Proton and Ion Linear Accelerators

1. Basics of Beam Acceleration

Yuri Batygin
Los Alamos National Laboratory

U.S. Particle Accelerator School,

Albuquerque, New Mexico, June 17-28, 2019

Energy, Velocity, Momentum

Total energy

$$
E=\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}}=m c^{2}+W
$$

Rest energy $m c^{2}$
Kinetic energy

$$
W=\sqrt{p^{2} c^{2}+m^{2} c^{4}}-m c^{2}=m c^{2}(\gamma-1)
$$

Relativistic particle energy

Particle velocity

$$
\gamma=\frac{m c^{2}+W}{m c^{2}}=\frac{1}{\sqrt{1-\beta^{2}}}
$$

$$
\vec{\beta}=\frac{\overrightarrow{\mathrm{v}}}{c}
$$

Mechanical (kinetic) particle

$$
\vec{p}=m \gamma \overrightarrow{\mathrm{v}}=m c \vec{\beta} \gamma
$$ momentum

$$
\beta=\frac{\sqrt{\gamma^{2}-1}}{\gamma}
$$

Mechanical momentum versus velocity and relativistic energy

Energy, Velocity, Momentum (cont.)

$\left.\begin{array}{|c|c|c|c|c|}\hline & \beta & \gamma & W & c p \\ \hline \beta & \beta & \frac{\sqrt{\gamma^{2}-1}}{\gamma} & \frac{\sqrt{\left(1+W / E_{0}\right)^{2}-1}}{1+W / E_{0}} & \frac{c p /\left(m c^{2}\right)}{\sqrt{1+\left[c p /\left(m c^{2}\right)\right]^{2}}} \\ \hline \gamma & \frac{1}{\sqrt{1-\beta^{2}}} & \gamma & 1+W / E_{0} & \sqrt{1+\left(\frac{c p}{m c^{2}}\right)^{2}} \\ \hline W & \left(\frac{1}{\sqrt{1-\beta^{2}}}-1\right) E_{0} & E_{0}(\gamma-1) & W & m c^{2}\left[\sqrt{1+\left(\frac{c p}{m c^{2}}\right)^{2}}-1\right.\end{array}\right]$

Some relations concerning first derivatives of relativistic factors:

$$
\frac{d \beta}{d \gamma}=\frac{1}{\beta \gamma^{3}} ; \quad \frac{d(1 / \beta)}{d \gamma}=-\frac{1}{\beta^{3} \gamma^{3}} ; \quad \frac{d(\beta \gamma)}{d \beta}=\gamma^{3} ; \quad \frac{d(\beta \gamma)}{d \gamma}=\frac{1}{\beta} ;
$$

Logarithmic first derivatives:

$$
\frac{d \beta}{\beta}=\frac{1}{\beta^{2} \gamma^{2}} \frac{d \gamma}{\gamma}=\frac{1}{\gamma(\gamma+1)} \frac{d W}{W}=\frac{1}{\gamma^{2}} \frac{d p}{p} ; \frac{d \gamma}{\gamma}=\left(\gamma^{2}-1\right) \frac{d \beta}{\beta}=\left(1-\frac{1}{\gamma}\right) \frac{d W}{W}=\beta^{2} \frac{d p}{p}
$$

(P. Lapostolle and M. Weiss, CERN-PS-2000-001 DR)

Vector Operations in Cartesian Coordinates

$$
\begin{aligned}
& \boldsymbol{\nabla} \psi=\frac{\partial \psi}{\partial x} \hat{\mathbf{x}}+\frac{\partial \psi}{\partial y} \hat{\mathbf{y}}+\frac{\partial \psi}{\partial z} \hat{\mathbf{z}} \\
& \boldsymbol{\nabla} \cdot \mathbf{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}
\end{aligned}
$$

$$
\begin{gathered}
\boldsymbol{\nabla} \times \mathbf{A}=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \hat{\mathbf{x}}+\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) \hat{\mathbf{y}}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \hat{\mathbf{z}} \\
\nabla^{2} \psi=\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}
\end{gathered}
$$

Los Alamos

Vector Operations in Cylindrical Coordinates

$$
\begin{array}{cc}
x=r \cos \theta & r=\sqrt{x^{2}+y^{2}} \\
y=r \sin \theta & \tan \theta=\frac{y}{x} \\
z=z & z=z \\
\boldsymbol{\nabla} \psi=\frac{\partial \psi}{\partial r} \hat{\mathbf{r}}+\frac{1}{r} \frac{\partial \psi}{\partial \theta} \hat{\boldsymbol{\theta}}+\frac{\partial \psi}{\partial z} \hat{\mathbf{z}} \\
\boldsymbol{\nabla} \cdot \mathbf{A}=\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{r}\right)+\frac{1}{r} \frac{\partial A_{\theta}}{\partial \theta}+\frac{\partial A_{z}}{\partial z} \\
\boldsymbol{\nabla} \times \mathbf{A}=\left(\frac{1}{r} \frac{\partial A_{z}}{\partial \theta}-\frac{\partial A_{\theta}}{\partial z}\right) \hat{\mathbf{r}}+\left(\frac{\partial A_{r}}{\partial z}-\frac{\partial A_{z}}{\partial r}\right) \hat{\boldsymbol{\theta}}+\frac{1}{r}\left(\frac{\partial}{\partial r}\left(r A_{\theta}\right)-\frac{\partial A_{r}}{\partial \theta}\right) \hat{\mathbf{z}}
\end{array}
$$

Note that

$$
\nabla \times \mathbf{A}=\frac{1}{r}\left|\begin{array}{ccc}
\hat{\mathbf{r}} & r \hat{\boldsymbol{\theta}} & \hat{\mathbf{z}} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
A_{r} & r A_{\theta} & A_{z}
\end{array}\right|
$$

$$
\nabla^{2} \psi=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}
$$

Units

$$
\begin{array}{r}
W=e U[\mathrm{eV}],[\text { electronVolt }] \quad 1 \mathrm{eV}=1.6 \cdot 10^{-19}[\mathrm{C}] \times 1[\mathrm{~V}]=1.6 \cdot 10^{-19} \mathrm{Joule} \\
1 \text { Joule }=1 \mathrm{Coulomb} \cdot 1 \mathrm{Volt}=\frac{\mathrm{kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2}}
\end{array}
$$

Electron energy

$$
\begin{aligned}
& m_{\text {electron }}=9.1 \cdot 10^{-31} \mathrm{~kg} \\
& c=3 \cdot 10^{8} \mathrm{~m} / \mathrm{sec} \\
& e=1.6 \cdot 10^{-19} \mathrm{Culomb} \\
& \frac{m_{\text {electron }} c^{2}}{e}=0.51092 \cdot 10^{6} \mathrm{Volt}
\end{aligned}
$$

$$
m_{\text {electron }} c^{2}=0.51092 \cdot 10^{6} \mathrm{eV}=0.51092 \mathrm{MeV}
$$

Proton energy

$$
m_{\text {proton }}=1.672 \cdot 10^{-27} \mathrm{~kg}=1836 m_{\text {electron }} \quad m_{\text {proton }} c^{2}=938.3 \mathrm{MeV}
$$

$$
\frac{m_{\text {proton }} c^{2}}{e}=938.3 \cdot 10^{6} \mathrm{Volt}
$$

Units (cont.)

Ion Energy

Atomic mass unit ($1 / 12$ the mass of one atom of carbon-12):

$$
1 u=1.660540 \times 10^{-27} \mathrm{~kg}
$$

$$
E_{a}=931.481 \mathrm{MeV}
$$

Proton mass: 1.007276 u Electron mass: 0.00054858 u

$$
E_{i o n}=931.481 \cdot A-0.511 \cdot Z[\mathrm{MeV}]
$$

A-atomic mass number
Z-number of removed electrons (ionization state)

Binding energy of removed electrons is neglected

Negative Ion of Hydrogen
H^{-}ion mass: 1.00837361135 u

$$
E_{H^{-}}=E_{\text {proton }}+2 \times E_{\text {electron }}=939.28 \mathrm{MeV}
$$

Units (cont.)

