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Proton and lon Linear Accelerators — Week 2, Part 2

 Why linacs & RF together?

Reminder: basics of linacs

RF cavities + Superfish code & exercises
Accelerating structures: RFQ, DTL, CCL, etc.
Electromagnetic (EM) design of accelerating structures
Linac components

Sources:
T.P. Wangler. RF linear accelerators, Wiley-VCH, 2" Ed., 2008.

Handbook of Accelerator Physics and Engineering. Eds. A. Chao et al. World
Scientific, 2013.
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Uniform cylindrical waveguide

Vacuum inside; for
u#1, €1
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v4 Wave equations

' . Waveguide cross section
Circular waveguide. can have another shape




Waves in uniform circular cylindrical waveguide

Wave equation for electrical field

Wave equation for £, componentin
cylindrical coordinates

The solution is for TM wave:

Transverse wave number

Wave equation can be rewritten as

Its solution that is finite at =0 is
the Bessel function of 1st kind
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Waves in uniform circular cylindrical waveguide — 2

Longitudinal component vanishes at the boundary of
cavity E (a)=0 J (k.a)=0

Transverse wave number is determined as

Rr.?"a = UP‘E}?.I‘
v, is the root of equation J, . (x)=0 ¢ = U
" a

Traveling wave in uniform waveguide

W ber k = d length 2r
ave number K, =—— and waveleng o v _2nm
A« k-=—— n:n l—_
¢ a .
Cut-off frequency k.= O: @
Phase of the wave p=owt—k_z

Phase velocity of the wave in uniform
homogeneous single-connected waveguide
is always above the speed of light in media

If w < w, in a uniform homogeneous single-connected waveguide, it is an evanescent wave:
its amplitude exponentially decreases.




Dispersion diagram in uniform cylindrical waveguide

Figure 1.13 Example of
dispersion curve for uniform
waveguide, w? = w? + (k,¢)?,
showing graphically the meaning
of phase and group velocity at
the point p on the curve. The
group velocity at point p is the
tangent to the curve at that
point. The phase velocity is the
slope of the line from the origin
to the point p.

Dispersion (Brillouin) diagram

The slope a of the line w = a(k,c) line determines the wave phase velocity:
a>1means v, > c.

The wave group velocity gives the speed of energy propagation along the
waveguide: v, = dw/dk, < c.



Disk-loaded waveguide (= traveling wave structure)
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Expansion in Fourier series
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Substitution into wave + Kfan(r)] =0

Equation

Transverse wave number

Phase velocity

Different space harmonics have different phase velocities



Dispersion diagram of periodic waveguide
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Dispersion diagram of periodic structure is a combination of diagrams for
uniform waveguide periodically repeated after one period of the structure.



Traveling wave structures
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Brillouin diagram for disk-loaded waveguide. Angles «a,
a,, .. correspond to phase velocities of various space

harmonics.

Snapshots of electric field configurations for disk-loaded
structures with various phase shifts per period.



Traveling wave accelerator structures
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Linac with traveling wave. Primarily
used for electrons.

SLAC accelerating structure: 10-foot
disk-loaded, 2856 MHz, 86 cells per
structure, 960 structures make

up the SLAC 3-km linac.




Cylindrical resonator (pillbox)
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Longitudinally integer number of half-variations can be

excited

Transverse boundary condition:

Frequency of oscillation mode is

Longitudinal component
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Dispersion diagram for cylindrical cavity
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Dispersion curve for the TMO1p family of modes
of a cylindrical circular cavity.



TM,,, modes in cylindrical cavity (E modes)

Field components of TM,,,, modes in cylindrical cavity

» E =E_J (xr)cosnfcos .z

o n nin 'ﬂ'.])
X =", AT
E =—E ==J, (xr)cosnfsiny z a
X
E,=E, ”’E‘ J (xr)sinn6simny z
X "
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H =—-iE ——= %% J,(xr)sinnfcos y.z
)C r
H,=—-iE, Do J (yr)cosnfcos y.z
X
» H =0
n —number of variation in azimuthal angle 0

m — number of variation in radius
P — number of variation in longitudinal direction =z



Example: TM,,, mode

-
Field components E =E_J (v, —)cosm,t
i a
E r. .
B, =——"%J,(Vy;—)smam,i Hg
c a
E.(a)=0 iJ' ‘
Boundary condition ()= i
Uy, = 2.405 0 '
EI a r
Frequency of resonator k.=0 L
o
W =2rf= Yo E
a a I
_2405¢ ° a1
2ra

Example: radius of resonator for f=201.25 MHz:
TMO010 mode in a pill-box

2405¢ ity.
a= ¢ =0.57m cavity

2nf




TM modes in cylindrical resonator

TM-mode field patterns in cylindrical resonator (T.Wangler, LA-UR-93-805).




TE, ,, modes in cylindrical cavity (H modes)

Field components of TE,,, modes

in cylindrical cavity Boundary condition: EQ(H)I:O
1 U
Jn(xa):[} x= T
B H_=H_J (xr)cosnfsiny_z | a
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TE modes in cylindrical resonator

TE-mode field patterns in cylindrical resonator (T.Wangler, LA-UR-93-805).




