
3. Basics of Beam Focusing 

 Proton and Ion Linear 
Accelerators 

Yuri	Batygin			

Los	Alamos	National	Laboratory	
	

U.S.	Particle	Accelerator	School	
	

Albuquerque,	New	Mexico,	June	17-28,	2019	
	

LA-UR-16-29518 

1	



Electric	field	lines	between	the	ends	drift	tubes.	If	
accelerating,	the	field	is	focusing	at	input	and	defocusing	at	
output.	While	field	level	is	increasing	while	particles	cross	
the	gap	to	provide	longitudinal	beam	bunching,	the	
defocusing	effect	is	larger.	

RF Defocusing in Particle Accelerator 

↓ ↑• •

t1 t2

E(t1) < E(t2 )

2	
Y.K. Batygin  Basics of Beam Focusing USPAS 2019 



RF Defocusing in Particle Accelerator (cont.) 

dpr
dt

= q(Er − βcBθ )

Er (r) = − 1
r o

r

∫
∂Ez

∂z
r 'dr ' ≈ − 1

2
∂Ez

∂z
r

Bθ =
1
c2r

∂Ez

∂to

r

∫ r 'dr ' ≈ 1
2c2

∂Ez

∂t
r

Ez = E cos(ωt − kzz)

Equation for radial momentum 
 
 
 
Radial electric field 
 
 
Azimuthal magnetic field 
 
 
Because 
 
 
Equation of radial motion in RF field 

∂Ez

∂t
= −vs

∂Ez

∂z

d 2r
dz2

= − q
2mγ 3v2

∂Ez

∂z
r
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RF Defocusing in Particle Accelerator (cont.) 

Longitudinal and radial electric field in 
RF gap. 

Assume that particle radius in RF gap  
r = const. Change of slope of particle 
trajectory at the entrance to RF gap:   

Change of slope of particle trajectory at the 
exit of RF gap:  

Δ dr
dz

≈ qr
2mγ 3 (

Eout

vout
2 − Ein

vin
2 )

Δ(dr
dz
)in ≈ − q

2mγ 3v2
r

−∞

−g/2

∫
∂Ez

∂z
dz ≈ − qEin

2mγ 3vin
2 r

Δ(dr
dz
)out ≈

qEout

2mγ 3vout
2 r

Total change of slope of particle trajectory at 
RF gap:  
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RF Defocusing in Particle Accelerator (cont.) 

ΔEz = Eout − Ein

Δv = vout − vin

Ein = Eg cos(ϕ s −
πg
βλ
)

Eout = Eg cos(ϕ s +
πg
βλ
)

  
Δ dr

dz
≈

qEinr
2mγ 3vin

2 (
ΔE
Ein

− 2 Δv
vin

)

ΔE
Ein

≈ 2 tgϕ s sin(
πg
βλ
)

Δv
vin

> ΔE
2Ein

sinϕ s

cos2ϕ s

< qEλ

mc2βγ 3 sin(πg
βλ
)

For proton beam in accelerator with  E = 5 MV/m, λ = 1 m,  
β = 0.04, g/βλ = 0.25, synchronous phase should be too small:  
φs < 10o. RF defocusing is dominant effect, which requires additional 
focusing. 

Difference in field 
 

Difference in velocity 
 
Total change of slope of particle trajectory: 
defocusing by RF field, but “static” focusing 
due to change in particle velocity    
 
Field at the entrance of RF gap 
 
Field at the exit of RF gap 
 
Relative change of RF field 
 
 
In order to focus particles in RF gap                      or 
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Earnshaw's	theorem	states	that	a	collection	
of	point	charges	cannot	be	maintained	in	a	
stable	stationary	equilibrium	configuration	
solely	by	the	electrostatic	interaction	of	the	
charges	(Samuel	Earnshaw,	1842).		

Earnshaw's Theorem 

Effective	potential	created	
by	static	field		

∂2U
∂x2

+ ∂2U
∂y2

+ ∂2U
∂z2

= 0

Laplace Equation: 

All second derivatives of potential cannot be 
positive (at minimum) at the same time. 
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Grid or Foil  Focusing of Charged Particles 

RF	Defocusing	effect	is	suppressed	by	closing	
the	the	drift-tube	hole		at	the	exit	of	the	gap	
with	a	foil	thin	enough	to	be	crossed	by	
particles.					First	test:	1947,	Alvarez	linac	

Foil	or	grid	focusing—the	defocusing	
effect	is	suppressed	
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Focusing Elements 

Focusing magnets used in accelerator facilities: dipole, 
quadrupole, sextupole. 
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Magnetostatic and Electrostatic Fields 

Equations describing magnetostatic field are obtained from Maxwell 
equations assuming ∂ / ∂t = 0 : 
 

 rot
!
H = 0   div

!
B = 0   

!
B = µ

!
H   

 

Because rot (grad Umagn ) = 0 , the magnetic field can be expressed through 

magnetic scalar potential, Umagn  as 
 

          
 
!
B = −grad Umagn   

 

On the other hand, because 
 
div(rot

!
Amagn ) = 0 , magnetic field can be 

equally determined using vector potential, 
 
!
Amagn : 

 

 
!
B = rot

!
Amagn  

 

Magnetic scalar potential is convenient to determine ideal pole contour, 
while vector potential is convenient to determine magnetic field shape. 
Electrostatic field is expressed through electrostatic potential: 
 

 
!
E = −grad Uel        
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Laplace Equation for Electrostatic and Magnetic Fields 
Because div(gradU ) = ∇2U , both magnetic and electrostatic multipole fields are 
derived from Laplace equation with appropriate boundary conditions: 
 

                                                    ∇2U = 0  
 

where U stands for Umagn  or Uel . On the other hand, because of equity 
 

                       
 
rot (rot

!
Amagn ) = grad(div

!
Amagn )−∇

2 !Amagn  
 
and taking additional condition 

 
div
!
Amagn = 0 , magnetic field can be expressed through 

components of vector – potential: 
 

 
∇2 !Amagn = 0  

Transverse components of magnetic multipoles can be expressed through z - 
component of vector potential Az . Because  (∇

2 !A)z = ∇2Az , formally, both magnetic 
and electrostatic multipole fields are derived from Laplace equation 
 

1
r
∂Π
∂r

+
∂2Π
∂r2

+
1
r2

∂2Π
∂θ 2

+
∂2Π
∂z2

= 0  

where Π(r,θ,z)  stands for either z - component of vector-potential, Azmagn , or scalar 

potentials Umagn , Uel . 
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Π(r,θ, z) =
m=0

∞

∑
n=0

∞

∑ (−1)n m!
4n n!(m + n)!

rm+2n (Θm
(2n) cosmθ +Ψm

(2n) sinmθ )

= Θo −
1
4
r2Θo

'' + 1
64

r4Θo
(4 ) − .....

+(Θ1 −
1
8
r2Θ1

" )r cosθ + (Ψ1 −
1
8
r2Ψ1

" )r sinθ

+(Θ2 −
1
12
r2Θ2

" )r2 cos2θ + (Ψ2 −
1
12
r2Ψ2

" )r2 sin2θ + ...

General solution of 3-dimensional Laplace equation in cylindrical coordinates  

m = 0 for axial-symmetric filed 
m = 1 for dipole 
m = 2 for a quadrupole 
m = 3 for sextupole, 
m = 4 for octupole,  
m = 5 for decapole  
m = 6 for dodecapole,  

Solution of Laplace Equation  
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Number of poles to excite the multipole lens of the order m is  Npoles = 2m

In most of cases, it is possible to substitute actual z-dependence of the field by 
“step” function. For such representation, solution of Laplace equation is 

Π(r,θ ) =
m=0

∞

∑ rm (Θm cosmθ +Ψm sinmθ )

Solutions for magnetic field can be represented as a combination of multipoles 
with field: 
 

Az = −Gm

m
rm cosmθ Umagn = −Gm

m
rm sinmθ

where Gm is the strength of the multipole of order m 

and B(ro) is the absolute value of magnetic field at certain radius ro. 
 

Multipole Fields 

Brm = −
∂Umagn

∂r
= 1
r
∂Az
∂θ

= Gmr
m−1 sinmθ

Bθm = − 1
r
∂Umagn

∂θ
= −

∂Az
∂r

= Gmr
m−1 cosmθ

Field components: 

Gm = B(ro )
ro
m−1 =

Brm
2 (ro )+ Bθm

2 (ro )
ro
m−1
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G
2
r2 cos2θ = G

2
(x2 − y2 )

G3

3
r3 cos3θ = G3

3
(x3 − 3xy2 )

G4

4
r4 cos4θ = G4

4
(x4 -6x2y2 + y4 )

G5

5
r5 cos5θ = G5

5
(x5 −10x3y2 + 5xy4 )

G6

6
r6 cos6θ = G6

6
(x6 − y6 −15x4y2 +15x2y4 )

Magnetic vector potential -Az and electrostatic potential Uel  of “normal” multipole  

 
m = 2  Quadrupole 
 
 
m = 3  Sextupole  
 
 
m = 4  Octupole  
 
 
m = 5  Decapole  
 
 
m = 6  Dodecapole   

Potential of Multipoles 
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Quadrupole Focusing 
Lorentz	Force	

 
!v

Arrows	indicate	direction	of	Lorentz	force	acting	on	
positively	charge	particle	moving	from	the	screen.	
Field	is	proportional	to	distance	from	axis,	G-	gradient	
of	quadrupole	field.	
	
	
	
	

By = Gx Bx = Gy Ex = Gx Ey = −Gy
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Quadrupole Magnets 

Electromagnetic	quadrupole	magnet	in	
Maier-Leibnitz	Laboratory,	Munich	

Electrostatic	quadrupole	of	
High	Voltage	Engineering	
Europa	B.V.	
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LANL Drift Tube Linac Quadrupole Magnets 

DTL quadrupole details: (a) yoke and pole pieces; (b) current coil; 
(c) coil assembled with iron; (d) quadrupole fully assembled.  
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Quadrupole Focusing (cont.) 