Particle momentum

$$
\frac{p}{m c}=\beta \gamma=\sqrt{\gamma^{2}-1} \quad p=\frac{m c^{2}}{c} \sqrt{\gamma^{2}-1}\left[\frac{G e V}{c}\right]
$$

Particle rigidity

$$
B \rho=\frac{p}{q}[T \cdot m]
$$

Example: proton beam with kinetic energy $\mathrm{W}=3 \mathrm{GeV}$:

$$
\begin{aligned}
& E=m c^{2}+W=3.938 G e V \quad \gamma=\frac{m c^{2}+W}{m c^{2}}=4.2 \quad \beta=\frac{\sqrt{\gamma^{2}-1}}{\gamma}=0.971 \\
& \frac{p}{m c}=\beta \gamma=\sqrt{\gamma^{2}-1}=4.079 \quad p=\frac{m c^{2}}{c} \sqrt{\gamma^{2}-1}=3.82 \frac{G e V}{c} \quad \frac{p}{e}=B \rho=12.7 \mathrm{~T} \cdot \mathrm{~m}
\end{aligned}
$$

Equations of Motion

Cartesian Coordinates

$$
\begin{array}{ll}
\frac{d x}{d t}=\frac{p_{x}}{m \gamma} & \frac{d p_{x}}{d t}=q\left(E_{x}+\frac{p_{y}}{m \gamma} B_{z}-\frac{p_{z}}{m \gamma} B_{y}\right) \\
\frac{d y}{d t}=\frac{p_{y}}{m \gamma} & \frac{d p_{y}}{d t}=q\left(E_{y}-\frac{p_{x}}{m \gamma} B_{z}+\frac{p_{z}}{m \gamma} B_{x}\right) \\
\frac{d z}{d t}=\frac{p_{z}}{m \gamma} & \frac{d p_{z}}{d t}=q\left(E_{z}+\frac{p_{x}}{m \gamma} B_{y}-\frac{p_{y}}{m \gamma} B_{x}\right)
\end{array}
$$

Cylindrical coordinates

$$
\begin{array}{ll}
\frac{d r}{d t}=\frac{p_{r}}{m \gamma} & \frac{d p_{r}}{d t}=\frac{p_{\theta}^{2}}{m \gamma r}+q\left(E_{r}+\frac{p_{\theta}}{m \gamma} B_{z}-\frac{p_{z}}{m \gamma} B_{\theta}\right) \\
\frac{d \theta}{d t}=\frac{p_{\theta}}{m \gamma r} & \frac{1}{r} \frac{d\left(r p_{\theta}\right)}{d t}=q\left(E_{\theta}+\frac{p_{z}}{m \gamma} B_{r}-\frac{p_{r}}{m \gamma} B_{z}\right)
\end{array}
$$

$$
\frac{d \vec{x}}{d t}=\overrightarrow{\mathrm{v}} \quad \frac{d \vec{p}}{d t}=q(\vec{E}+\overrightarrow{\mathrm{v}} \times \vec{B})
$$

Relationship between cylindrical and Cartesian coordinates.

$$
\frac{d z}{d t}=\frac{p_{z}}{m \gamma} \quad \frac{d p_{z}}{d t}=q\left(E_{z}+\frac{p_{r}}{m \gamma} B_{\theta}-\frac{p_{\theta}}{m \gamma} B_{r}\right)
$$ z-axis is directed to the reader.

Resonance Principle of Particle Acceleration

Alvarez accelerating structure

Field distribution in RF structure: $E_{z}(z, r, t)=E_{g}(z, r) \cos (\omega t)$
Time of flight between RF gaps $\quad t_{\text {flight }}=T_{R F \text { period }}=\frac{1}{f}$
Distance between RF gaps

$$
L=n \beta c T_{R F \text { period }}=n \beta \lambda
$$

RF Frequency

$$
\begin{gathered}
f \\
\omega=2 \pi f \\
\lambda=\frac{c}{f}
\end{gathered}
$$

Acceleration in linear resonance accelerator is based on synchronism between accelerating field and particles.

Acceleration in π - Structure

Accelerating structure with π - type standing wave.

Time of flight between RF gaps of π - structure

Distance between RF gaps of π - structure

$$
\begin{aligned}
& t_{\text {flight }}=\frac{T_{R F \text { period }}}{2} \\
& L=\frac{\beta c T_{R F \text { period }}}{2}=\frac{\beta \lambda}{2}
\end{aligned}
$$

Acceleration in π - Structure

Los Alamos
Acceleration in π - structure (Courtesy of Sergey Kurennoy).

Induction Accelerator

Fig. 1. Induction accelerator principle:
1- laminated iron core; 2 - switch; 3-pulse forming network; 4 - primary loop: 5-secondary (case).

Table 3. Parameters for Typical Induction Accelerators

Accelerator	Astron Injector Livermore 1963	ERA Injector Berkeley 1971	NEP 2 Injector Dubna r971	ATA Livermore 1983
Kinetic energy, MeV	3.7	4.0	30	50
Beam current on target, A	350	900	250	10,000
Pulse duration, ns	300	$2-45$	500	50
Pulse energy, kJ	0.4	0.1	3.8	25
Rep rate, pps	$0-60$	$0-5$	50	5
-Number of switch modules	300	17	750	200

$$
\oint \vec{E} \cdot \overrightarrow{d l}=-\frac{1}{c} \int_{s} \overrightarrow{d B} d \vec{t} \cdot \overrightarrow{d s}
$$

Overhead view of the Astron accelerator as it appeared when first put into operation.

- Number of

0-60
750

Maxwell's equations

$$
\begin{array}{lll}
& \text { Electric field } & \vec{E} \\
\operatorname{rot} \vec{E}=-\frac{\partial \vec{B}}{\partial t} & \text { Electric displacement field } & \vec{D}=\varepsilon_{o} \vec{E} \\
\operatorname{rot} \vec{H}=\frac{\partial \vec{D}}{\partial t}+\vec{j} & \text { Magnetic field } & \vec{B}=\mu_{o} \vec{H} \\
& \text { Magnetic field strength } & \vec{H}
\end{array}
$$

$$
\operatorname{div} \vec{D}=\rho
$$

$$
\text { Permittivity of free space } \quad \varepsilon_{o}=8.85 \cdot 10^{-12} \mathrm{~F} / \mathrm{m}
$$

$$
\operatorname{div} \vec{B}=0
$$

Permeability of free space $\quad \mu_{o}=4 \pi \cdot 10^{-7} \mathrm{H} / \mathrm{m}$

Electromagnetic Wave Equations

In the absence of charges, $\vec{j}=0, \rho=0$, Maxvell's equations are

$$
\begin{array}{ll}
\operatorname{rot} \vec{E}=-\frac{\partial \vec{B}}{\partial t} & \operatorname{div} \vec{E}=0 \\
\operatorname{rot} \vec{B}=\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t} & \operatorname{div} \vec{B}=0
\end{array}
$$

speed of light in free space:

$$
c=\frac{1}{\sqrt{\varepsilon_{o} \mu_{o}}}=2.99792458 \cdot 10^{8} \mathrm{~m} / \mathrm{sec}
$$

$$
\operatorname{rot} \operatorname{rot} \vec{E}=-\frac{\partial}{\partial t}(\operatorname{rot} \vec{B})=-\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}
$$

$$
\operatorname{rot} \operatorname{rot} \vec{B}=\frac{1}{c^{2}} \frac{\partial}{\partial t}(\operatorname{rot} \vec{E})=-\frac{1}{c^{2}} \frac{\partial^{2} \vec{B}}{\partial t^{2}}
$$

By using the vector identity

$$
\operatorname{rot} \operatorname{rot} \vec{A}=\operatorname{grad} \operatorname{div} \vec{A}-\Delta \vec{A}
$$

Taking into account that $\operatorname{div} \vec{E}=0, \operatorname{div} \vec{B}=0$ we receive wave equations:

$$
\Delta \vec{E}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0
$$

$$
\Delta \vec{B}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{B}}{\partial t^{2}}=0
$$