Fundamental modes of cylindrical resonator
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Oscillations TE 44, and TM,,, are fundamental modes which frequencies
coincide if .
U{]I - Ull

In this case of ratio of length of resonator to radius L /a is

I
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For long cylinder L /a > 2.03 the fundamental mode is TE{y; while for “flat”
resonator L /a < 2.03 the fundamental mode is TMy,o.




Coaxial line

{ % Field components of TEM
Y wave propagating in coaxial

ﬁ transmission line
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Note that unlike single-connected waveguides there is no cut-off frequency in coaxial lines.
They can transmit waves even at very low frequencies, and the phase velocity v,,=c.




Coaxial resonators: half-wave & quarter-wave

Resonance pﬁ,
condition: L=7"5"

Component of RF
field
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Coaxial resonator with voltage and
cu[rent standing waves. Quarter wave resonator

The wavelength (and frequency) of coaxial resonators is defined mainly by their length.
Note: RF coupling — magnetic loop here; ferrite loading — lowering and tuning frequency.




Field energy in RF cavities

EM energy in cavity |W = %J(yOHZ + SOEE)
Vv

~ - d¢uH eF’ -
E bal PIE.H]dS =— = + — dV — | JEdV
nergy balance ﬁ[ ] dfl( > > ) l]

S

Poynting’s theorem in integral form: the rate of energy change in cavity equals the rate

of work done on a charge distribution plus the energy flux through its surface.




Energy dissipation in resonator and Q factor
P=P+P

ext

Dissipated power is a combination of power losses inside cavity
and outside cavity

4

Energy stored in cavity ° 2y " 2
Quality factor . w W,
(= 2m*stored energy / energy loss per period) Q= P
Q-factor is a combination of unloaded quality factor of cavity 1 1 1
. =+
and external quality (loaded Q factor) o 0, 0.
External quality factor Q.= W,
© P,
Losses in metal with surface resistance R_[Ohm R 5
s (onm] P== [mds
R = 1 [£% Wwhere o is the surface conductivity, >
o) 20
and & is the skin depth & = /2 / (1,00). [Hav
ﬂJOIVO w "
Unloaded quality factor 0, = Q,=—2%—
F, R, jH};dS
V S
Physical meaning: Q=G—
y g 5



L ———
Quality factor of TM,, cavity

g ,g r
Magnetic field H  =-E, ?Jl(vm E)

1 ) me E2La*J;} (v,,) i >
Energy stored in cavity W, = E_[.“onedV = - =0.1357¢ La’E,
VO
R 2 o 2 €, 2
Loss power in cavity F,= 5 JHmé‘d*S = maR,L; y_J1 (Vo (L+a)
hY o
Unloaded quality factor 0 = W, _ Vo H’o 1 — 12025 376.7[0hm] 1
° P 2R \ € a R a
sV (1+= ; 1+~
L) ( L)

For ideal copper surface o = 5.8:107 Sm/m, so that R, = 2.6:10* Vf(MHz) Q. At 201.25 MHz,
R, = 3.7 mQ, and Q, = 66500 for a/L = 1. In practice, typically 10%-20% less.




Superconducting RF cavities

For RF cavities the power loss depends on the surface resistance: for normal-conducting

L _ //;Ow scales with RF frequency as \/7
o

g = 05 =
In superconducting (SC) RF cavities the surface resistance is much lower; e.g., for Nb
2
GHz T
R (Q)=9-10" L)exp(—oc—"’) +R,
T(°K) T ’
where R, is the residual resistance (~1-10 nQ), a = 1.83, and T, = 9.2 K is the critical

temperature.
SC R, is ~10- of that in copper, and so are the cavity surface losses!

For ideal copper surface, typical Q, = 104-10°. In SC cavities, typical Q, = 108-10"9, so itis
especially advantageous to use SC RF cavities in CW machines (operating at 100% RF
duty factor). Helium

SC cavity assembly
for SNS linac

6-cell Nb 805-MHz

Fundamental  glliptical RF cavity
power

eounler

coupler




Quality factor of coaxial resonator

moo I)I‘:
Azimuthal magnetic field H,,= ,)ﬂ_ruos 7
Integral over volume jH;dV=ﬂ-L( 4 )’ 1n R,
v 2r R,
Integral over surface szdS=E(i)2[4lll R, +L(i+i)]
V. " 2'?1- Rl 1 2
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Filling time of resonator

Power losses is a rate of decrease of stored energy pP=— d(?;o
T : oW, .
Substitution into equation Q =——— gives equation for decrease aw, W,
of stored energy _df = 0
0,

Solution W =W (0)e o

—_— wﬂ
Electrical field changes with two times smaller rate: o= 20

_wor

Electric field E=F oot 20

Filing time of the cavity e

Note: filling time t, = QTr/T

Sometimes it is convenient to use complex frequency of cavity W, = wﬂ(l + ?"2—)




Coupling RF power to cavities

Cylindrical
cavity
Coaxial a \ . Cylindlg::al
IineE ! cavi
) Waveguide
Cylindrical | C
cavity \
| Antenna probe “Dog-bone” coupling iris for
b high-power FEL photoinjector.
Up to 0.5 MW at 100% duty.

