SNS Chopper on Beam Emittance

Transverse Emittance and Chopping

LEBT Chopper	RMS Horizontal, norm. mm*mrad	RMS Vertical, norm mm*mrad
On	0.40	0.22
Off	0.29	0.19

MEBT Horizontal Emittance (scales are the same)

LEBT Chopper On
A.Shishlo (PAC2011).

Different Chopping Options for LEBT (C.Plostinar, ESSIAD/0022)

Table 1. LEBT and MEBT chopper parameters at CERN, J-PARC, RAL and SNS.

	CERN		J-PARC		SNS		RAL
Chopper Location	LEBT	MEBT	LEBT	MEBT	LEBT	MEBT	MEBT Only
Deflector Type	Electrostatic	Electrostatic	Induction Cavity	RF Cavity	Electrostatic	Electrostatic	Electrostatic
Deflector Type Details	Deflecting plate	Meander Stripline	Beam Transformer	TE11 Mode	Einzel Lens	Meander Stripline	Stripline with Coaxial/ Stripline Delay
Beam Energy	45 keV	3 MeV	$\sim 50 \mathrm{keV}$	3 MeV	65 keV	2.5 MeV	3 MeV
Beam Pulse Length	0.4 ms		0.5 ms		1 ms		2 ms
Repetition Rate	50 Hz		25 Hz		60 Hz		50 Hz
Bunch Frequency	-	$\begin{aligned} & 352.2 \\ & \mathrm{MHz} \end{aligned}$	-	324 MHz	-	$\begin{gathered} 402.5 \\ \mathrm{MHz} \end{gathered}$	324 MHz
Rise Time	$2 \mu \mathrm{~s}$	2 ns	<50 ns	10 ns	<50 ns	10 ns	2 ns
Bunch by bunch chopping	-	Yes	-	No	-	No	Yes
Deflector Length	10 cm	2*40 cm	10 cm	17.2 cm	2.7 cm	2* 35 cm	2* 45 cm
Deflecting Voltage/Field	< 20 kV	+/-600 V	+/-2.5 kV	$1.6 \mathrm{MV} / \mathrm{m}$	+/-3 kV	2.5 kV	+/-1.5 kV

As mentioned above, because of the rise and fall times of the chopper voltage in the LEBT (tens of ns), the beam will contain partially chopped bunches. These bunches have a trajectory which is to some extent rather uncertain and are likely to be lost along the linac. To mitigate this effect, CERN, JPARC and SNS combine the "slow" chopper in the LEBT with a fast MEBT chopper.

A Two Stage Fast Beam Chopper For Next Generation High Power Proton Drivers (Michael A. Clarke-Gayther, STFC RAL, Didcot UK)

TIME \longrightarrow
The upstream field is generated by a pair of AC coupled 'fast' transition time pulse generators (FPG) that output high voltage, dual polarity pulses into a 'slow-wave' transmission line electrode structure [2], where partial chopping of beam bunches is avoided by ensuring that the deflecting E-field propagates at the beam velocity. The

A Two Stage Fast Beam Chopper For Next Generation High Power Proton Drivers (Michael A. Clarke-Gayther, STFC RAL, Didcot UK)

Figure 5: Fast chopping / Bunch 1-3 and 63-66 chopped.

Figure 6: Slow chopping / Bunch 4-62 chopped.

Figure 7: No chopping / Bunch 67-158 un-chopped.

CERN LEBT Pre-Chopper

Los Alamos
 NATIONAL LABORATORY

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

FNAL Einzel Lens Chopper

Einzel Lens Chopper

-Simulation using SIMION

- Optimized lens
- 2 " long
- 1.75 " diameter
- -37 kV to stop 35 keV

J-PARC RF Deflector

frequency	324 MHz
Q	~10
Cavity rise time	10ns
Power amplifier	Solid state, 36kW
Amplifier rise time	15ns
Max field	$1.6 \mathrm{MV} / \mathrm{m}$
Gap length	20 mm

Beam Matching in LEBT

TBEM4
TDEM1 Prebuncher

LANSCE 750 keV H- Low Energy Beam Transport

750 keV LANL Injector of $\mathrm{H}+$ / H Beams

Matching of the H^{-}Beam with 750 keV Low Energy Beam Transport

Matching of the H^{+}Beam with 750 keV Low Energy Beam Transport

Emittance Scans for Beam Matching

Los Alamos
 NATIONAL LABORATORY

Beam Matching Using Envelope Code

Mismatch factor between
expected and actual beam
$F=\sqrt{\frac{1}{2}\left(R+\sqrt{R^{2}-4}\right)}-1$
$R=\beta_{\text {exp }} \gamma_{s}+\beta_{s} \gamma_{\text {exp }}-2 \alpha_{\text {exp }} \alpha_{s}$

Average mismatch

$$
\bar{F}=\frac{1}{2}\left(F_{x}+F_{y}\right)
$$

Use of Emittance Measurements

- Measure the beam Emittance and Twiss Parameters at one point.
- Using a simulation code we can then predict the trajectory of the beam envelope through a region to a point where the beam cannot be measured.