Components of Electromagnetic Field

Most of RF cavities are excited at a fundamental mode containing three components E_{z}, E_{r}, B_{θ}. They are connected through Maxwell's equations, therefore it is sufficient to find solution for one component only. Taking into account condition for axial-symmetric field ($\partial / \partial \theta=0$), wave equation for E_{z} component is

$$
\frac{\partial^{2} E_{z}}{\partial z^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial E_{z}}{\partial r}\right)-\frac{1}{c^{2}} \frac{\partial^{2} E_{z}}{\partial t^{2}}=0
$$

Radial component E_{z} can be determined from $\operatorname{div} \vec{E}=0$ as

$$
\operatorname{div} \vec{E}=\frac{1}{r} \frac{\partial}{\partial r}\left(r E_{r}\right)+\frac{\partial E_{z}}{\partial z}=0
$$

which gives

$$
E_{r}(r)=-\frac{1}{r} \int_{o}^{r} \frac{\partial E_{z}}{\partial z} r^{\prime} d r^{\prime}
$$

Azimuthal component of magnetic field is determined from - Los Alamos $\operatorname{rot} \vec{B}=\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t} \quad$ which gives $\quad B_{\theta}=\frac{1}{c^{2} r} \int_{o}^{r} \frac{\partial E_{z}}{\partial t} r^{\prime} d r^{\prime}$

Expansion of RF Field

Periodic distribution of RF field.

Electric field lines between the ends of drift tubes.

Expansion of RF Field (cont.)

Equations for Fourier coefficients of RF gap expansion:

Transverse wave number:

Solutions are Bessel functions:

Finally, expressions for spatial z-component $E_{g}(z, r)$

$$
\begin{aligned}
& \frac{1}{r} \frac{\partial A_{o}(r)}{\partial r}+\frac{\partial^{2} A_{o}(r)}{\partial r^{2}}+\left(\frac{\omega}{c}\right)^{2} A_{o}(r)=0, \quad m=0 \\
& \frac{1}{r} \frac{\partial A_{m}(r)}{\partial r}+\frac{\partial^{2} A_{m}(r)}{\partial r^{2}}-k_{m}^{2} A_{m}(r)=0, \quad m>0 \\
& k_{m}=\left(\frac{2 \pi m}{L}\right) \sqrt{1-\left(\frac{L}{m \lambda}\right)^{2}} \\
& A_{o}(r)=A_{o} J_{o}\left(\frac{r \omega}{c}\right), \quad m=0 \\
& A_{m}(r)=A_{m} I_{o}\left(k_{m} r\right), \quad m>0
\end{aligned}
$$

$$
E_{g}(r, z)=A_{o} J_{o}\left(2 \pi \frac{r}{\lambda}\right)+\sum_{m=1}^{\infty} A_{m} I_{o}\left(k_{m} r\right) \cos \left(\frac{2 \pi m z}{L}\right)
$$

Bessel Functions

Bessel functions of the order n are solutions $y=J_{n}(z)$ of differential Bessel equation:

$$
\frac{d^{2} y}{d z^{2}}+\frac{1}{z} \frac{d y}{d z}+\left(1-\frac{n^{2}}{z^{2}}\right) y=0
$$

Power representation of Bessel function:

$$
J_{n}(z)=\frac{1}{n!}\left(\frac{z}{2}\right)^{n}-\frac{1}{1!(n+1)!}\left(\frac{z}{2}\right)^{n+2}+\frac{1}{2!(n+2)!}\left(\frac{z}{2}\right)^{n+4}-\ldots=\left(\frac{z}{2}\right)^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(n+k+1)}\left(\frac{z}{2}\right)^{2 k}
$$

Integral representation of Bessel functions:

$$
J_{n}(z)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \theta-z \sin \theta) d \theta
$$

Special cases for $n=0,1$:

$$
J_{o}(z)=1-\frac{z^{2}}{4}+\frac{z^{4}}{64}-\ldots . . \quad J_{1}(z)=-J_{o}^{\prime}(z)=\frac{z}{2}-\frac{z^{3}}{16}+\ldots .
$$

Zeros $v_{n m}$ of Bessel function $J_{n}(z)=0$.

[^0]
Modified Bessel Functions

Modified Bessel functions of the n-th order $I_{n}(z)=i^{-n} J_{n}(i z)$ are solutions of modified Bessel differential equation:

$$
\frac{d^{2} y}{d z^{2}}+\frac{1}{z} \frac{d y}{d z}-\left(1+\frac{n^{2}}{z^{2}}\right) y=0
$$

Power representation of modified Bessel functions: $I_{n}(z)=\sum_{k=0}^{\infty} \frac{1}{k!\Gamma(n+k+1)}\left(\frac{z}{2}\right)^{n+2 k}$

Special cases for $n=0,1$:

$$
\begin{aligned}
& I_{o}(z)=1+\frac{z^{2}}{4}+\frac{z^{4}}{64}+\frac{z^{6}}{2304}+\ldots \\
& I_{1}(z)=I_{o}^{\prime}(z)=\frac{z}{2}+\frac{z^{3}}{16}+\frac{z^{5}}{384}+\ldots
\end{aligned}
$$

Modified Bessel functions of $1^{\text {st }}$ kind, $I_{n}(x)$.

Integrals and Derivatives of Bessel Functions

Let $Z_{n}(x)$ to be an arbitrary Bessel function:

$$
\begin{aligned}
& \frac{d Z_{n}(x)}{d x}=-\frac{n}{x} Z_{n}(x)+Z_{n-1}(x)=\frac{n}{x} Z_{n}(x)-Z_{n+1}(x) \\
& \int x^{n+1} Z_{n}(x) d x=x^{n+1} Z_{n+1}(x)
\end{aligned}
$$

Particularly

$$
\begin{aligned}
& Z_{o}^{\prime}(x)=-Z_{1}(x) \\
& Z_{1}^{\prime}(x)=Z_{o}(x)-\frac{Z_{1}(x)}{x}
\end{aligned}
$$

Expansion of RF Field (cont.)

To get an approximate expression for coefficients A_{m}, let us assume the step-function distribution of component inside RF gap of width at bore radius

$$
\begin{aligned}
& r=a \\
& E_{g}(a, r)= \begin{cases}E_{a}, & 0 \leq|z| \leq \frac{g}{2} \\
0, & \frac{g}{2} \leq|z|\end{cases}
\end{aligned}
$$

Expansion of periodic step-function

$$
E_{g}(a, z)=E_{a}\left[\frac{g}{L}+\frac{2}{\pi} \sum_{m=1}^{\infty} \frac{1}{m} \sin \left(\pi m \frac{g}{L}\right) \cos \left(2 \pi m \frac{z}{L}\right)\right]
$$

Field expansion in RF gap

$$
E_{g}(r, z)=A_{o} J_{o}\left(2 \pi \frac{r}{\lambda}\right)+\sum_{m=1}^{\infty} A_{m} I_{o}\left(k_{m} r\right) \cos \left(\frac{2 \pi m z}{L}\right)
$$

Coefficients in field expansion:

NATIONAL LABORATORY

$$
A_{o}=\frac{E_{a}}{J_{o}\left(2 \pi \frac{a}{\lambda}\right)} \frac{g}{L}
$$

$$
A_{m}=\frac{2 E_{a}}{I_{o}\left(k_{m} a\right)} \frac{g}{L} \frac{\sin \left(\pi m \frac{g}{L}\right)}{\pi m \frac{g}{L}}
$$

Energy Gain of Synchronous Particle in RF Gap

Equation for change of longitudinal particle momentum

$$
\frac{d p_{z}}{d t}=q E_{z}(z, r, t)
$$

From relativistic equations $p_{z}=m c \sqrt{\gamma^{2}-1}$
$d p_{z}=m c^{2} d \gamma /(\beta c) \quad d W=m c^{2} d \gamma$
the equation for change of particle energy

Increment of energy of synchronous particle per RF gap

$$
\Delta W_{s}=q \int_{-L / 2}^{L / 2} E_{g}(z) \cos \omega t_{s}(z) d z
$$

When synchronous particle arrive in the center of the gap, $z=0$, the RF phase is equal to φ_{s}. The time of arrival of synchronous particle in point with coordinate z

$$
t_{s}(z) \approx \frac{\varphi_{s}}{\omega}+\frac{z}{\beta c} \quad \text { or } \quad \omega t_{s}(z)=\varphi_{s}+k_{z} z
$$

Longitudinal wave number $\quad k_{z}=\frac{2 \pi}{\beta \lambda}$

Energy Gain of Synchronous Particle in RF Gap (cont.)