Focusing properties of combination of quadrupole lenses 	
 

17	
Y.K. Batygin  Basics of Beam Focusing USPAS 2019 



Various Types of Focusing Periods  

FODO 

FOD 

FOF-DOD 

Triplets 
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Quadrupole Pole Shapes and Higher Order Harmonics 
Pole contours are determined by lines of equal values of 
scalar potentials  
 
Umagn (r,θ ) = const ,       Uel (r,θ ) = const .   
 

Shape of “normal” quadrupole poles are described by 
infinite hyperbolas: 
 
x2 − y2 = ±a2    for electrostatic quadrupole 

2xy = ±a2   for magnetostatic quadruple 
 

Actual pole shapes are different from that determined 
above. Solution of Laplace equation for multipole is anti-
symmetric after angle π /m  because of separation of 
neighbor poles with alternative polarity: 

		
Π(r ,θ )= −Π(r ,θ + π

m
) 
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Quadrupole Pole Shapes and Higher Order Harmonics (cont.) 

It determines the number of higher harmonics k with respect to 
fundamental harmonic m: 
 

   
cosk(θ + π

m
) = −coskθ ,              sink(θ + π

m
) = −sinkθ

 

which  are satisfied when          cos(k π
m
) = −1,     sin(k π

m
) = 0  

 
Both equations are valid for k = m(1+ 2l) , l = 0,  1, 2, 3,.... . For 
example, the field of a quadrupole lens contains the following 
multipole harmonics: 
 

                

Az (r,θ ) = − (G
2
r2 cos2θ + G6

6
r6 cos6θ + G10

10
r10 cos10θ + ...)
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m = 1  Dipole           k = 1, 3, 5, 7…. 
  
m = 2  Quadrupole    k = 2, 6, 10, 14,.. 
  
m = 3  Sextupole      k  = 3, 9, 15, 21, 27,…. 
  
m = 4 Octupole         k = 4, 12, 20, 28, 36,….. 
  
m = 5  Dodecapole    k =5, 15, 25, 35, 45,….. 
  
m = 6  Duodecapole   k = 6, 18, 30, 42, 56, ….  

Multipole harmonics of magnetic field presented in focusing lenses 
 

Multipole Harmonics of Magnetic Field  
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Design of Quadrupole Lens 

P = 6.1 ρl
So f

G2a4
P  - dissipated power, W
ρ  -  coil resistance, Ohm cm
l   - average length of one turn, cm
So - area of coils
f   - ratio of coil area to window area
G  - field gradient, Gauss/cm
a - radius of aperture, cm

NI = 0.44Ga2Number of Ampere-Turns per pole
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Focal Length of Quadrupole Lens 

Equation of motion: 

Effect of a thin lens (focal length f) on a 
particle trajectory initially parallel to the 
axis (from Humphries, 1999).	
 

d 2x
dz2

= qGx
mcβγ

Integration of equation of motion along lens  assuming constant x  
dx
dz

= (dx
dz
)o − x

−∞

∞

∫
qG
mcβγ

dz

In the analogy with light optics, we can introduce the focal length of the lens: 1
f
= qGD
mγβc
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Effective Length of the Lens 

24	
Y.K. Batygin  Basics of Beam Focusing USPAS 2019 



Single Particle Dynamics in a Quadrupole Focusing Channel 

Equation of motion in x- and y-  
directions (Mathieu-Hill Equations): 

d 2x
dz2

+ k(z)x = 0

d 2y
dz2

− k(z)y = 0

k(z) = qG(z)
mcβγ

where focusing function 

Equivalent gradient of  
electrostatic lens   Gel = βcG
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d 2x
dτ 2

+π 2 (a − 2qsin2πτ )x = 0

General Form of Mathieu Equation 

Mathieu	equation	

Unstable solutions are around a = n2, or when average frequency of oscillator is 
close to half-integer value of that of driving force. 

Shaded are stable regions of  
solutions of Mathie-Hill equation.  
 

First&region&of&parametric&instability&is&!!b1 <a<a1 ,&
&

where:&&&&&&&&&&b1 =1− q −
1
8
q2 + 1

64
q3 − ... &

& & &&&&&a1 =1+ q −
1
8
q2 − 1

64
q3 − ... &

The&second&region&of&parametric&instability&is&!!b2 <a<a2 ,&
&

where:& &&&&b2 = 4 −
1
12
q2 + 5

13824
q4 − ... &

& & &&&a2 = 4 +
5
12
q2 − 763

13824
q4 + ... &

ao

a1

a2

b1

b2

q

a
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Differential equations with periodic coefficients are called Mathieu - Hill equations. 
We will be looking for a stable solution in the form: 
 

 x(z) = эxσ x (z) cos(Φ x (z)+Φo )  
 
where ∍x is a constant, σx(z) is the z - dependent amplitude, and Φx(z) is the z - 
dependent phase of the solution. Substitution of the expected solution gives: 
 

[σ x
'' - σ x (Φ

'
x
' )2 +kσ x ]cos(Φx +Φo ) -(σ xΦx

'' + 2σ x
'Φ'

x
' )sin(Φx +Φo )= 0  

 
To solve this equation, we can put independently to zero both 'cosine' and 'sine' 
parts: 

σx
'' - σx Φx

' 2 + kσx = 0  
 

σxΦx
'' + 2σx

'Φx
' = 0 

Amplitude and Phase of Solution 
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Multiplying the second equation by σx, it can be written as  
 

                                          (Φx
'σx
2)' = 0 

 
which gives  
 
                                         Φx

'σx2 = const.  
 
 
Selecting arbitrary value of constant as 1, finally get for second equation: 

 
Φx
' = 1

σx
2
 

 
With that condition, 'cosine' part of equation is written as 

 

σ x
'' − 1

σ x
3 + k(z)σ x = 0

   
  

Amplitude and Phase of Solution (cont.) 
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Courant-Snyder Invariant 
 
Let us determine the  physical meaning of the constant ∍x. Differentiation of 
x(z) = ∍x  σx(z) cosΦx(z)  gives: 

 
x ' = ∍x  (σx

' cosΦx - σx Φx
' sinΦx) = ∍x  (σx

' cosΦx - sinΦx
σx

) .               (2.46) 

 
On the other hand, from the original equation it follows, that: 
 

cosΦx = x
∍x  σx

 .                                (2.47) 

 
Substitution gives:                                         x ' = σx

' x
σx

 - ∍x  sinΦx
σx

 .                    (2.48) 

 
Rearranging of the equation (2.48) results in:          ∍x  sin2Φx  = (x'  σx  - σx

'  x)
2
.       (2.49) 

 
Taking into account Eq. (2.47), let us express the left side of the equation (2.49), 
∍x sin2Φx = ∍ x (1- cos2Φx), as 

∍x sin2Φx = ∍ x - x2

σx
2  

.                                      (2.50) 
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Finally, the following equation is valid:                  (x 'σx - σx
'  x)2 + x 2

σx
2
 = ∍x .           (2.51) 

 
Equation describes ellipe with constant area, which is called Courant-Snyder invariant. 

Area of  Ellipse = π

x ' = dx
dz

 
x = dx

dt

Courant-Snyder	Invariant	and	Beam	Emittance	

If particle belongs to certain ellipse at the initial moment of time, it will remain on ellipse 
boundary always. Because It is true for all particles belonging to partial ellipses within 
largest ellipse comprising al the beam, all particles within largest ellipse remain there. 
The largest ellipse occupied by particles is associated with beam emittance. 
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Beam Emittance 

Results of beam emitance measurements in GSI UNILAC accelerator (W. Bayer et 
al., Proceedings of PAC07, Albuquerque, New Mexico, p. 1413 (2007) ). 

 
∍= 1

π -∞

∞

∫
-∞

∞

∫ dxdx '
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Liouville’s Theorem 

Illustration of conservation of phase space volume 	

Phase	space	volume	occupied	by	
particles	is	constant.	

df
dt

 = ∂f
∂t

 + ∂f
∂x

 dx
dt

 + ∂f

∂P
 dP
dt

 = 0
 

Liouville’s	theorem:	if	the	motion	of	a	system	of	mechanical	particles	obeys	Hamilton’s	
equations,	then	phase	space	density	remains	constant	along	phase	space	trajectories	and	
phase	space	volume	occupied	by	the	particles	is	invariant	(Liouville's	Equation):	
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Hamiltonian Dynamics 

x, y, z   position in real space 
Px, Py, Pz   components of canonical momentum 
Ax, Ay, Az       components of the vector – potential 
U(x,y,z)         scalar potential of the electromagnetic field 

Hamiltonian of charged particle with charge q and mass m  
 

H = c m2c 2 + (Px - qAx)
2 + (Py - qAy)

2 + (Pz - qAz)
2  + q U 

33	

In quadrupoles                , while in solenoid       
!p =
!
P Px = px  - qB 

y
2

Py = py  + qB x
2
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Liouville’s Theorem (Proof) 
 

34	

Consider phase space element  dQdP.  
Number of particles dN inside element is  dN = f (Q,P,t)dQdP

Change of particle density inside element is equal to 
divergence of the flux density (Continuity Equation) 
 

 

∂ f
∂t

+ div( f !v) = 0

f dQ
dt On derivation of  

Liouville theorem. 
f dP
dt

Flux density in Q-direction 

Flux density in P-direction 

 

∂ f
∂t

= − ∂
∂Q
( f !Q)− ∂

∂P
( f !P) = − ∂ f

∂Q
!Q − ∂ f

∂P
!P − f [∂

!Q
∂Q

+ ∂ !P
∂P
]Continuity Equation: 

 
!Q = ∂H

∂P
But because of Hamiltonian equations                                      the term in square  
 
brackets is zero and total derivative of distribution function 
                           is equal zero (Liouville theorem).  