Predicted

Beam Matching at the Entrance of LANL DTL

Position (cm)

Phase advance per cell

$$
\mu_{o}=\frac{L}{2 D} \sqrt{1-\frac{4}{3} \frac{D}{L}} \frac{q G_{m} D^{2}}{m \gamma \beta c}=0.9749
$$

Max value of beta-function $\quad \beta_{\max }=\frac{L\left(1+\sin \frac{\mu_{o}}{2}\right)}{\sin \mu_{o}}=21.3 \mathrm{~cm}$
Min value of beta-function $\quad \beta_{\min }=\frac{L\left(1-\sin \frac{\mu_{o}}{2}\right)}{\sin \mu_{o}}=7.716 \mathrm{~cm}$
Matched beam ellipses at the entrance of DTL

Medium-Energy Beam Transports

1. Match and steer the beam from the RFQ into the Drift Tube Linac
2. Perform beam diagnostics with comprehensive set of beam instrumentation devices
3. Perform collimation of the transverse particle distribution
4. Perform additional beam chopping LEBT chopper

ESS medium energy beam transport layout, containing 10 quadrupoles, 3 bunchers, and 3 collimators (ESS Design Report).

MEBT Collimator Scrappers

Medium-Energy Beam Transports

MEBT Chopper

SNS has two stage chopping system:
-LEBT chopper before RFQ: slow - rise time about 50 ns
\bullet MEBT chopper (2.5 MeV): rise time is $\mathbf{1 5 ~ n s}$, and it cleans the gap once again

MEBT chopper fronts cleaning

The original faster MEBT chopper (analog of Los Alamos PSR system) was damaged two times and was replaced.

We have a lot of partially chopped beam:
$6-4 \%$ bunches have less than 50% of max charge.

No big effect on linac losses, but it improves extraction losses in the ring

High Energy Beam Transports

- Los Alamos

NATIONAL LABORATORY

LANSCE High Energy Beam Lines

High Energy Beam Transports

ESS beam size envelopes along the high energy beam transport

Emittance Measurement in a Dispersion Free Region

Y.K. Batygin LEBT - MEBT- HEBT USPAS 2019

Beam Based Alignment

Displacements of beam centroid, quadrupole, and BPM.

Beam Based Alignment

Beam centroid displacement after transport through k elements [C.E.Adolpsen et al, SLAC-PUB-4902 (1989).]

$$
\left(\begin{array}{l}
x_{k} \\
x_{k}^{\prime} \\
y_{k} \\
y_{k}^{\prime} \\
z_{k} \\
\delta
\end{array}\right)=R_{o, k}\left(\begin{array}{l}
x_{o} \\
x_{o}^{\prime} \\
y_{o} \\
y_{o}^{\prime} \\
z_{o} \\
\delta
\end{array}\right)+\sum_{j=1}^{k-1}\left(R_{j+1, k}-R_{j, k}\right)\left(\begin{array}{l}
d x_{j} \\
0 \\
d y_{j} \\
0 \\
0 \\
0
\end{array}\right)
$$

where $R_{j, k}$ is the transfer matrix from element j to element k, and $d x_{j}, d y_{j}$ are the offsets of element j. BPM and WS measurement of beam displacement are:

$$
\Delta x_{k}=x_{k}-b x_{k}, \quad \Delta y_{k}=y_{k}-b y_{k}
$$

where $b x_{k}$, $b y_{k}$ are the displacement of BPM or WS. Taking different quadrupole settings with BMP and WS measurements equal to number of elements, it is possible to determine offset of each element through solution of system of linear algebraic equations and then apply appropriate kick from steering magnet.