Using equity $\cos \omega t_{s}=\cos \varphi_{s} \cos k_{z} z-\sin \varphi_{s} \sin k_{z} z$ the increment of synchronous particle energy per RF gap:

$$
\Delta W_{s}=q \cos \varphi_{s}\left[\int_{-L / 2}^{L / 2} E_{g}(z) \cos \left(k_{z} z\right) d z-\operatorname{tg} \varphi_{s} \int_{-L / 2}^{L / 2} E_{g}(z) \sin \left(k_{z} z\right) d z\right]
$$

Let us multiply and divide this expression by $E_{o} L$, where we introduce average field E_{o} of the accelerating gap across accelerating period (note that $E_{o}=A_{o}$):

$$
E_{o}=\frac{1}{L} \int_{-L / 2}^{L / 2} E_{g}(z) d z=\frac{E_{a}}{J_{o}\left(2 \pi \frac{a}{\lambda}\right)} \frac{g}{L} \approx E_{a} \frac{g}{L}
$$

Effective voltage applied to RF gap:

$$
U=E_{o} L
$$

The increment of synchronous particle energy per RF gap can be written as:

$$
\Delta W_{s}=q E_{o} T L \cos \varphi_{s}
$$

where transit time factor

$$
T=\frac{1}{E_{o} L}\left[\int_{-L / 2}^{L / 2} E_{g}(z) \cos \left(k_{z} z\right) d z-\operatorname{tg} \varphi_{s} \int_{-L / 2}^{L / 2} E_{g}(z) \sin \left(k_{z} z\right) d z\right]
$$

Transit Time Factor

Transit time factor indicates effectiveness of transformation of RF field into particle energy. It mostly depends on field distribution within the gap, which is determined by RF gap geometry.
Transit time factor $T=\frac{A_{n}}{2 E_{o}}$, where A_{n} is the amplitude of n-th harmonics of Fourier
field expansion In most accelerators, synchronism is provided for $n=1$, therefore:

$$
T=\frac{J_{o}\left(2 \pi \frac{a}{\lambda}\right)}{I_{o}\left(\frac{2 \pi a}{\beta \gamma \lambda}\right)} \frac{\sin \left(\frac{\pi g}{\beta \lambda}\right)}{\frac{\pi g}{\beta \lambda}}
$$

In accelerators usually aperture of the channel is substantially smaller than wavelength, $a \ll \lambda$, then $J_{o}(2 \pi a / \lambda) \approx 1$, and transit time factor is

$$
T=\frac{1}{I_{o}\left(\frac{2 \pi a}{\beta \gamma \lambda}\right)} \frac{\sin \left(\frac{\pi g}{\beta \lambda}\right)}{\frac{\pi g}{\beta \lambda}}
$$

Y.K. Batygin Basics of Beam Acceleration USPAS 2019

Transit Time Factor for Two-Gap Cavity

Design of Accelerator Structure

Specify dependence of transit time factor on velocity: $T=T(\beta)$.
From equation for energy gain one can express $d z_{s}$

$$
\begin{array}{ll}
\frac{d W_{s}}{d z_{s}}=q E_{o} T \cos \varphi_{s} \rightarrow & \rightarrow d z_{s}=\frac{d W_{s}}{q E_{o} T \cos \varphi_{s}} \\
\text { d equation: } & d t_{s}=\frac{d z_{s}}{\beta_{s} c}
\end{array}
$$

Second equation:
Using equation $d W_{s}=m c^{2} \beta \gamma^{3} d \beta$ we can rewrite them as

$$
\begin{aligned}
& d z_{s}=\left(\frac{m c^{2}}{q E_{o} \cos \varphi_{s}}\right) \frac{\beta d \beta}{T(\beta)\left(1-\beta^{2}\right)^{3 / 2}} \\
& d t_{s}=\left(\frac{m c}{q E_{o} \cos \varphi_{s}}\right) \frac{d \beta}{T(\beta)\left(1-\beta^{2}\right)^{3 / 2}}
\end{aligned}
$$

Los Alamos

Design of Accelerator Structure (cont.)

Integration gives:

$$
\begin{aligned}
& z_{s}=\left(\frac{m c^{2}}{q E_{o} \cos \varphi_{s}}\right) \int_{\beta_{o}}^{\beta} \frac{\beta d \beta}{\left(1-\beta^{2}\right)^{3 / 2} T(\beta)} \\
& t_{s}=\left(\frac{m c}{q E_{o} \cos \varphi_{s}}\right) \int_{\beta_{o}}^{\beta} \frac{d \beta}{\left(1-\beta^{2}\right)^{3 / 2} T(\beta)}
\end{aligned}
$$

Using β as independent variable, one can get parametric dependence $z_{s}\left(t_{s}\right)$. Increment in time $\Delta t_{s}=k(2 \pi / \omega)$ corresponds to distance between centers of adjacent gaps $\Delta z_{s}=L$. Gap and drift tube length are determined by adjustment of the value of transit time factor $T=T(\beta, \lambda, a, g)$.

Calculation the lengths of accelerating periods.

Simplified Method of Design of Accelerator Structure

Increment of energy of synchronous particle per RF gap

Increment of energy through increment of relativistic factor

$$
\begin{gathered}
\Delta W_{s}=q E_{o} T L \cos \varphi_{s} \\
d W=m c^{2} d \gamma \\
d \gamma=\beta \gamma^{3} d \beta
\end{gathered}
$$

Increment of velocity of synchronous particle per RF gap:

$$
\beta_{n} \approx \beta_{n-1}+k \frac{q E_{o} T\left(\beta_{s}\right) \lambda}{m c^{2} \gamma_{s}^{3}} \cos \varphi_{s}
$$

Average velocity at RF gap:

$$
\beta_{s}=\frac{\beta_{n}+\beta_{n-1}}{2}
$$

Cell length: $L=k \beta_{s} \lambda(k=1$ for 0 mode; $k=1 / 2$ for π-mode $)$
Drift tube length $l=L-\mathrm{g}$

Autophasing: Stable and Unstable Phases

RF phase of synchronous particle is selected to be when the field is increasing in time. Earlier particle receive smaller energy kick than the synchronous one and will be slowing down with respect to synchronous particle. Particles, which arrive later to accelerating gap, receive larger energy gain, and will run down the synchronous particle. When non-equilibrium particles exchange their positions, this process is repeated for new particles setup, which results in stable longitudinal oscillations around synchronous particle. While synchronous particle monotonically increases it's energy, other particle perform oscillation around synchronous particle, and also increase their energy. Such principle is called resonance principle of particle acceleration.

Beam Bunching: Analogy with Traffic

Continuous traffic

Bunched car traffic created by a traffic light

Standing Wave as a Combination of Traveling Waves

$$
E_{o} \cos \left(k_{z} z\right) \cos (\omega t)=\frac{E_{o}}{2}\left[\cos \left(\omega t-k_{z} z\right)+\cos \left(\omega t+k_{z} z\right)\right]
$$

Y.K. Batygin Basics of Beam Acceleration USPAS 2019

Equivalent Traveling Wave

Increment of energy of arbitrary particle in RF gap

$$
\Delta W=q \int_{-L / 2}^{L / 2} E_{g}(z, r) \cos (\omega t) d z
$$

The RF phase at the time of arrival of arbitrary particle in point with coordinate z

$$
\omega t(z)=\varphi+k_{z} z
$$

Standing wave can be represented as combination of traveling waves:

$$
\begin{aligned}
\sum_{m=1}^{\infty} \cos \left(\frac{2 \pi m z}{L}\right) \cos (\omega t)= & \frac{1}{2} \sum_{m=1}^{\infty} \cos \left(\omega t-\frac{2 \pi m z}{L}\right)+\frac{1}{2} \sum_{m=1}^{\infty} \cos \left(\omega t+\frac{2 \pi m z}{L}\right) \\
& \text { traveling waves } \\
& \text { in } z-\text { direction }
\end{aligned} \quad \begin{aligned}
& \text { traveling waves in } \\
& \text { opposite direction }
\end{aligned}
$$

Only $m=1$ harmonic of traveling waves propagating in z-direction contributes to energy gain of particle. In general case $m=n$ (where $L=n \beta \lambda$).

$$
\begin{aligned}
& \int_{-L / 2}^{L / 2} \cos \left(\frac{2 \pi z}{L}-\frac{2 \pi m z}{L}+\varphi\right) d z= \begin{cases}L \cos \varphi, & m=1 \\
0, & m \neq 1\end{cases} \\
& \int_{-L / 2}^{L / 2} \cos \left(\frac{2 \pi z}{L}+\frac{2 \pi m z}{L}+\varphi\right) d z=0
\end{aligned}
$$

Equivalent Traveling Wave (cont.)