 
!P = − ∂H

∂Q

 

∂ f
∂t

+ !Q ∂ f
∂Q

+ !P ∂ f
∂P

= df
dt

= 0



Liouvillian and non-Liouvillian Processes 

35	

Liouville theorem is valid for Hamiltonian processes only (where equations of 
motion are determined by Hamiltonian equations). Liouville’s theorem does 
not allow to insert particles in phase space already occupied by the beam 
(there are no forces for that). 
 
Liouvillian Processes: Dynamics in any electromagnetic fields without 
dissipation or scattering. 
 
Non-Liouvillian processes: Scattering (foil, residual gas, Coulomb particle-
particle), synchrotron radiation. 
Example: Two oppositely charged beams can be made to travel along the same 
trajectory. In the straight section, the beams are passed through a thin foil, which 
strips the electrons from the H- ions, leaving a single proton beam of higher 
density in phase space. 
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Increase of Effective Phase Space Volume 

36	

There are processes which do not violate Liouville’s theorem, but result in 
increase of effective phase space volume of the beam. Example: filamentation 
in phase space.  
 

Two distributions with the same actual areas, but with different 
effective areas. Left distribution occupies 8 cells, while right 
distribution occupies 25 cells. 
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Effect of Coupling on Beam Emittance 

37	

Liouville’s theorem is valid in 6-dimensional phase space. Beam 
emittance is a projection of 6D phase space volume on 2D phase 
plane. Like any projection, it can be larger or smaller while total 6D 
phase space volume is conserved. In accelerator technique, 
emittance exchangers are commonly used:    

Insertion of skew quadrupoles δ1, δ2, δ3 into regular FODO 
quadruplle structure to exchange emittances between phase 
planes (from P.J.Bryant, CERN 1994-001). 
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Normalized	and	Un-Normalized	Emitttance	
Un-normalized	(energy-dependent)	
emittance	

Normalized	(energy-independent)	
emittance,			

ε = βzγ ∍

 
∍∼ 1

βzγ
ε
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Twiss Parameters and Beam Emittance 

Emittance units:  π ⋅m ⋅ radian (π ⋅cm ⋅miliradian)

Example :  Emittance= π ∍ = π ⋅M ⋅N = 0.2π cmmrad
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Twiss Parameters and Area of Ellipse 

Twiss	parameters	
determine	family	of	
ellipses,	while	actual	
ellipse	is	determined	
also	by	the	value	of	
ellipse	area.		

α1 = α2 = α 3

β1 = β2 = β3

∍1< ∍2  <∍3

Twiss	parameters:	

Area	of	ellipses:	

2

1

3
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Ellipse Properties 

γ = 1+α
2

β
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Twiss Parameters and Amplitude Function 

α = −σ σ ' γ = 1
σ 2 +σ

'2

Comparison gives the following relationship between functions σ(z), σ’(z), and Twiss 
parameters:  

Compare two ellipses (x 'σ - xσ ' )2 + ( x
σ
)2 =∍γ x2 + 2αxx '+ βx '2 = ∍

β = σ 2

From equation                  the equation for amplitude function σ(z) 
 
 
 
 
 can be rewritten as    

σ = β

1
2
βx
"βx −

(βx
' )2

4
+ k(z)βx

2 = 1

Twiss parameters are connected as  

σ x
'' − 1

σ x
3 + k(z)σ x = 0

α(z) = − β '(z)
2
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Envelope of the beam, Rx(z), corresponds to the maximum value of cos(Φ x (z)+Φo )  = 1 in 

equation  x(z) = эxσ x (z) cos(Φ x (z)+Φo )within the beam: 

Rx(z) = max {x(z)} = ∍x  σx(z).                         (2.52) 
 

Slope of the beam envelope is, therefore, given by 
 

Rx
' (z) = ∍x  σx

' (z).                                   (2.53) 
 
Taking into account previously introduced notations 

σ = β  
 

σ ' = - α
β
 

 

beam envelope and slope of beam envelope are given by 

Beam Envelope 

Rx = ∍x βx

dRx

dz
= −α x

∍x
βx
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Substitution of expression for σx(z) 

σx(z) = Rx (z)
∍x

                                     (2.54) 

 
into Eq. (2.43) gives us the equation for beam envelope: 

Rx
''  - ∍x

2

Rx
3
 + k(z) Rx = 0.                            (2.55) 

Beam envelope equations without space charge forces are: 
 

{  

Rx
''  - ∍x

2

Rx
3
 + kx(z) Rx = 0

Ry
''  - ∍y

2

Ry
3
 + ky(z) Ry = 0                                (2.56) 

Beam Envelopes (cont.) 

44	
Y.K. Batygin  Basics of Beam Focusing USPAS 2019 



Beam Spot Size and Beam Slope  
Beam	spot	 and	beam	envelope	 slope	 can	be	determined	 in	
other	way	as	well.	Let	us	rewrite	the	ellipse	equation	as		

F(x, x ') = γ x2 + 2α xx '+ βx '2 − ∍=	0	

We	 need	 to	 find	 a	 solution	 to	 the	 equations	
dx
dx'

 = 0.	
According	to	the	differentiation	rule	of	an	implicit	function,		

dx
dx '

=

dF
dx '
dF
dx

= − 2α x + 2βx '
2γ x + 2α x '

= 0 	

which	 has	 a	 solution	 x' = - x α / β.	 Substitution	 of	 the	
obtained	 value	 of	 x'	 into	 the	 ellipse	 equation	 gives	
xmax = ±  β ∍ .	 The	 value	 of	 R = xmax	 is	 associated	 with	 the	
envelope	size	of	the	beam	

R = β ∍ 	

Differentiation	of	this	equation	taking	into	account	that	α (z) = − β '(z)
2 ,	

gives			 	 	 	 	
dR
dz

= −α ∍
β 	
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Floquet Theorem 
A	second-order	linear	differential	equation	with	periodic	coefficients	has	a	
solution	of	the	form		eλz σ(z)	where		λ	is	a	constant	and	σ(z)	a	periodic	function.		

Mathieu	-	Hill	equation		
	 			

		
	
Solution:	

Equations	for	amplitude	
and	phase:	

 x(z) = эxσ x (z) cos(Φx (z)+Φo )

Periodic	function	σ (z+S) = σ(z)		is	called	module	of	Floquet	function	
Corresponding	function		Φ(z)			is	called	phase	of	Floquet	function	

If function k(z) is a periodic function      k (z+S) = k(z)
there is an unique periodic solution      σ (z+S) = σ(z).
This solution can be found by adjusting σ(z), σ’(z) in the way that solution after one 
period σ (z+S), σ’(z+S) coinsides with σ(z), σ’(z).    	        

σ
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Floquet Ellipse 

→

Focusing	period	

Input	 Output	

Floquet ellipse is a unique beam ellipse which transforms into itself after one 
focusing period. 

(x 'σ x - xσ x
' )2 + ( x

σ x

)2 =∍xBeam ellipse: If σ (z+S) = σ(z), σ’ (z+S) = σ’(z), 
beam ellipse is transformed into 
itself after one period. 
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Beta-Function 
FODO	focusing	structure	

Beta-function	of	periodic	structure	

Single-particle	trajectories	in	periodic	
structure	

Matched	beam	in	periodic	structure	

α (z) = − β '(z)
2

β(z)

Twiss	parameters:	

Periodic solution of Mathieu – Hill equation  
is called beta-function of the focusing channel: 
β = σ2 

1
2
β "β − (β

' )2

4
+ k(z)β 2 = 1
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Matched Beam in Periodic Focusing Structure 

Transport of a matched beam in a quadrupole channel. Matched beam ellipses repeat 
into themselves after each focusing.period   	
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Acceptance of Periodic Focusing Structure 

A = a2

βmax

Focusing Quadrupole Defocusing Quadrupole 

R(z) = ∍ β(z)

a = Aβmax

Beam radius 
 
Maximal beam radius R = a 

Acceptance	of	periodic	focusing	chanell	A	is	
the	largest	Floquet	ellipse	limited	by	the	
aperture	of	the	structure	a.	
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Mismatched Beam in a Periodic Structure 
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Matched Beam Focusing 

Matched	beam	in	RF	linear	accelerator	(Courtesy	of	Sergey	Kurennoy).	
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ω r =
dΦ x

dt
Instantaneous frequency of transverse oscillations: 
 
 
Combining                   with expression for beam emittance 
 
                     one can express beam emittance with 
instantaneous frequency of transverse oscillations: 
 
 
Emittance is expressed through Twiss parameter  
 
Instantaneous frequency of transverse oscillation and Twiss 
parameter β are connected as: 
 
Instantaneous frequency of transverse oscillations has a 
minimum value in focusing lens and maximum value in 
defocusing one. 
 