Beam Position Monitors and Steering Magnets

BPM: Collection of 4 electrodes (top, bottom, left, and right) Electrodes pick up signal as the beam passes Comparing signal of opposing electrodes yields the beam centroid position

Steering magnet: Collection of 2 dipole magnets for beam alignment

Injection of H^{-}Beam into Proton Storage Ring (PSR)

Beams at injection foil

Foil degradation

USEU 「UII

Foil edge for stripping distorts with time and becomes thicker leading to fewer excited states

Emittance Blow-Up Due To Thin Windows

Emittance growth due to scattering (P.J. Bryant):

$$
\varepsilon_{2}=\varepsilon_{1}+\frac{\pi}{2} \beta\left\langle\theta_{s}^{2}\right\rangle
$$

Root mean square projected angle θ_{s} due to multiple Coulomb

$$
\sqrt{\left\langle\theta_{\mathrm{s}}^{2}\right\rangle}=\frac{0.0141}{\beta_{\mathrm{c}} p[\mathrm{MeV} / \mathrm{c}]} Z_{\mathrm{inc}} \sqrt{\frac{L}{L_{\mathrm{rad}}}}\left(1+\frac{1}{9} \log _{10} \frac{L}{L_{\mathrm{rad}}}\right) \text { [radian] }
$$ scattering in a window

where $Z_{\text {inc }}$ is particle charge in units of electron charge, p is the particle momentum in $\mathrm{MeV} / \mathrm{c}, \beta_{c}=v / c, L$ is thickness of scatter and $L_{r a d}$ is radiation length of material ofthe scatter.

Uniform Irradiation of Large Targets

Beam intensity redistribution in the channel with higher order multipoles. Upper part illustrates particle distributions at the beginning (left) and at the end (right) of the transport channel, lower part shows the phase-space projections of the beam.

Initial and Final Beam Distributions in Nonlinear Expander

[^1]
Los Alamos
 NATIONAL LABORATORY

Consider the one-dimensional problem for a beam of particles with charge q and mass m propagating along the z-axis with a longitudinal velocity $v_{z}=\beta_{z} c$. Suppose that a particle at $z=0$ has the velocity modulation:
$v_{x}=v_{x 0}+a_{2} x_{0}+a_{3} x_{0}^{2}+a_{4} x_{0}^{3}+\cdots+a_{n} x_{0}^{n-1}$,
where $v_{x 0}$ and x_{0} are the initial transverse velocity and position of the particle, a_{2} is a linear modulation coefficient, and a_{3}, a_{4}, \ldots are nonlinear modulation coefficients. After a drift of the beam the x-coordinate of the particle at any z is
$x=x_{0}+\frac{z}{v_{z}}\left(v_{x 0}+a_{2} x_{0}+a_{3} x_{0}^{2}+a_{4} x_{0}^{3}+\cdots\right)$.
The number of particles $\mathrm{d} N$ inside the element (x, x $+\mathrm{d} x)$ is invariable, hence the particle density $\rho(x)=$ $\mathrm{d} N / \mathrm{d} x$ at any z is connected with the initial density $\rho\left(x_{0}\right)$ by
$\rho(x)=\rho\left(x_{0}\right) \frac{\mathrm{d} x_{0}}{\mathrm{~d} x}$
or

$$
\begin{align*}
\rho(x)= & \rho\left(x_{0}\right)\left(1+\alpha_{2}+2 \alpha_{3} x_{0}+3 \alpha_{4} x_{0}^{2}+4 \alpha_{5} x_{0}^{3}\right. \\
& \left.+\cdots(n-1) \alpha_{n} x_{0}^{n-2}\right)^{-1}, \tag{4}
\end{align*}
$$

where $\alpha_{n}=a_{n} z / v_{z}$. From eq. (4) it follows that redistribution of the particle density can be obtained using the nonlinear velocity modulation coefficients α_{3}, α_{4}, $\alpha_{5} \cdots$ while the linear modulation coefficient α_{2} only scales the density.

Experimental Observation of Beam Profile Uniforming

Observed beam profile at LANL beam expander experiment (1997).
Y.K. Batygin LEBT - MEBT- HEBT USPAS 2019

Beam Uniforming in Free Space

$\eta=0$

$\eta=3.8$

Redistribution of Gaussian beam in drift space.