Increment of energy of arbitrary particle in RF gap

$$
\Delta W=q E_{o} L T I_{o}\left(\frac{2 \pi r}{\beta \gamma \lambda}\right) \cos \varphi
$$

Taking into account equation for increment of particle energy $d W / d z=q E_{z}(z, r, t)$, the equivalent accelerating traveling wave is

Amplitude of equivalent traveling wave

$$
\begin{aligned}
E_{z} & =E_{o} T I_{o}\left(\frac{k_{z} r}{\gamma}\right) \cos \varphi \\
E & =E_{o} T
\end{aligned}
$$

Electromagnetic field of equivalent traveling wave

$$
\begin{aligned}
& E_{z}=E I_{o}\left(\frac{k_{z} r}{\gamma}\right) \cos \varphi \\
& E_{r}=-\gamma E I_{1}\left(\frac{k_{z} r}{\gamma}\right) \sin \varphi \\
& B_{\theta}=-\frac{\beta \gamma}{c} E I_{1}\left(\frac{k_{z} r}{\gamma}\right) \sin \varphi
\end{aligned}
$$

Longitudinal Dynamics in Equivalent Traveling Wave

Phase of particle in traveling wave: $\quad \varphi=\omega t-k_{z} z$
Phase velocity: $\varphi=$ const
Wave number

$$
\begin{array}{rlr}
\varphi & =\omega t-k_{z} z \\
d \varphi & \approx \omega d t-k_{z} d z=0 \\
k_{z}(z) & =\frac{2 \pi}{\beta_{p h}(z) \lambda} & v_{p h}=\frac{\omega}{k_{z}} \\
\frac{d \varphi}{d z} & =\frac{2 \pi}{\lambda}\left(\frac{1}{\beta}-\frac{1}{\beta_{p h}(z)}\right) \\
\frac{d W}{d z} & =q E \cos \varphi \\
\end{array}
$$

Longitudinal equations of motion of arbitrary particle

Auto-phasing principle: particle with $\beta>\beta_{p h}$ is slowing down with respect to synchronous particle; particle with $\beta<\beta_{p h}$ is accelerating with respect to synchronous particle. For synchronous particle $\beta=\beta_{p h}(z)$. Dependence $\beta_{p h}(z)$ is determined by geometry of accelerating structure. Synchronous phase is selected automatically with certain value of accelerating field E :

$$
\cos \varphi_{s}=\frac{1}{q E} \frac{d W_{s}}{d z}
$$

With change of field E, synchronous phase is changing, and particles start oscillate around new synchronous phase.

Oscillations Around Synchronous Particle

Equations of longitudinal motion in traveling wave near axis

$$
I_{o}\left(\frac{k_{z} r}{\gamma}\right) \approx 1
$$

Longitudinal momentum deviation from synchronous particle

Deviation from synchronous particle

Phase of particle in traveling wave:

Equations of particle motion around synchronous particle

$$
\frac{d \zeta}{d t}=\frac{d z}{d t}-\frac{d z_{s}}{d t}=d(\beta c)
$$

$$
\begin{gathered}
\frac{d p_{\zeta}}{d t}=q E\left[\cos \left(\varphi_{s}-k_{z} \zeta\right)-\cos \varphi_{s}\right] \\
\frac{d \zeta}{d t}=\frac{p_{\zeta}}{m \gamma^{3}}
\end{gathered}
$$

$$
\begin{aligned}
& p_{\zeta}=p_{z}-p_{s} \\
& \zeta=z-z_{s}
\end{aligned}
$$

$$
\varphi=\omega t-k_{z}\left(z_{s}+\zeta\right)=\varphi_{s}-k_{z} \zeta
$$

$$
\begin{aligned}
& \frac{d p_{z}}{d t}=q E \cos \varphi \\
& \frac{d z}{d t}=\frac{p_{z}}{m \gamma}
\end{aligned}
$$

$$
d \beta=\frac{1}{\gamma^{3}} \frac{d p}{m c}
$$

Hamiltonian of Longitudinal Oscillations

Equations of motion around synchronous particle can be derived from Hamiltonian

Hamiltonian equations of motion:

$$
\begin{aligned}
& H=\frac{p_{\zeta}^{2}}{2 m \gamma^{3}}+\frac{q E}{k_{z}}\left[\sin \left(\varphi_{s}-k_{z} \zeta\right)+k_{z} \zeta \cos \varphi_{s}\right] \\
& \frac{d \zeta}{d t}=\frac{\partial H}{\partial p_{\zeta}} \quad \frac{d p_{\zeta}}{d t}=-\frac{\partial H}{\partial \zeta}
\end{aligned}
$$

Hamiltonian describes particle oscillations around synchronous particle, where parameters γ, E, k_{z} depend on longitudinal position. Let us assume that parameters γ, E, k_{z}, are changing slowly during particle oscillations. Hamiltonian with constant values of γ, E, k_{z}, is a constant of motion. Actually, in this case:

$$
\frac{d H}{d t}=\frac{\partial H}{\partial t}+\frac{\partial H}{\partial \zeta} \frac{d \zeta}{d t}+\frac{\partial H}{\partial p_{\zeta}} \frac{d p_{\zeta}}{d t}=\frac{\partial H}{\partial \zeta} \frac{\partial H}{\partial p_{\zeta}}-\frac{\partial H}{\partial p_{\zeta}} \frac{\partial H}{\partial \zeta}=0
$$

Time-independent Hamiltonian coincides with particle energy (kinetic + potential). Equation $d H / d t=0$ expresees conservation of energy in isolated system (conservative approximation). In this case, we get equation for phase space trajectory $p_{\zeta}=p_{\zeta}(\zeta)$ as equation
$H\left(\zeta, p_{\zeta}\right)=$ const

Hamiltonian of Longitudinal Oscillations in ($\Delta W, \psi$)

Another pair of canonical variables: $\psi=\varphi-\varphi_{s}, \Delta W=W_{s}-W$
Phase deviation from synchronous particle

$$
\psi=-k_{z} \zeta
$$

Inverse energy deviation from synchronous particle:
$\Delta W=-\beta c p_{\zeta}$

Hamiltonian of energy-phase oscillations around synchronous particle:

$$
H=\frac{(\Delta W)^{2}}{2 m \gamma_{s}^{3} \beta_{s}^{2} c^{2}} \omega+q E \beta c\left[\sin \left(\varphi_{s}+\psi\right)-\psi \cos \varphi_{s}\right]
$$

Equations of motions:

$$
\begin{aligned}
& \frac{d \Delta W}{d t}=q E \beta c\left[\cos \varphi_{s}-\cos \left(\varphi_{s}+\psi\right)\right] \\
& \frac{d \psi}{d t}=\frac{\Delta W}{m \gamma_{s}^{3} \beta_{s}^{2} c^{2}} \omega
\end{aligned}
$$

Accelerating Field, Potential Function, and Separatrix

Potential function:
$V(\psi)=\frac{q E}{k_{z}}\left[\sin \left(\varphi_{s}+\psi\right)-\psi \cos \varphi_{s}\right]$

Separatrix of longitudinal phase space oscillations including acceleration.