 

∍x=
Rx
2ω r

βc

Φx
' = 1

σx
2

Instantaneous Frequency of Transverse 
Oscillations 

∍x= Rx
2 /σ x

2

∍x= Rx
2 / βx

ω r =
vz
βx

53	
Y.K. Batygin  Basics of Beam Focusing USPAS 2019 



Matrix Method for Particle Trajectories  

x1
x1
' = M1

xo
x0
'

x2
x2
' = M 2

x1
x1
' = M 2M1

xo
xo
'

M = Mn ⋅Mn−1......M 2 ⋅M1

x1 = m11xo +m12xo
'

x1
' = m21xo +m22xo

'

Matrix of sequence of elements is a product of that of each element  

Let us divide focusing structure by elements, where 
equation of motion are individual linear differential 
equations with constant coefficients (drift space, 
quadruple lens). Solution at each element can be 
written as linear combination of initial conditions: 
 
 
or in matrix form 

Matrix of two subsequent elements: 

xo
xo
'

⎛
⎝⎜

⎞
⎠⎟
= 1
(m11m22 −m12m21)

m22 −m12

−m21 m11

⎛

⎝
⎜

⎞

⎠
⎟
x1
x1
'

⎛
⎝⎜

⎞
⎠⎟

Inverse matrix: 
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Matrix	Method	for	Particle	Trajectories	(cont.)		
x

x'
⎛
⎝⎜

⎞
⎠⎟
=

m11 m12

m21 m22

⎛

⎝
⎜

⎞

⎠
⎟
xo
xo
'

⎛
⎝⎜

⎞
⎠⎟

Particle trajectory at arbitrary point can be 
expressed as a function of initial conditions  
 

m11 =
∂x
∂xo

m12 =
∂x
∂xo

' m21 =
∂x '
∂xo

m22 =
∂x '
∂xo

'

Matrix elements can be written as  

M =

∂x
∂xo

∂x
∂xo

'

∂x '
∂xo

∂x '
∂xo

'

Determinant of matrix coincides with Jacobian:  
 
 
 Because of Liouville’s theorem, phase space element is transformed as  
dx dx’ = dxo dx’o  , and, therefore, determinant of matrix M is equal to unity: 
  
                                                det M = 1

dxdx ' = det

∂x
∂xo

∂x
∂xo

'

∂x '
∂xo

∂x '
∂xo

'

dxodxo
'

x = m11xo +m12xo
'

x ' = m21xo +m22xo
'

x = ∂x
∂xo

xo +
∂x
∂xo

' xo
'

x ' = ∂x '
∂xo

xo +
∂x '
∂xo

' xo
'
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Transformation	of	Beam	Ellipse	Through	Arbitrary	Channel	

y
′y

⎛

⎝
⎜

⎞

⎠
⎟
S

= C S
′C ′S

⎛
⎝⎜

⎞
⎠⎟

y
′y

⎛

⎝
⎜

⎞

⎠
⎟
0

ENTRY EXIT

C S
C ' S '

⎡

⎣
⎢

⎤

⎦
⎥

Transfer line

Position and velocity 
of test ion satisfies
both ellipses

y’ y’

y y

α1, β1

α*1, β*1

α2, β2

α*2, β*2

By#inserting#the#inverse#trajectory#transformation#
y0
′y0

⎛

⎝
⎜

⎞

⎠
⎟ =

′S −S
− ′C C

⎛
⎝⎜

⎞
⎠⎟

y
y '

⎛

⎝
⎜

⎞

⎠
⎟ #

into#the#ellipse#equation,#we#have#at#point#s0 #

 

y0y0
2 + 2α 0y0 ′y0 + β0 ′y0

2

= y0 ′S y − S ′y( )2 + 2α 0 ′S y − S ′y( ) − ′C y +C ′y( ) + β0 − ′C y +C ′y( )2

= ′C 2β0 − 2 ′C ′S α 0 + ′S 2y0( )
γ

! "#### $####
y2 + 2 −C ′C β0 + ′S C + S ′C( )α 0 − S ′S y0( )

α
! "###### $######

y ′y + C 2β0 − 2CSα 0 + S
2y0( )

β
! "#### $####

′y 2

= γ y2 + 2α y ′y + β ′y 2

β
α
γ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

C 2 −2CS S2

−C ′C C ′S + S ′C −S ′S
′C 2 −2 ′C ′S ′S 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

β0
α 0

γ 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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Transformation	of	particle	trajectory	
through	arbitrary	channel		

Initial	conditions	(z = 0):	

Particle	transformation	through	the	channel	

x
x '

⎛
⎝⎜

⎞
⎠⎟
=

βx (z)
βo

(cosΦx +αo sinΦx ) βoβx (z) sinΦx

- cosΦx (α x (z)-αo )+sinΦx (1+αoα x (z))
βoβx (z)

βo

βx (z)
(cosΦx -αo sinΦx )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

xo
xo
'

⎛
⎝⎜

⎞
⎠⎟

Or,	in	matrix	form	with																	,																															:	

 

x(z) = эxσ x (z) cos(Φx (z)+Φo )

x ' (z) = эx [σ x
' (z)cos(Φx (z)+Φo )−

sin(Φx (z)+Φo )
σ x

]

 

xo = эxσ o  cosΦo

xo
'' = эx (σ o

' cosΦo −
sinΦo

σ o

)

x = xo(
σ x

σ o

cosΦx −σ xσ o
' sinΦx )+ xo

''σ xσ o sinΦx

x ' = xo[cosΦx (
σ x
'

σ o

− σ o
'

σ x

)− sinΦx (σ x
'σ o

' + 1
σ xσ o

)]+ xo
'' (σ o

σ x

cosΦx +σ x
'σ o sinΦx )

Transformation	of	Particle	Trajectory	Through	Arbitrary	Channel	

σ  = β σ ' = −α / β
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βx (S)= βo α x (S) =αoFor	periodic	solution	in	periodic	channel:	

Transformation	of	Particle	Trajectory	Through	Periodic	Channel	
	

M =
cosµo +α x sinµo βx sinµo

−1+α x
2

βx
2 sinµo cosµo - α x sinµo

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Transformation	matrix	trough	
periodic	channel	(Twiss	matrix):	

µo = Φx (S)
Phase	advance	of	transverse	
oscillations	per	period	of	structure		

cosµo =
m11 + m22

2

The	value	of		μο		can	be	found	from	
transformation	matrix	as	a	half	sum	of	
diagonal	elements		

m11 +m22 ≤ 2Stability	criteria:	

βx =
m12

sinµo
α x =

m11 −m22

2sinµo

Twiss	parameters	of	matched	
beam:	

−1≤ cosµo ≤1
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FODO Quadrupole Focusing Channel  

Period of FODO channel S=2D+2l
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In quadrupole lens, the Mathieu – Hill equation is transformed into 
equation with constant coefficients k: 
 

d 2x
dz2

+ kx = 0                    
d 2y
dz2

− ky = 0
           

k = qG
mγβc

 

 
Solution of equations of motion in quadrupole lense:   

x = xo cos(z k )+ xo
'

k
sin(z k )

              

x ' = −xo k sin(z k )+ xo
' cos(z k )  

y = yo cosh(z k )+ yo
'

k
sinh(z k )         

  y
' = yo k sinh(z k )+ yo

' cosh(z k )  

Single-Particle	Matrix	in	a	Quadrupole	Focusing	Channel		

cos(iϕ ) = cosh(ϕ )
sin(iϕ ) = i sinh(ϕ )
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Single-Particle	Matrix	in	a	Quadrupole	Focusing	Channel		

Transformation	 of	 particle	 coordinate	 and	 slope	 of	 particle	
trajectory	through	the	quadrupole	of	the	length	of	D,	can	be	written	
as	a	matrix:	
	

x

x'
⎛
⎝⎜

⎞
⎠⎟
= MF

xo
xo
'

⎛
⎝⎜

⎞
⎠⎟ 														

		

MF =
cos(D k ) 1

k
sin(D k )

- k sin(D k ) cos(D k )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
	

y

y'
⎛
⎝⎜

⎞
⎠⎟
= MD

yo
yo
'

⎛
⎝⎜

⎞
⎠⎟
														

		

MD =
cosh(D k ) 1

k
sinh(D k )

k sinh(D k ) cosh(D k )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
	

	

Between	lenses	particle	perform	drift	at	the	distance	l:															MO = 1 l
0 1

⎛
⎝⎜

⎞
⎠⎟ 	
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Matrix of FODO Cell 

where quadrupole lens rigidity 

m11 = cosh χ(cosχ − l k sin χ ) + sinh χ(l k cosχ − kl
2

2
sin χ )

m12 =cosh χ(
sin χ
k

+ 2l cos2 χ
2
)+ sinh χ( 1

k
+ l sin χ + l2 k cos2 χ

2
)

m21 = cosh χ(2lk sin
2 χ
2
− k sin χ )+ sinh χ( k + k 3/2l2 sin2 χ

2
− lk sin χ )

m22 = cosh χ(cosχ − l k sin χ ) + sinh χ(l k cosχ − kl
2

2
sin χ )

Mx = MF
2

MOMDMOMF
2

My = MD
2

MOMFMOM D
2

Matrix of one period 
of such structure  

Elements of resulting x-  matrix of one period 

χ = D k = D qG
mγβc
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cosµo = coshχ(cosχ − l k sinχ) + sinhχ(l k cosχ − kl
2

2
sinχ)

Phase Advance Per Period in FODO Channel 

Using  cosµo =
m11 + m22

2

Using approximations 

Phase advance per period of FODO focusing channel, 
as a function of quadrupole lens rigidity: (solid) exact 
values; (dotted) smooth approximation. Numbers 
indicate ratio of lens length to period, D/S. Smooth 
approximation is valid for                . 

cosµo ≈1−
l2χ 2k
2

− 2
3
l kχ 3 − χ 4

6

sinχ = χ − χ 3

6
+ χ 5

120

cosχ = 1−  χ
2

2
+ χ 4

24

sinhχ = χ + χ 3

6
+ χ 5

120

coshχ = 1+ χ 2

2
+ χ 4

24

µo =
S
2D

1− 4
3
D
S
qGD2

mγβc

Smooth approximation to FODO 
phase advance: 

cosµo ≈1−
µo
2

2

µo ≤ 60
o
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Beta Functions and Acceptance of FODO Channel 

A = a
2

S
sinµo

(1 + sin µo

2
)

Acceptance	of	FODO	channel	
A	=	a2	/βmax	

β = m12

sinµo

cosµo ≈1−
l2χ 2k
2

= 1− 2sin2 µo

2
sin µo

2
≈ ± lχ k

2
= ± l D k

2

m12 ≈ 2l +
(2 + kl2 )χ

k
+ 3lχ

2

2
≈ S (1 ± sin µo

2
)

Beta-function 

Expansions 

Element m12 

βmax =
S (1 + sin µo

2
)

sinµo
βmin =

S  (1 − sin µo

2
)

sinµo

Maximum and minimum 
values of beta-function  
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Characteristics of FODO focusing channel as 
functions of phase advance per period of structure. 
 