Los Alamos
 NATIONAL LABORATORY

Beam Uniforming in Free Space

Redistribution of the Gaussian beam under self space charge forces:

$$
\begin{gathered}
\rho(r)=\frac{\rho_{o} \exp \left(-2 \xi_{o}^{2}\right)}{a_{o}+a_{1} F+a_{2} F^{2}+a_{3} F^{3}+a_{4} F^{4}+a_{5} F^{5}+a_{6} F^{6}}, \\
\xi_{o}=\frac{r_{o}}{R_{o}}, \quad F=\sqrt{\frac{1-\exp \left(-2 \xi_{o}^{2}\right)}{\xi_{o}^{2}}} \quad \eta=\frac{4 I}{I_{c}(\beta \gamma)^{3}}\left(\frac{z}{R_{o}}\right)^{2}
\end{gathered}
$$

$$
\begin{equation*}
a_{o}=1+\eta \exp \left(-2 \xi_{o}^{2}\right) \tag{3.45}
\end{equation*}
$$

$$
\begin{equation*}
a_{1}=-0.102 \eta^{3 / 2} \exp \left(-2 \xi_{o}^{2}\right), \tag{3.46}
\end{equation*}
$$

$$
\begin{equation*}
a_{2}=\frac{1}{4} \eta^{2} \exp \left(-2 \xi_{o}^{2}\right) \tag{3.47}
\end{equation*}
$$

$$
\begin{equation*}
a_{3}=0.017 \eta^{3 / 2}-0.0425 \eta^{5 / 2} \exp \left(-2 \xi_{o}^{2}\right) \tag{3.48}
\end{equation*}
$$

$$
\begin{equation*}
a_{4}=1.734 \cdot 10^{-3} \eta^{3} \exp \left(-2 \xi_{o}^{2}\right)-\frac{1}{16} \eta^{2} \tag{3.49}
\end{equation*}
$$

$$
\begin{equation*}
a_{5}=0.01275 \eta^{5 / 2} \tag{3.50}
\end{equation*}
$$

$$
\begin{equation*}
a_{6}=-5.78 \cdot 10^{-4} \eta^{3} . \tag{3.51}
\end{equation*}
$$

The beam with initial Gaussian distribution becomes more uniform when the parameter

Circular Irradiation of Beam Targets

Circular irradiation of LANSCE Isotope Production Target by 100 MeV proton beam with simple one-circle raster

Circular Beam Sweeping

For uniform irradiation of a large target let us change the radius of the beam trajectory slowly in such a way that the increase of the area $\mathrm{d} S$ irradiated by the beam per one revolution is a constant:
$\mathrm{d} S=2 \pi r(t) \mathrm{d} r(t)=$ const.
Eq. (7) is a condition of uniform irradiation of a target in the radial direction while the equation $\omega=$ const is a condition of a uniform irradiation in the azimuth direction. Having combined Eq. (7) with the equation of rotation $\mathrm{d} \varphi=\omega \mathrm{dt}$ the radius of the beam trajectory at the target is given by
$r=\sqrt{\frac{\mathrm{d} S \omega t}{\mathrm{~d} \varphi \pi}}$.
The value $\mathrm{d} S / \mathrm{d} \varphi$ can be defined from the condition that after N revolutions (i.e. during the period of irradiation $T=2 \pi N / \omega)$ the beam radius reaches its maximum value $r=R$ which is equal to the radius of the target:

$$
\begin{equation*}
\frac{\mathrm{d} S}{\mathrm{~d} \varphi}=\frac{R^{2}}{2 N} \tag{9}
\end{equation*}
$$

Finally the equation for increasing the beam radius with time for a uniform irradiation of a target is
$r=R \sqrt{\frac{t}{T}}=R \sqrt{\frac{\omega t}{2 \pi N}}$.
Eq. (10) describes the untwisted spiral trajectory of the beam which starts at the center of a target (see Fig. 1). The Cartesian coordinates of the particles are changing according to
$x=R \sqrt{\frac{t}{T}} \sin \omega t ; \quad y=R \sqrt{\frac{t}{T}} \cos \omega t$.
Spiral

Concentric Rings

$$
r_{i}=R_{\text {target }} \sqrt{\frac{i}{N}}
$$

Y.B. et al, NIM-A 363(1995) 128-130

Circular Uniform Irradiation of Beam Targets

Concentric circle raster pattern

Experimental verification of uniform target irradiation by 100 MeV proton beam at LANSCE Isotope Production Facility (J.Kolski et al, TUPWI028, IPAC15).

[^0]: *From M.Reiser, Theory and Design of Charged Particle Beams, Wiley, 1994

[^1]: - Fig. 1. Projections of computer simulation using code EEAMPATH [7] into real space ($x-y$) for an initial
 (upper) and Einal (lower) beam distribution in a nonlinear optics channel.