Equation of Separatrix

Derivative of potential function determines two extremum points: stable point $\quad \psi=0$ unstable point $\psi=-2 \varphi_{s}$.

$$
\frac{d V}{d \psi}=\frac{q E}{k_{z}}\left[\cos \left(\varphi_{s}+\psi\right)-\cos \varphi_{s}\right]=0
$$

To be stable, potential function must have minimum in extremum point $\psi=0$, or the second derivative hast to be positive

Stability condition $\sin \varphi_{s}<0$

$$
\frac{d^{2} V(0)}{d \psi^{2}}=-\frac{q E}{k_{z}} \sin \varphi_{s}>0
$$

$$
\varphi_{s}<0
$$

Hamiltonian, corresponding to separatrix

$$
H_{s e p}=H\left(p_{\zeta}=0, \psi=-2 \varphi_{s}\right)
$$

$$
H_{s e p}=\frac{q E}{k_{z}}\left[-\sin \varphi_{s}+2 \varphi_{s} \cos \varphi_{s}\right]
$$

Equation for separatrix

$$
\frac{p_{\zeta}^{2}}{2 m \gamma^{3}}+\frac{q E}{k_{z}}\left[\sin \left(\varphi_{s}+\psi\right)-\psi \cos \varphi_{s}+\sin \varphi_{s}-2 \varphi_{s} \cos \varphi_{s}\right]=0
$$

Phase Width of Separatrix

Phase length of separatrix Φ_{s} is determined from separatrix

$$
\sin \left(\varphi_{s}+\psi\right)-\psi \cos \varphi_{s}+\sin \varphi_{s}-2 \varphi_{s} \cos \varphi_{s}=0
$$ equation assuming $p_{\zeta}=0$

Equation has two roots $\psi_{1}=-2 \varphi_{s}$, and ψ_{2}. Width of separatrix is $\Phi_{s}=\psi_{2}+2 / \varphi_{s} /$ Substitution $\psi_{2}=\Phi_{s}-2 / \varphi_{s} /$ into upper equation gives expression for determination of phase width of separatrix:

$$
\operatorname{tg}\left|\varphi_{s}\right|=\frac{\Phi_{s}-\sin \Phi_{s}}{1-\cos \Phi_{s}}
$$

For small values of synchronous phase, $\operatorname{tg} \varphi_{s} \approx \varphi_{s} \sin \Phi_{s} \approx \Phi_{s}-\Phi_{s}^{3} / 6$ $\cos \Phi_{s} \approx 1-\Phi_{s}^{2} / 2$ phase width of separatrix

$$
\Phi_{s} \approx 3\left|\varphi_{s}\right|
$$

Therefore, $\psi_{2} \approx \varphi_{s}$

Phase width of separatrix as a function of synchronous phase.

Frequency of Linear Small Amplitude Oscillations

Equation for longitudinal oscillations

$$
\frac{d^{2} \zeta}{d t^{2}}=\frac{q E}{m \gamma^{3}}\left[\cos \left(\varphi_{s}-k_{z} \zeta\right)-\cos \varphi_{s}\right]
$$

For small amplitude oscillations

$$
\cos \left(\varphi_{s}-k_{z} \zeta\right) \approx \cos \varphi_{s}+k_{z} \zeta \sin \varphi_{s}
$$

$$
\frac{d^{2} \zeta}{d t^{2}}+\left(\frac{q E k_{z}\left|\sin \varphi_{s}\right|}{m \gamma^{3}}\right) \zeta=0
$$

Frequency of small amplitude linear oscillations

$$
\Omega=\sqrt{\frac{q E k_{z}\left|\sin \varphi_{s}\right|}{m \gamma^{3}}}
$$

$$
\frac{\Omega}{\omega}=\sqrt{\frac{q E \lambda}{m c^{2}} \frac{\left|\sin \varphi_{s}\right|}{2 \pi \beta \gamma^{3}}}
$$

Distortion of the longitudinal phase space due to nonlineartity of longitudinal forces.

At the separatrix $k_{z} \zeta=2 \varphi_{s}$, frequency is zero: $\quad \cos \left(\varphi_{s}-k_{z} \zeta\right)-\cos \varphi_{s}=0$

Hamiltonian of Linear Small Amplitude Oscillations

From Hamiltonian of longitudinal oscillations

$$
H=\frac{p_{\zeta}^{2}}{2 m \gamma^{3}}+\frac{q E}{k_{z}}\left[\sin \left(\varphi_{s}-k_{z} \zeta\right)+k_{z} \zeta \cos \varphi_{s}\right]
$$

expanding trigonometric function

$$
\sin \left(\varphi_{s}-k_{z} \zeta\right) \approx \sin \varphi_{s}-k_{z} \zeta \cos \varphi_{s}-\frac{\left(k_{z} \zeta\right)^{2}}{2} \sin \varphi_{s}
$$

Hamiltonian of small linear oscillations:

$$
H=\frac{p_{\zeta}^{2}}{2 m \gamma^{3}}+m \gamma^{3} \Omega^{2} \frac{\zeta^{2}}{2}
$$

Example of Longitudinal Oscillations

Longitudinal oscillations in RF field with $\varphi_{s}=-90^{\circ}$ (Courtesy of Larry Rybarcyk).

Phase Advance of Longitudinal Oscillations

Equation of linear longitudinal oscillations
Change variable $z=\beta c t$

$$
\begin{aligned}
& \frac{d^{2} \zeta}{d t^{2}}+\Omega^{2} \zeta=0 \\
& \frac{d^{2} \zeta}{d z^{2}}+\left(\frac{\Omega}{\beta c}\right)^{2} \zeta=0
\end{aligned}
$$

Solution of equation of longitudinal oscillations

$$
\zeta=\zeta_{o} \cos \left(\frac{\Omega}{\beta c} z+\psi_{o}\right)
$$

Let S to be a period of focusing structure. Phase advance of longitudinal oscillations per focusing period

$$
\mu_{o l}=\frac{\Omega}{\beta c} S=\sqrt{2 \pi\left(\frac{q E \lambda}{m c^{2}}\right) \frac{\left|\sin \varphi_{s}\right|}{\beta \gamma^{3}}}\left(\frac{S}{\beta \lambda}\right)
$$

Phase advance of longitudinal oscillations per accelerating period

$$
\mu_{o a}=\frac{\Omega}{\beta c} L=\sqrt{2 \pi\left(\frac{q E \lambda}{m c^{2}}\right) \frac{\left|\sin \varphi_{s}\right|}{\beta \gamma^{3}}}\left(\frac{L}{\beta \lambda}\right)
$$

For Alvarez structure $L=\beta \lambda$, for π - mode structures $L=\beta \lambda / 2$

Longitudinal Acceptance

Longitudinal acceptance is a phase space area of stable oscillations available for the beam (area of separatrix). Let us determine longitudinal acceptance using elliptical approximation to separatrix.

The half - width of separatrix in momentum is determined from separatrix equation

$$
\frac{p_{\zeta s e p}}{m c}=2 \beta \gamma^{3} \frac{\Omega}{\omega} \sqrt{1-\frac{\varphi_{s}}{\operatorname{tg} \varphi_{s}}}
$$ assuming $\psi=0$:

Hamiltonian $H=\frac{p_{\zeta}^{2}}{2 m \gamma^{3}}+m \gamma^{3} \Omega^{2} \frac{\zeta^{2}}{2}$
is constant along elliptical trajectory.
Maximal value of ζ at ellipse is $m \gamma^{3} \Omega^{2} \frac{\zeta_{\text {sep }}^{2}}{2}=\frac{p_{\zeta_{\text {sep }}}^{2}}{2 m \gamma^{3}}$

Elliptical approximation of separatrix
or $\zeta_{\text {sep }}=2 \frac{\beta c}{\omega} \sqrt{1-\frac{\varphi_{s}}{\operatorname{tg} \varphi_{s}}}$

Taking approximation $\operatorname{tg} \varphi_{s} \approx \varphi_{s}+\varphi_{s}^{3} / 3$

Longitudinal Acceptance (cont.)