A = a
2

S
sinµo

(1 + sin µo

2
)

µo = 76.3
o

Beta Functions and Acceptance of FODO Channel (cont.) 
 

Optimal	value	of	phase	advance,	
where	acceptance	reaches	it’s	
maximum		
 

Acceptance of FODO Channel 

∂A
∂µo

= 0

Amax = 0.6
a2

SMaximal FODO  acceptance 
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Maximal and Minimal Beam Size in FODO Channel 

R(z) = ∍ β(z)

Rmax =
∍ S
sinµo

(1 + sin µo

2
) = Ro 1 + sin µo

2

Rmin =
∍ S
sinµo

(1 − sin µo

2
) = Ro 1 − sin µo

2

Ro =
∍ S
sinµo

Taking into account expression for beam size                          and using expressions 
for βmax and βmin in FODO channel 

Maximal beam size 
 
 
Minimal beam size 
 
 
Average beam size 

Rmax ≈ Ro(1+υmax ) Rmin ≈ Ro(1−υmax )Let us express maximal and minimal 
beam size as 

υmax =
1 + sin µo

2
− 1 − sin µo

2
2

Relative variation of beam size 

υmax ≈
1
2
sin µo

2
≈ µo

4For  µo ≤ 60
o
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Higher Stability Regions  

Variation of gradient along FD 
focusing structure.  

  

M F
2

M D M F
2

=
cosχ  coshχ 1

k
(coshχ sinχ+sinhχ )

k (-coshχ sinχ+sinhχ ) cosχ  coshχ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Consider FD focusing structure. Matrix of of one FD period: 

		cosµo = cosχ 	coshχPhase advance per cell  

χ = D qGo

mγβc
where quadrupole lens 
rigidity 

Condition for stability 
of transverse 
oscillations  

−1≤ cosχ  cosh χ ≤1
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Higher Stability Regions (cont.)  

The first area of stability 
 
Second area of stability 
 
Higher order stability regions are placed 
αround cos χ = 0, or    

0 ≤ χ ≤1.873

4.694 ≤ χ ≤ 4.73

χn =
π
2
(2n −1), n = 2,3,4,...

Βandwidth of stability regions can be 
approximately estimated as  

Δχn =
2

cosh[π
2
(2n −1)]

Areas of stability drop quickly with number n. In practice, only first 
stability area is used for focusing.  

Stability areas -1< cos µο <1  versus quadrupole 
lens rigidity.  

χ
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Matrix of Thin RF Gap 

Change of particle slope in RF gap: 
 
 
 
Change of RF field while particle crossing the 
gap:  
 
 
Transverse matrix of thin RF gap  
 
 
 
 
Focal length f of RF gap is determined by: 
 
 

		
Δ dr
dz

≈
qEinr
2mγ 3vin

2 (
ΔE
Ein

−2Δv
vin
) ≈ qrΔE

2mγ 3v2

  
ΔE = −2Eg sinϕ sinπ g

βλ

  

x

x '

⎛
⎝⎜

⎞
⎠⎟
=

1 0

− qUTπ sinϕ
mc2β 3γ 3λ

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

xo

xo
'

⎛

⎝
⎜

⎞

⎠
⎟

  

1
f
= − qUTπ sinϕ

mc2β 3γ 3λ
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Focusing Structure Including RF Gap 

Consider FOD focusing structure including RF gap 
(focusing period S = 2D, g << D): 
 
 
Transfer matrix through focusing period 
 (neglecting drift spaces between elements): 
 
 
 
 
 
 
 
Phase advance per period: 
 
Defocusing factor Γφ:  

		

x
x '

⎛

⎝⎜
⎞

⎠⎟
=

coshχ 1
k
sinhχ

k sinhχ coshχ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 0
1
f

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

cosχ 1
k
sinχ

- k sinχ cosχ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

xo
xo
'

⎛

⎝
⎜

⎞

⎠
⎟

		
cosµ = cosχ 	coshχ + D

f
sinχ coshχ + cosχ sinhχ

2χ

QF QD RF
Gap

D Dg

  

D
f
= (πS

βλ
Ω
ω

)2 sinϕ
sinϕs

= Γϕ
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Smith-Gluckstern Stability Diagram 
Transverse stability is provided for 
area restricted by curves: 
 

       cos µ = -1,    cos µ = 1  
 
Longitudinal stability is provided for 
phases within separatrix: 
 

                  2φs < φ < - φs 
 
Defocusing factor is varied within 
 

              - Γs < Γφ < 2Γs cos φs 
 
where defocusing factor for 
synchronous phase 
 
 
 
 
Stable area is shaded. For 
synchronous particle: 

  cosµ1 < cosµs < cosµ2

  
Γ s = (πS

βλ
Ω
ω

)2

χ

0
ΓφΓs- Γs 2Γscosφs  
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Averaging Method for Particle Trajectory 

(Solid line) actual particle trajectory and (dashed line) the 
sine approximation to that trajectory.	

72	
Y.K. Batygin  Basics of Beam Focusing USPAS 2019 



m
d 2x
dt 2

= −
dU
dx

+ f1 cosωt + f2 sinωt

Consider one-dimensional particle motion in the combination of constant field  

U(x) and fast oscillating field   

f (x,t) = f1(x)cosωt + f2 (x)sinωt

Fast oscillations means that frequency                            , where T is the time period for 

 particle motion in the constant field U only. Equation of particle motion: 

Let us express expected solution is a combination of slow variable X(t) and fast 
oscillation       : 

x(t) = X(t)+ξ(t)
where  ξ(t ) << X(t )

Fields can be expressed as: U(x) =U(X) + dU
dX

ξ

f (x) = f (X) + df
dX

ξ

ξ(t)

ω >> 1T

Motion in Fast Oscillating Field (L.Landau, E.Lifshitz, “Mechanics”) 
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Average value of         at the period of                                  is zero, while function X(t) is changing slowly  
during that time. Taking into account that  
 

Substitution of the expected solution into equation of motion gives: 

 
m !!X +m!!ξ = −

dU
dX

− ξ d
2U
dX 2 + f (X,t) + ξ df

dX

For fast oscillating term:  m
!!ξ = f (X,t)

After integration: ξ = − f
mω 2

Let us average all terms over time, where averaging means mean value over period  

 
< m !!X > + < m!!ξ >= − <

dU
dX

> − < ξ d
2U
dX 2 > + < f (X,t) > + < ξ df

dX
>

< g(t) > = 1
T

g(
0

T

∫ t)dt

 < !!X > ≈ !!X  <
!!ξ >= 0

T = 2πω

ξ(t) T = 2πω
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m!!X = −

dU
dX
 + < ξ

df
dX

> = −
dU
dX

−
1

mω 2 < f
df
dX

>

Taking into account that  < f
df
dX

>=
1
2
<
df 2

dX
>

<
df 2

dX
> =

1
2
(
df1

2

dX
+
df2

2

dX
)

 
m !!X = −

dUeff

dX
equation for slow particle motion is 

Ueff =U +
1

4mω 2 ( f1
2 + f2

2 )where effective potential is 

Effective Potential of Averaged Motion 
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Consider periodic FD structure of quadrupole lenses with length of D = S/2, and field 
gradient in each lens Go. In FD structure, focusing-defocusing lenses follow each other 
without any gap. Let us expand focusing function G(z) in Fourier series:  

G(z) = 4Go

π
[sin(π z

D
)+ 1
3
sin(3π z

D
)+ 1
5
sin(5π z

D
)+ ...]

FD focusing structure and approximation of field gradient.	

Averaging Method for FD Focusing Structure 
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Let us keep only first term: 

Equation for slow particle motion 
 
 
can be written as 
 
 
where frequency of transverse oscillations  

m d 2x
dt 2

= x q
γ
4Go

π
βc sin(πβc

D
t)

Equation of particle motion in  
fast oscillating field 

can be substituted by slow motion in an effective 
potential 

m d 2x
dt 2

= f1(x)sinωt

Ueff =
f1
2

4mω 2 =
4
m
(q
γ
GoD
π 2 )

2 X 2

Averaged Particle Trajectory in FD Channel 

f1 = x
q
γ
4Go

π
βc

Ωr =
q
γ m

2 2GoD
π 2

ω = πβc
D

d 2X
dt 2

+Ωr
2X = 0

 
m !!X = −

dUeff

dX
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Phase advance of slow oscillations per period S 

 
Phase advance of slow oscillations in FD channel per 
period S = 2D µo =

q
γ m

4 2GoD
2

π 2βc

Taking into account, that                      the phase advance 
 can be written 
(This result can be obtained exactly if we take all terms in FD expansion)  

4 2
π 2 ≈ 1

3
µo =

1
3
qGoD

2

mγβc

Compare	with	matrix	method	for		
FODO	period	with	S	=2D	:	 µo =

S
2D

1− 4
3
D
S
qGoD

2

mγβc
= 1

3
qGoD

2

mγβc

Phase Advance per FD Period 
d 2X
dz2

+ (Ωr

βc
)2 X = 0After substitution t à z equation for transverse 

oscillations is 
 
Averaged particle trajectory X = Xo sin(

Ωr

βc
z +Φox )

µo =
Ωr

βc
S

Averaging method gives the same result for smoothed phase 
advance as matrix method. 
 78	