Methods of coupling to RF cavities:
(a) magnetic — current loop;

(b) electric — antenna;

(c) magnetic — iris WG-cavity

Model of coupling loop for
the LANSCE DTL tank 4.
Up to 3 MW, duty 10%.
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Filling time with external load

P
The cavity coupling coefficient is defined as ff =~ = O

1)() Qext .

When the power source is matched to the resonant
structure through a coupling loop, such that no power is 1+ﬁ
reflected toward the source, then the loaded Q

where B is the coupling coefficient. For negligible beam
current p=1.

The filling time becomes {, = =

During the filling time, the transient effect exists when
reflected power cannot be avoided.
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RF coupling and reflected power

When coupling coefficient 8 = 1, the cavity is matched to RF feed (critically coupled);
> 1 — over-coupled, and B < 1 — under-coupled.

The cavity RF coupling is usually

=

08 designed such that
P2
o 08 - F,
2 oaf In this case no RF power is reflected
- back to the RF source when the
02f cavity is operating with the beam.
: TR T R NN TR SN SN N TN T MO |
0

1 2 3 4 5
tt

Backward (reflected) power vs
time for different values of .
Here 1 = t,— cavity filling time.




Figures of merit for accelerating structures

Quiality factor (stored energy U, averaged power loss P) 0= %
Shunt impedance (total cavity voltage V) R, = VT;
Effective shunt impedance (effective voltage V,T) R, = R, T’
Shunt impedance per unit length (voltage V, = EyL) 2 — PE/gL
Effective shunt impedance per unit length (Zyy) ZT° = (f)O/TL)

Ratio R./Q is independent of surface losses and =
depends only on the cavity (structure) geometry 0 oU

Ratios E, ../E... (E,..=Ey,T) and B, ,/E,.. — lower is better.
The latter is very important for SC cavities.
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Cavity RF electric breakdowns: Kilpatrick criterion

RF breakdowns — uncontrolled discharges in cavities — limit the cavity max electric fields.

f (MHz)
- f(MHz)=1.64E ¢ >
° 5_ The maximal surface field also
1950 depends on the RF pulse
- length. The cavity design fields
1000 are typically (1.3-2)E for
s pulses longer then 1 ms. For
750 F very short pulses, below 1 us,
C they can be higher and scale
500 as
250}_ E o f1/2 /44
E 1Y N TN TN N TR TN OO (Y (NN TN (U 1A P (NN N NNUUN) (N N [N TN O OS] (O
15 20 25 30 35
Ex (MV/m)

The critical value of the surface electric field (Ex — Kilpatrick
field) versus RF frequency (empirical, conservative).

Other deleterious electron-related effects in RF cavities: multipacting (usually occurs at
low RF field levels) and electron RF loading. In SC RF cavities — quench (—NC).



L S
RF cavity design issues

Cavity design goals depend on many factors including its application and the cavity type:
maximize accelerating gradient, minimize losses (NC), minimize max surface fields, etc.

Frequency dependence of cavity parameters: a ~ 1/f,

b {fm’ NC} Q B {fuz, NC} ZT2 . {fuz, NC}
7, SC 12, SC 7, sC

Frequency choice also depends on available RF sources and beam parameters.

Changing cavity shape is the common way of achieving the design goals. Examples:

ﬁ m m m 7 (structure) mode

AN T
J A A

Nose-cone cavity

VY,

4-cell elliptical cavity (SC)




RF power sources

High-power vacuum-tube amplifiers: gridded tubes (triodes, tetrodes — below 300 MHz,
pulsed) and klystrons (300 MHz — 10s GHz; from 1 us pulses to CW operation).

Klystrons were invented in 1937 (Varian). Peak power up to 60 MW, average 50 kW (SLAC).
ot Space | Power gain up to 50-60 dB, efficiency 40-60%.
vy Gy Reliable: MTBF > 30000 h.

Density of Electrons

Collector

Scheme of RF system for accelerator cavity

Electron Beam

Load I

High power
RF amplifier

Microwave Input Wicrowave Cutput

AF reference Power

Klystron principle signal Field Power. |
g?encttrr?)lnics — 1 ©3IY JFrequency
L Circulator Tuner
’ L
F_eedfamard Cavity r
signal pickup signal I[I::iletso|;1larr1~lc:e )
elecuo o
electronics

il
-

« The choice depends on application (pulsed or CW), frequency, peak and average
power, efficiency, and cost. The RF cost is typically the largest part of linac cost.

« Magnetrons are rarely used (cheaper but lack phase stability).

« More recently — multi-beam klystrons, solid-state amplifiers, and inductive-output tubes
(10Ts).




Summary of part 2

RF waveguide, cavity, and power source basics are reviewed.
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