Area of separatrix ellipse is $\pi \zeta_{\text {sep }}\left(p_{\text {sep }} / m c\right)$. Phase space area of acceptance is determined as a product of ellipse semi-axis:

$$
\varepsilon_{a c c}=\zeta_{s e p} \frac{p_{s e p}}{m c}=\frac{2}{\pi} \lambda \beta^{2} \gamma^{3}\left(\frac{\Omega}{\omega}\right)\left(1-\frac{\varphi_{s}}{\operatorname{tg} \varphi_{s}}\right)
$$

The value of π is not included in the value of acceptance, but is included in units of acceptance ($\pi \mathrm{m}$ radian), or, more often ($\pi \mathrm{cm} \mathrm{mrad}$).
Using approximation $1-\frac{\varphi_{s}}{\operatorname{tg} \varphi_{s}} \approx \frac{\varphi_{s}^{2}}{3}$, normalized longitudinal acceptance

$$
\varepsilon_{a c c}=\frac{2}{3 \pi} \beta^{2} \gamma^{3}\left(\frac{\Omega}{\omega}\right) \varphi_{s}^{2} \lambda
$$

Often longitudinal acceptance and beam emittance are determined in phase plane $\left(\varphi-\varphi_{s}, W-W_{s}\right)$ in units ($\pi \mathrm{keV} \mathrm{deg}$).
Relationship between phase and longitudinal coordinate and between energy and momentum

$$
\Delta \varphi=360^{\circ} \frac{\zeta}{\beta \lambda}
$$

Transformation of longitudinal phase space area in

$$
\Delta W=m c^{2} \beta\left(\frac{\Delta p}{m c}\right)
$$ different units:

$$
\breve{\varepsilon}_{a c c}[\pi \cdot \mathrm{keV} \cdot \mathrm{deg}]=\varepsilon_{a c c}[\pi \cdot \mathrm{~m} \cdot \mathrm{rad}] \frac{360^{o}}{\lambda[\mathrm{~m}]} \mathrm{mc} c^{2}[\mathrm{keV}]
$$

Longitudinal Acceptance: Example

LANL DTL Acceptance (red)

Accelerating gradient $E=E_{o} T \quad$ 1.6 MV/m Synchronous phase $\varphi_{s} \quad-26^{\circ}$ Wavelength, $\lambda \quad 1.49 \mathrm{~m}$ Energy 750 keV

Velocity, β
0.04

Longitudinal frequency:

$$
\frac{\Omega}{\omega}=\sqrt{\frac{q E \lambda}{m c^{2}} \frac{\left|\sin \varphi_{s}\right|}{2 \pi \beta \gamma^{3}}}=0.0665
$$

DTL Longitudinal acceptance:

$$
\varepsilon_{a c c}=\frac{2}{\pi} \lambda \beta^{2} \gamma^{3}\left(\frac{\Omega}{\omega}\right)\left(1-\frac{\varphi_{s}}{\operatorname{tg} \varphi_{s}}\right)=7.17 \cdot 10^{-6} \pi \mathrm{mrad}=1.62 \pi \mathrm{MeV} \mathrm{deg}
$$

Unnormalized Longitudinal Beam Emittance

Unnormalized longitudinal emittance of matched beam:

$$
\ni_{z}=\zeta_{\text {max }}^{2} \frac{\Omega}{\beta c}
$$

Y.K. Batygin Basics of Beam Acceleration USPAS 2019

Normalized Longitudinal Beam Emittance

$$
\begin{gathered}
\frac{d \zeta}{d t}=d(\beta c) \\
d \beta=\frac{1}{\gamma^{3}} \frac{d p}{m c} \\
\zeta \quad \frac{d \zeta}{d z}=\frac{d(\beta c)}{\beta c}=\frac{1}{\beta \gamma^{3}} \frac{d p}{m c} \\
\frac{p_{\zeta \text { max }}}{m c}=\zeta_{\max } \gamma^{3} \frac{\Omega}{c}=2 \pi\left(\frac{\zeta_{\text {max }}}{\lambda}\right)\left(\frac{\Omega}{\omega}\right) \gamma^{3} \\
\hline
\end{gathered}
$$

Normalized longitudinal emittance of matched beam:

$$
\varepsilon_{z}=\beta \gamma^{3} \ni_{z}=\zeta_{\max }^{2} \gamma^{3} \frac{\Omega}{c}=2 \pi\left(\frac{\zeta_{\max }^{2}}{\lambda}\right)\left(\frac{\Omega}{\omega}\right) \gamma^{3}
$$

Adiabatic Damping of Longitudinal Oscillations

Previous analysis was performed in conservative approximation assuming accelerator parameters are constant along the machine. Consider now effect of acceleration on longitudinal oscillations. Equations of motion for small oscillations around synchronous particle.

Hamiltonian of linear oscillations

$$
H=\frac{p_{\zeta}^{2}}{2 m \gamma^{3}}+m \gamma^{3} \Omega^{2} \frac{\zeta^{2}}{2}
$$

Along phase space trajectory $H=$ const. Let us divide expression for Hamiltonian by H. Phase space trajectory is an ellipse

Semi-axis of ellipse

$$
p_{\zeta \max }=\sqrt{2 H m \gamma^{3}} \quad \zeta_{\max }=\frac{1}{\Omega} \sqrt{\frac{2 H}{m \gamma^{3}}}
$$

The value of Hamiltonian, H, is the energy of particle oscillation around synchronous particle. Product of semi-axis of ellipse, gives the value of phase space area comprised by a particle performing linear longitudinal oscillations. Largest phase space trajectory comprises longitudinal beam emittance:

NATIONAL LABORATORY

$$
\varepsilon_{z}=\frac{p_{\zeta \max }}{m c} \zeta_{\max }=\frac{2 H}{m c \Omega}
$$

Adiabatic Damping of Longitudinal Oscillations (cont.)

If parameters of accelerator are changing adiabatically along the channel, the value of beam ellipse in phase space is conserved according to theorem of adiabatic invariant. In this case, energy of particle oscillation around synchronous particle, H, is proportional to frequency of longitudinal oscillation, Ω :

$$
H \sim \Omega
$$

Adiabatic change of parameters means that parameters are changing slowly during one oscillation period of $2 \pi / \Omega$.

The semi-axes of beam ellipse are changing as

$$
\zeta_{\max }=\sqrt{\frac{\varepsilon_{z} c}{\gamma^{3} \Omega}} \sim \frac{1}{\gamma^{3 / 2} \Omega^{1 / 2}} \quad \frac{p_{\zeta \max }}{m c}=\sqrt{\frac{\gamma^{3} \varepsilon_{z} \Omega}{c}} \sim \gamma^{3 / 2} \Omega^{1 / 2}
$$

Adiabatic Damping of Longitudinal Oscillations (cont.)

Many accelerators are designed keeping the constant values of equivalent traveling wave, E, and synchronous phase φ_{s}. In this case, longitudinal oscillation frequency drops as

$$
\Omega \sim \frac{1}{\beta^{1 / 2} \gamma^{3 / 2}}
$$

Semi-axes of beam ellipse at phase plane are changing as

$$
\zeta_{\max } \sim \frac{\beta^{1 / 4}}{\gamma^{3 / 4}} \quad p_{\zeta \max } \sim \frac{\gamma^{3 / 4}}{\beta^{1 / 4}}
$$

Phase length of the bunch and relative momentum spread drop as
$\Delta \psi \sim \frac{1}{(\beta \gamma)^{3 / 4}}$

$$
\frac{\Delta p}{p_{s}} \sim \frac{1}{\beta^{5 / 4} \gamma^{1 / 4}}
$$

Adiabatic Phase Damping

Longitudinal Beam Phase Space
Beam Energy Spread

Beam Phase Width
$\Delta W \Delta \phi=$ Constant
$\Delta W=$ Constant $\times(\beta \gamma)^{3 / 4}$
$\Delta \phi=\frac{\text { Constant }}{(\beta \gamma)^{3 / 4}}$

Figure 6.8 Phase damping of a longitudinal beam ellipse caused by acceleration. The phase width of the beam decreases and the energy width increases, while the total area remains constant.