Y.K. Batygin  Basics of Beam Focusing USPAS 2019 



Averaged Particle Dynamics in a Quadrupole 
Focusing Channel 

Equation of motion in x- and y- directions 
d 2x
dz2

+ k(z)x = 0 d 2y
dz2

− k(z)y = 0

k(z) = qG(z)
mcβγ

where focusing function 

are substituted by averaged trajectories  

d 2X
dz2

+ (µo

S
)2 X = 0 d 2Y

dz2
+ (µo

S
)2Y = 0

k(z) = qG(z)
mcβγ

→ (µo

S
)2

Fast oscillating term is substituted as: 
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ξ = −x q

γ m
4GoD

2

π 3βc
sin(πβc

D
t)

υmax =
ξmax
x

= 4 3
π 3 µo = 0.223µo

Relative amplitude of small fast oscillations in FD 
structure:   

  
ξ = − f

mω 2
Equation for fast component: 

	
(Solid) particle trajectory in quadrupole 
channel and (dotted) approximation by 
averaging method. 

x = Xo sin(µoτ +Φox )(1+υmax sin2πτ )

y = Yo sin(µoτ +Φoy )(1−υmax sin2πτ )

Solution of equation of motion in 
averaged approximation (τ = z / S)    : 

Particle Trajectory in Averaging Method 
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G(z) = 4Go

π
(−1)m−1

2m −1m=1

∞

∑ sin[(2m −1)π D
S
]  sin[2π (2m −1) z

S
]

Averaging Method for Trajectory in FODO Channel  

µo = 2 qGoS
2

π 2mγ βc

sin2[(2m −1)π D
S
]

(2m −1)4m=1

∞

∑

sin2[(2m −1)π D
L
]

(2m −1)4m=1

∞

∑ = π 4

8
(D
S
)2 (1− 4

3
D
S
)

µo =
S
2D

1− 4
3
D
S
qGoD

2

mγβc

υmax =
2

π 2 1− 4
3
D
S

sin(π D
S
)

(π D
S
)

µo ≈ 2
π 2 µo = 0.2026µo

for D << S

Fourier expansion of field 
gradient 
 
 
 
Smoothed phase 
advance per FODO 
period (compare with 
matrix method) 
 
 
 
 
 
 
 
Amplitude of small 
oscillation term 
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Transverse Dynamics Including RF Field 

d 2x
dt 2

= −[qβc
mγ

G(z)+ qEπ sinϕ
mλβγ 3 ] x

dpr
dt

= q(Er − βcBθ ) = −q E
γ
I1(
kzr
γ
) sinϕEquation of transverse motion in 

traveling wave: 

For near-axis particles 
transverse equation of motion in 
RF traveling wave  

I1(
kzr
γ
) ≈ kzr
2γ

d 2x
dt 2

= − qEπ sinϕ
mλβγ 3 x

Transverse equation of motion in 
quadrupole structure and RF traveling 
wave 

Smooth approximation to transverse 
motion 

d 2X
dt 2

= −Ωr
2X − qEπ sinϕ

mλβγ 3 X

Ωr = µo
βc
S

Frequency of smoothed oscillations 
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Transverse-Longitudinal Coupling 
sinϕ = sin(ϕ s +ψ ) ≈ sinϕ s +ψ cosϕ s = sinϕ s (1+ψ ctgϕ s )Let us express 

d 2X
dt 2

+ [Ωr
2 − Ω2

2
(1+ψ ctgϕ s )]X = 0

Smoothed transverse oscillations in 
focusing and RF field 

Ω2 = 2π
λ
qE
m
sinϕ s

βγ 3Frequency of longitudinal oscillations: 

ψ = −Φsin(Ωt +ψ o )
Non-synchronous particle performs 
longitudinal oscillations with amplitude Φ  
and longitudinal frequency Ω:  

d 2X
dt 2

+ X[Ωrs
2 − Ω2

2
ctgϕ sΦsin(Ωt +ψ o )] = 0

Transverse equation of motion can 
be rewritten as  

Ωrs
2 = Ωr

2 − Ω2

2
Transverse oscillation frequency of 
synchronous particle 

µs = µo 1− µol
2

2µo
2Phase advance of synchronous particle at 

the period of focusing structure in RF field  
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d 2x
dτ 2

+π 2 (a − 2qsin2πτ )x = 0

Ωrs =
n
2
Ω,    n = 1, 2, 3 Parametric resonance occurs when a = n2   

Mathieu equation Selecting Ωt = 2π τ transverse oscillation in 
RF  field becomes 

d 2X
dτ 2

+π 2[(2Ωrs

Ω
)2 − 2Φ ctgϕ s sin2πτ ]X = 0

a = (2Ωrs

Ω
)2 q = Φ ctgϕ s ≈ ϕ s

tgϕ s
Parameters of Mathieu equation 

bn
2

< Ωrs

Ω
<

an
2

a1 = 1+ q −
q2

8
− q

3

64
b1 = 1− q −

q2

8
+ q

3

64

a2 = 4 +
5q2

12
− 763q

4

13824
b2 = 4 −

q2

12
+ 5q4

13824

where for the first two regions of 
instability, n = 1, 2, the parameters  
an, bn are  

Regions of parametric instability  

Parametric Resonance in RF Field 
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Parametric resonance regions. 

Phase advance for synchronous particle  

in RF field µs = Ωrs
S
βc

Defocusing factor 

Regions of Parametric Resonance 

In linac, the transverse oscillation 
frequency is typically larger than the 
longitudinal oscillation frequency, and the 
first  parametric resonance instability 
region is avoided. The potentially 
dangerous region in this case is the 
second parametric resonance bandwidth 
where n = 2. Instabilities of higher-order 
resonance regions are typically 
unimportant. 
 

  
Γ s = (πS

βλ
Ω
ω

)2

Γs
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Experimental Observation of Parametric Resonance 

86	

(L.Groening et al, LINAC2010) 
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Statistical Description of Beams 

Realistic beam distribution in phase space.  

Realistic beam is 
characterized by 
certain distribution in 
phase space. In order 
to apply theory to real 
beams, the concept of 
moments of distribution 
function is used.  
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Consider a beam with a distribution function f (x, P, t) and let g (x, P, t)  be an arbitrary 
function of position, momentum, and time. The average value of the function g (x, P, t) is 
defined as: 

 

< g > = −∞

∞

∫ g(!x,
!
P,t) f (!x,

!
P,t)d!x d

!
P

−∞

∞

∫

−∞

∞

∫ f (!x,
!
P,t)d!x d

!
P

−∞

∞

∫
 

 
The integral in the denominator is just the total number of particles. Now, let us consider 
some examples of physically significant average values. For  g(

!x,
!
P,t) = x  , the average 

value 

 
< x > = x = 1

N -∞

∞

∫
-∞

∞

∫ x f (!x,
!
P,t)d!x d

!
P  

 
gives the center of gravity of the beam in the x-direction.  

Statistical Description of Beams (cont.) 
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Analogously, for  g(
!x,
!
P,t) = (x − x )2 , the average value of x2 is defined as 

 

 
< x2 > = 1

N -∞

∞

∫
-∞

∞

∫ (x − x )2 f (!x,
!
P,t)d!x d

!
P  

 

and is called the mean-square value of x. Similarly, the mean-square value of transverse 
canonical momentum Px  is defined as  
 

 
< Px

2 > = 1
N -∞

∞

∫
-∞

∞

∫ (Px − Px )
2 f (!x,

!
P,t)d!x d

!
P  

 

The correlation between variables x and Px is given by the following expression  
taking  g(

!x,
!
P,t) = (x − x )(Px − Px ) : 

 

 
< xPx > =

1
N -∞

∞

∫
-∞

∞

∫ (x − x )(Px − Px ) f (
!x,
!
P,t)d!x d

!
P  

Moments of Distribution Function 
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Gaussian Distribution 

dN
dx

= 1
2πσ

exp[− (x − x )
2

2σ 2 ]

σ = < x2 >

x
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The following combination of second moments of distribution function is called 
the root-mean-square beam emittance: 
 

∍rms= < x2 >< x '2 > − < xx ' >2  
 
and the normalized root-mean-square beam emittance is given by 
 

ε rms =
1
mc

< x2 >< Px
2 > − < xPx >

2  

 
By the reasons discussed below, beam emittance is adopted as the value, four times 
large than rms emittance 
 

∍= 4 < x2 >< x '2 > − < xx ' >2  
 

Root-Mean-Square (RMS) Beam Emittance 
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The density of particles in phase space, normalized by the total number of particles N, is 
described by a distribution function ρx  (x, x'), which is an integral of the beam 
distribution function over the remaining variables: 
 

ρx  (x, x') = 1
N

 
- ∞

∞

 
- ∞

∞

 
- ∞

∞

 
- ∞

∞

f (x, x', y, y', z, z') dy dy dz dz' 

 
It is convenient to consider distributions in phase space with elliptical symmetry: 
 

ρx  (x, x') = ρx  (γ x  x2 + 2 α xx x' + βx  x'2) 

Such distributions have particle densities, ρx  (x, x'), that are constant along concentric 
ellipses  

rx2 = γ x  x2 + 2 α xx x' + βx  x'2 
 
but are different from ellipse to ellipse, so one can write ρx  (x, x') = ρx  (rx

2). Namely, 
equation this describes a family of similar ellipses, which differ from each other by 
their areas.  

 

Distributions with Elliptical Symmetry 
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Using transformation  
σ = β              σ ' = - α

β  

the ellipse equation can be rewritten as 

       
rx2 = (xσx'  - x'σx )

2 + ( x
σx

 )2  

 

Let us calculate rms beam parameters and rms beam emittance for an arbitrary function 
ρx  (x, x'). We begin by changing variables: 

 

{  
 x
σx

 = rx  cosϕ            

xσx'  - x'σx  = rx  sinϕ  
Now we rewrite it as  

      

{  x = rxσxcosϕ            

x' = rxσx' cosϕ - rx
σx

 sinϕ 

The absolute value of the Jacobian of transformation gives us the volume  
transformation factor of the phase space element: 
 

dx dx' = (abs 
 ∂x
∂rx

        ∂x
∂ϕ

 

 ∂x'
∂rx

        ∂x'
∂ϕ

 
 ) drx dϕ = rx  drx  dϕ 

 

Rms Beam Parameters 
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Then, the rms values are: 
 

<x 2> =  
o

2π
 

o

∞
(rxσxcosϕ)2ρx (rx2) rx  drx  dϕ  

                 
<x'2> =  

o

2π
 

o

∞
(rxσx' cos ϕ - rx

σx
 sin ϕ)2ρx (rx2) rx  drx  dϕ  

 

           
<xx'> =  

o

2π
 

o

∞
rxσxcosϕ (rxσx' cosϕ - rx

σx
 sinϕ)ρx (rx2) rx  d rxdϕ   

 
σ = β 

 
σ ' = - α

β  

 
βγ  - α 2 = 1 

Let us take into account previously introduced expressions: 

Rms Beam Parameters (cont.) 
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Calculation of integrals over ϕ gives: 

<x 2> = π  βx  
o

∞
rx3 ρx (rx2) drx

    
 

<x'2> =πγ x  
o

∞
rx3ρx (rx2) drx 

<x x'> = - π  αx  
o

∞
rx3 ρx (rx2) drx

 
Therefore, four-rms beam emittance is given by  

  ∍= π rx
3

o

∞

∫ ρx (rx
2 )drx  

Rms Beam Ellipse 

α x = − < xx ' >
∍x

Twiss parameters βx =
< x2 >
∍x

γ x =
< x '2 >
∍x

< x '2 >
∍x

x2 − 2 < xx ' >
∍x

xx '+ < x2 >
∍x

x '2 =∍xRms beam ellipse 

 
    Beam distribution and rms ellipse. 
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Consider an example, where the beam ellipse has an area of πAx, and is uniformly 
populated by particles. Particle density is constant inside the ellipse rx2 = Ax: 
 
ρx (rx2) = 1

πAx  
 

Calculation of the rms value, < x2 > ,  
gives: 
 

<x 2> = π  βx  
o

Ax

rx3  ρx (rx2) d rx  = Ax βx

4  

Uniformly populated ellipse at phase 
plane (x, x’).  

Example: Uniformly Populated Ellipse 
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The beam boundary is given by 
 

Rx = Ax βx 
 
Radius of the beam represented as a uniformly populated ellipse is equal to twice the 
rms beam size: 
 

R = 2 <x 2>  
 
Rms beam emittance: 

∍x = 4
Ax

  
o

Ax

rx3 drx  = Ax 

Therefore, the area of an ellipse, uniformly populated by particles, coincides with the 4 x 
rms beam emittance. This explains the choice of the coefficient 4 in the definition of 
rms beam emittance. 

4-RMS Emittance of Uniformly Populated Ellipse 
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ρx (rx
2 ) = 1

N
dN

rxdrxdφ
Particle density in the phase plane (x, x’)  

N (∍)
N

= π ρx (rx
2 )

o

∍

∫ drx
2

ρx (rx
2 ) = 1

2π ∍x
exp(− rx

2

2 ∍x
)Beam with Gaussian distribution in phase 

space      x = rms emittance  

N (∞)
N

= π ρx (rx
2 )

o

∞

∫ drx
2 = 1Normalization condition 

N (∍)
N

= 1− exp(− ∍
2 ∍x

)Fraction of particles within the emittance  of a 
Gaussian beam is: 
 

Fraction of particles within the four-
rms emittance of Gaussian beam  

1− exp(−2) ≈ 0.865

Beam with Gaussian Distribution 

Fraction of particles within emittance  ∍

∍
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Sigma Matrix of the Beam 
 

It is common to represent beam in 4D phase space (x,x’,y,y’) as an 4D ellipsoid:  

a11x
2 + a22x '

2+ a33y
2 + a44y '

2+ 2a12xx '+ 2a13xy + 2a14xy '+ 2a23x 'y + 2a24x 'y '+ 2a34yy ' = 1

This equation can be written as   
!
XT !a

!
X = 1

 

!
X =

x
x '
y
y '

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

where the vector of particle position in phase space 
 
 
and      is 4x4 symmetrical matrix of coefficients, aij=aji . Let us introduce inverse 
matrix                 , and rewrite 4D ellipsoid equation as  

 
!a

 
!σ −1 = !a

 
!
XT !σ −1 !X = 1

 

!σ =

σ 11 σ 12

σ 21 σ 22

σ 13 σ 14

σ 23 σ 24

σ 31 σ 32

σ 41 σ 42

σ 33 σ 34

σ 43 σ 44

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

where introduced sigma-matrix has the form  
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Explicit expression of equation for sigma-matrix                           is (4D beam ellipsoid):   
!
XT !σ −1 !X = 1

Explicit Expression for Sigma-Matrix Equation 
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Projection of ellipsoid on any plane (for example, x,	x’) is obtained as 
 

∂F
∂y (x, x', y, y') = 0 ,            ∂F

∂y' (x, x', y, y') = 0         

 
and substitution solutions of these equations into equation for ellipsoid.  
 
Actually, for every fixed value of x, the point at the boundary of projection 
corresponds to max possible value of x’: 
 

∂x'

∂y = 0,      ∂x'

∂y'
'  = 0         

 
or, according to differentiation of implicit functions,  
 

                             ∂x
'

∂y  = - 

∂F
∂y
∂F
∂x'

 ,     ∂x
'

∂y' = - 

∂F
∂y'

∂F
∂x'

  .    

Projection of 4D Ellipsoid on (x-x’) 
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y = - x
'σ12σ13 + xσ13σ22 +x'σ11σ23 - xσ12σ23

σ12
2  - σ11σ22  

Projection of 4D Ellipsoid on (x-x’) (cont.) 

Solutions: 
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After substitution solutions to 4D ellipsoid  
equation, we get projection on (x-x’) plane  σ22x2 + σ11x'2 - 2σ12xx' = σ11σ22 − σ12

2
 

σ33x2 + σ11y2 - 2σ13xy = σ11σ33 − σ13
2Analogously, projection on x-y plane  

Coefficients of Sigma-Matrix 

This equation determines ellipse on phase plane (x,x’). Comparison with equation 
for rms beam ellipse, one determines coefficients in sigma – matrix: 

σ11 =  < x
2 > σ12 =  < xx ' > σ 22 =  < x '

2 >

Right-hand terms determine square of area of ellipse (rms beam emittance): 

 эx_ rms
2 = σ11σ 22 −σ12

2

σ13 =  < xy >where 
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!σ =

< x2 >  < xx ' >  < xy >  < xy ' >
< xx ' > < x '2 >  < x 'y >  < x 'y ' >
< xy >  < x 'y >  < y2 >  < yy ' >
< xy ' > < x 'y ' >  < yy ' >  < y '2 >

Finally, sigma-matirix is expressed through second order momentums of beam 
distribution  

Because of identity                         10 elements in sigma-matrix are independent. 
Combinations of coefficients                     determine area of projections of beam 
ellipsoid on each plane, and, therefore, must be positive. Coefficients of sigma-
matirx must satisfy the following conditions:   
  

< ξζ > = <ζξ >
σ iiσ jj −σ ij

2

σ ii > 0

σ ii  σ ij

σ ij  σ jj

> 0 i = 1, 2, 3, 4;     j > i  

Explicit Expression of Sigma-Matrix  
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Volume of n-dimensional ellipsoid 
where Γ(x) is the gamma-function: Vn =

π n/2

Γ(1+ n
2
)
detσ

V2 = π detσ V4 =
π 2

2
detσ V6 =

π 3

6
detσFor different dimensions the volume is  

During beam transport, beam phase space volume experiences rotation in phase 
space, which can be described as evolution of sigma-matrix between two points of 
transport channel. Initial phase space volume is determined by initial sigma-matrix: 
  

    
while final phase space volume is determined by  
Evolution of single particle between two points is determined by R-matrix: 
Evolution of sigma matrix is determined by  
(K.Brown et al, SLAC-PUB-3381)   
  

    

 
!
X1
T !σ 1

−1 !X1 = 1

 
!
X2 =

!
R
!
X1

 
!
X2
T !σ 2

−1 !X2 = 1

Evolution of Sigma-Matrix 

 
!σ 2 =

!
R !σ 1

!
RT

x2
x2
'

y2
y2
'

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

R11 R12
R21 R22

R13 R14
R23 R24

R31 R32
R41 R42

R33 R34
R43 R44

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

x1
x1
'

y1
y1
'

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Because                   , then                               which 
means that phase space volume is conserved 
(Liouville’s theorem). 

 det
!
R = 1  det

!σ 2 = det
!σ 1
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Example:	(x-x’)	beam	dynamics	can	be	determined	by	2x2	sigma-matrix.	 In	this	
case	

1
detσ

x x '
σ 22

−σ 21

−σ 12

σ 11

x
x '

= 1	 	 		

	
which	 gives	 	 equation	 for	 beam	 ellipse	 at	 phase	 plane	 (x,	 x’).	 Application	 of	
equation	describing	evolution	of	beam	ellipse	using	single-	particles	matrix	gives:	
	

< x2 >
< xx ' >

< xx ' >
< x '2 >

=
m11

m21

m12

m22

< x0
2 >

< x0x0
' >

< x0x0
' >

< x '0
2 >

m11

m12

m21

m22

		

	
which	can	be	written	in	explicit	way	as	

< x2 >
< xx ' >
< x '2 >

=
m11
2 2m11m12 m12

2

m11m21 m21m12 +m11m22 m22m12

m21
2 2m21m22 m22

2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

< x0
2 >

< x0x0
' >

< x '0
2 >

		

Evolution of Sigma-Matrix (cont.) 
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Slit-Collector Beam Emittance Measurement Device 
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Slit:			For	energy	<	1	MeV:					water-cooled	graphite	
											with	a	0.012”	wide	slit	
	
										For	energy	100	MeV:				0.025”	wide	BeCu	slits	
		

LANL Slits and Collectors 

Collector:	
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Emittance		
measurement	
switcher	

Slit and Collector Actuators 

Collector	actuator	in	beam	box	

Slit	and	collector	actuators	
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Emittance	Scan	and	Equivalent	4-RMS	Beam	Ellipse	

Rms	beam	parameters		

Four-rms	beam	emittance:	

α = − 4 < xx ' >
∍

β = 4 < x
2 >
∍

γ = 4 < x '
2 >
∍Twiss	rms	parameters:	

< x 2>  = 1
I
  (xi − x
i=1

N

∑ )2 Ii (x, x ')

< x ' 2>  = 1
I
  (xi

' − x '
i=1

N

∑ )2 Ii (x, x ')

< xx ' >= 1
I

(x − x )(xi
' − x '

i=1

N

∑ )Ii (x, x ')

Result of measurement are two-
dimensional function of intensity 
distribution at phase plane Ii (x,x’) 

Rms	beam	ellipse	 γ x2 + 2αxx '+ βx '2 =∍

∍= 4 < x2 >< x '2 > − < xx ' >2
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Allison Scanner 
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Four Slits Method for 4D Phase Space Distribution 

First	pair	of	slits	selects	particles	with	coordinates	xo,	
yo.	Second	pair	of	slits	selects	particles	with	certain	
angles	dx/dz,	dy/dz.	
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Pepper-Pot Method 

1.4	MeV/u	Ar+1	ion	beam	
projection	(P.	Forck,	LINAC	2000)	

Layout	of	pepper-pot	method	
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MEASURING THE FULL 4D TRANSVERSE BEAM MATRIX OF 
ION BEAMS”, M.Maier (IPAC16) 
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MEASURING THE 6D BEAM DISTRIBUTION 

Six-dimensional phase space measurement 
(B.Cathey et al, PRL 121, 064804, 2018). 

Points per dimension             10-20  
Total number of points   5.6e06 
Scan time      32 h 
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MEASURING THE 6D BEAM DISTRIBUTION (cont.) 
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Indirect Emittance Measurement: Wire Scans 

Single	–particle	transformation	matrix	

Evolution	of	an	ellipse	

System	of	equation	to	determine	
unknown	values	of		 αo ,  βo , ∍

R1
2 / ∍

R2
2 / ∍

R3
2 / ∍

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

C1
2 −2C1S1 S1

2

C2
2 −2C2S2 S2

2

C3
2 −2C3S3 S3

2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

βo

αo

γ o

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

117	
Y.K. Batygin  Basics of Beam Focusing USPAS 2019 



σε

ε
 =  
1

ε
 

1

(N − 1)
  (ε i − ε )2

i=1

N

∑

Indirect	Emittance	Measurement:	Wire	Scans	(cont.)	

Emittance:	

Error																																														in	beam	emittance	
determination	as	a	function	of	phase	advance	for	
different	numbers	of	wire	scanners	

Nwires  = 3

Nwires  = 4

Nwires  = 5

µopt =
180o

Nwires
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Wire Scans of LANL Linac Modules 41 - 48 
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Emittance of the Beam Extracted from Ion Sources 

Schematics of a plasma ion source (from 
M.Reiser, 1994). 
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The ultimate goal of accelerator designers is to minimize emittance. An intrinsic limitation 
of beam emittance in particle sources comes from the finite value of plasma temperature in 
an ion source, or the finite value of cathode temperature in an electron source. Equilibrium 
thermal particle momentum distribution in these sources is in fact, close to the Maxwell 
distribution: 

f (p) = n( m
2πkBT

)3/2 exp(− p2

2mkBT
)  

 
Rms value of mechanical momentum is 
 

< px
2 >= mkBT  

Thermal	Beam	Emittance	in	Particles	Sources	

Beam radius is usually adopted to be double the root-mean-square beam size, R  = 2 <x 2> . 
Fortunately, for particle sources, one can assume that <xPx> = 0 because there is no 
correlation between particle position and particle momentum. Therefore, the normalized 
emittance of a beam, extracted from a particle source, is 
 

ε = 2R kBT
mc2  
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The rms value of canonical momentum is given by: 
 

<Px
2> =  <px

2> - q Bz <px y> + q
2  Bz

2

4
 <y 2> 

 
The first term describes the thermal spread of mechanical momentum of ions in plasma, and 
is given by <px

2> = mkT . The middle term equals zero because there is no correlation between 
px and y inside the source. The last term is proportional to the rms value of the transverse 
coordinate <y 2> = R2/4. As a result, we can rewrite <Px2> as follows: 
 

<Px
2> = <px

2> + ( q Bz R
4

)2
 

Some sources can be operated only in presence of a longitudinal magnetic field, which 
produces an additional limitation on the value of the beam emittance. For instance, in an 
electron-cyclotron-resonance (ECR) ion source, charged particles are born in a longitudinal 
magnetic field Bz, fulfilling the ECR resonance condition 2ωL = ωRF, where ωL is the 
Larmor frequency of electrons and wRF is the microwave frequency. Canonical momentum 
of an ion, Px = px - qAx, in a longitudinal magnetic field Bz is: 
 

Px = px - q 
Bz y
2  

Thermal	Beam	Emittance	in	Particles	Sources	(cont.)	
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1 

The normalized beam emittance ε , extracted from the source is 
 

ε = 2R  kBT
mc2

+ (qBzR
4mc

)2  
 
Therefore, the presence of a longitudinal magnetic field at the source acts to increase the 
value of the beam emittance. 
 

Additional	sources	contributing	to	beam	emittance	:	
	•	irregularities	in	the	plasma	meniscus	extraction	surface	
•	aberrations	due	to	ion-source	extraction	optics		
•	optical	aberrations	of	the	focusing	elements	of	the	LEBT	
•	non-linearity	of	the	electric	field	created	by	the	beam	space	charge	
•	beam	fluctuations	due	to	ion-source	instability	or	power	regulation	

Thermal	Beam	Emittance	in	Particles	Sources	(cont.)	

Example: Normalized beam emittance due to thermal spread of particles in 
plasma (kT = 0.1 eV, R = 3 mm, mc2 = 938 MeV): 
 

εrms =
R
2

kT
mc2

= 1.5 ⋅10−3π cmmrad
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Duoplasmatron 
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LANSCE Duoplasmatron 

Side	view	of	assembled	LANSCE	duoplasmatron	ion	source	with	Pierce	electrode.	
	

Pulse Rate 
(Hz) 

Pulse 
Length (μs) 

Beam 
Current 

(mA) 

Normalized rms 
emitttance  

(π cm mrad)  

40 830 14 0.003 
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Emittance of proton beam extracted from LANSCE proton ion 
source. Additional component contains             particles.  H2

+ /H3
+

Emittance of LANSCE Proton Beam 
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Electron-Cyclotron Resonance (ECR) Ion Source 

Cross	sectional	view	of	RIKEN	18	GHz	ECRIS		
(T.Nakagawa	et	al,	NIM-A	396,	p.9	(1997)	

2D	image	of	the	129Xe17+	ion	beam	
of	the	energy	of	255	keV	and	
current	of	12	eμA	extracted	from	
the	mVINIS	Ion	Source,	together	
with	the	image	of	the	16O2+	beam.		

ECR	resonance	condition:	 ω c =ω RF
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Electron-Cyclotron Resonance (ECR) Ion Source 
Beam Profile 

Ar+5 particle trajectories in combination with the 
solenoid field and the sextupole field (Y.B., Journal 
Appl. Phys., Vol. 83, No. 2, 1998). 
 

In the electron cyclotron resonance ion source 
(ECRIS)  plasma is confined in a minimum B  
magnetic mirror configuration created by solenoid 
coils and multipole lens. In many sources a 
sextupole lens is used to confine particles in a radial 
direction, while longitudinal confinement is provided 
by the solenoid field. The ECR surface, where 
electrons are heated, is defined by 2ωL = ωRF, 
where ωL is the electron Larmor’s frequency  and  

ωRF is a frequency of microwave power . At this 
surface the absolute value of the vector of the 
magnetic field is equal to the resonance value Bres, 
which defines the ECR condition:  

 The extracted beam can have an 
axial-nonuniform shape due to the 
topology of the magnetic mirror 
field. 
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Electron-Cyclotron Resonance (ECR) Ion Source 
Beam Profile 

Image of a triangular He+ beam 80 cm after extraction. 
(D.Winklehner et al, 2010 JINST 5, P1 2001) 
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Electron-Cyclotron Resonance (ECR) Ion Source 

Emittance measurements on the AECR-U for various masses in comparison 
with predicted emittances for an extraction magnetic field of 1 T (D. Leitner 
et al, 2011 JINST 6 P07010 ) 
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Sectional schematic of a multicusp surface 
converter ion source. 

 H- Ion Source 

A = 4
π
RconvRa
L

Acceptance of H- ion 
source 
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LANSCE H- Beam Emittance 

Normalized beam emittance: 

ε = 4
π

2qUconv

mc2
RconvRa
L

Analytical 
beam 

emitttance  
(π cm mrad)  

 

Experimental 
4εrms beam 
emitttance  

(π cm mrad)  

0.076 0.072 
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H- Ion Source Parameters 
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