Acceleration in Sections with Constant β

LANSCE high-energy linear accelerator.

Acceleration in Sections with Constant β (cont.)

nun

Accelerator structure with constant length cell.

Phase space trajectory in structure with constant length cell.

Because cell lengths are equal, actual synchronous phase in each structure is $\varphi_{s}=-90^{\circ}$. Energy gain per tank (for $\pi-$ structure):

$$
\Delta W_{r e f}=q E_{o} T \cos \varphi_{\text {ref }} N_{\text {cell }} \frac{\beta \lambda}{2}
$$

Acceleration in Multiple Sections with Constant β

Dynamics in RF field of multiple section with constant β

Dynamics around synchronous particle

Y.K. Batygin Basics of Beam Acceleration USPAS 2019

Acceleration in Multiple Sections with Constant β (cont.)

Synchronous phase $\varphi_{s} \approx \varphi_{\text {ref }}$
Phase advance of longitudinal oscillations In single tank

$$
\mu_{o a}=\sqrt{2 \pi\left(\frac{q E \lambda}{m c^{2}}\right) \frac{\sin \varphi_{s} \mid}{\beta \gamma^{3}}}\left(\frac{L_{a}}{\beta \lambda}\right)
$$

Effective accelerating gradient $\quad \tilde{E}=E \frac{L_{a}}{L_{a}+l}$
Effective phase advance of longitudinal oscillations per accelerating period L

$$
\tilde{\mu}_{o a} \approx \sqrt{2 \pi\left(\frac{q E \lambda}{m c^{2}}\right)\left(\frac{L_{a}}{L_{a}+l}\right) \frac{\left|\sin \varphi_{s}\right|}{\beta \gamma^{3}}}\left(\frac{L_{a}+l}{\beta \lambda}\right)=\mu_{o a} \sqrt{1+\frac{l}{L_{a}}}
$$

Dynamics in Sections with $\beta_{\mathrm{s}}=1$

In accelerating sections with $\beta_{s}=1$ there is no synchronous particles.

Equation for change of particle momentum:

$$
\begin{aligned}
& \frac{d p}{d t}=q E \cos \varphi \\
& \frac{d \varphi}{d t}=\omega-\frac{2 \pi}{\lambda} \beta c
\end{aligned}
$$

Wave number for $\beta_{s}=1$

$$
k_{z}=\frac{2 \pi}{\beta_{s} \lambda}=\frac{2 \pi}{\lambda}
$$

Introducing dimensionless momentum $\quad p_{\varphi}=\frac{p}{m c}$ we can write:

$$
\frac{d p_{\varphi}}{d \varphi}=\frac{q E \lambda}{2 \pi m c^{2}} \frac{\cos \varphi}{\left(1+\frac{p_{\varphi}}{\sqrt{1+p_{\varphi}^{2}}}\right)}
$$

Integration gives:

$$
C=\sqrt{1+p_{\varphi}^{2}}-p_{\varphi}+\left(\frac{q E \lambda}{2 \pi m c^{2}}\right) \sin \varphi
$$

where C is the constant of integration.

Phase Space Trajectories for $\boldsymbol{\beta}_{s}=1$

Minimal Energy of Particles Accelerated in Wave with $\beta_{s}=1$

Accelerated particles: $\quad p_{\varphi} \rightarrow \infty$

$$
C=\left(\frac{q E \lambda}{2 \pi m c^{2}}\right) \sin \varphi
$$

If $C>\frac{q E \lambda}{2 \pi m c^{2}}, p_{\varphi}$ is finite and particles are not accelerated until infinity
For accelerated particles $\quad C \leq \frac{q E \lambda}{2 \pi m c^{2}}$
Therefore boundary of acceleration is determined by $C=\frac{q E \lambda}{2 \pi m c^{2}}$

$$
\frac{q E \lambda}{2 \pi m c^{2}}(1-\sin \varphi)=\sqrt{1+p_{\varphi}^{2}}-p_{\varphi}
$$

Minimal value $p_{\varphi \text { min }}$ is determined by $\varphi=-\pi / 2$, or $\sin \varphi=-1$

$$
p_{\varphi \text { min }}=\frac{1-4\left(\frac{q E \lambda}{2 \pi m c^{2}}\right)^{2}}{4\left(\frac{q E \lambda}{2 \pi m c^{2}}\right)}
$$

For indefinite acceleration of protons in wave with $E=5$ $\mathrm{MV} / \mathrm{m}, \lambda=1 \mathrm{~m}, p_{\varphi \text { min }}=294$, or minimal kinetic energy $W_{\text {min }}=275 \mathrm{GeV}$.

Beams with lower energies can be accelerated in finite length section with $\beta_{\mathrm{s}}=1$ within $-\pi / 2<\varphi<\pi / 2$.

RF Cavities Tuning: Threshold Field

The increment of energy that the equilibrium particle receives during each acceleration period is determined by the increase in the period length and, therefore, is determined by the design od accelerator:

$$
\Delta W_{s}=e E_{o} T L \cos \varphi_{s}=\mathrm{const}
$$

The threshold field at which the equilibrium phase is still real $\left(\cos \varphi_{s}=1\right)$ is

$$
E_{t h}=\frac{\Delta W_{s}}{e T L}
$$

Accelerating field must be $E_{o} \geq E_{t h}$
Synchronous phase is $\quad \cos \varphi_{s}=\frac{E_{\text {th }}}{E_{o}}$
The threshold field is determined through measurement of width of energy capture region as a function of field in resonator. This is done by measurement of dependence of accelerated beam current versus injection energy. The threshold field is determined by extrapolating of the energy width of capture region to zero value.

NATIONAL LABORATORY

Phase Scans to Set the Phase and Amplitude of RF Linac

Schematic of the phase scan measurement setup. At LANL linac there are 4 absorber/collectors at $40,70,100$, and 121 MeV .

Y.K. Batygin Basics of Beam Acceleration USPAS 2019

Phase Scans to Set the Phase and Amplitude of RF Linac

Energy gain of synchronous particle per gap is constant

Decrease of accelerating field results in decrease of phase width of separatirx (and vise versa)

$$
\begin{aligned}
& E \downarrow \rightarrow \cos \varphi_{s} \uparrow \rightarrow \varphi_{s} \downarrow \rightarrow \Phi_{\text {sep }} \approx 3 \varphi_{s} \downarrow \\
& E \uparrow \rightarrow \cos \varphi_{s} \downarrow \rightarrow \varphi_{s} \uparrow \rightarrow \Phi_{\text {sep }} \approx 3 \varphi_{s} \uparrow
\end{aligned}
$$

Longitudinal acceptance of RF linac for 5 different average axial field amplitudes.

[^1]Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Accelerated beam as a function of beam phase

Determination of Bunch Length Using Phase Scan

LANL Phase Scan at the energy of 121 MeV .
Y.K. Batygin Basics of Beam Acceleration USPAS 2019

Delta-t Tuning Procedure

Time-of-flight of the beam centroid from location A to B and from A to $\mathrm{C}: t_{A B}, t_{A C}$ Change in $t_{A B}, t_{A C}$ values when accelerating module is switched from off to on are

$$
t_{B}=t_{A B, o f f}-t_{A B, \text { on }} \quad t_{C}=t_{A C, o f f}-t_{A C, \text { on }}
$$

Deviation of values t_{B}, t_{C} from design values:

$$
\Delta t_{B}=-\frac{D_{A B}}{m c^{3}(\beta \gamma)_{A}^{3}} \Delta W_{A}-\frac{\Delta \varphi_{B}-\Delta \varphi_{A}}{\omega}-\frac{D_{1}}{m c^{3}}\left[\frac{\Delta W_{A}}{(\beta \gamma)_{A}^{3}}-\frac{\Delta W_{B}}{(\beta \gamma)_{B}^{3}}\right]
$$

$$
\Delta t_{C}=\Delta t_{B}-\frac{D_{2}-D_{1}}{m c^{3}}\left[\frac{\Delta W_{A}}{(\beta \gamma)_{A}^{3}}-\frac{\Delta W_{B}}{(\beta \gamma)_{B}^{3}}\right]
$$

Delta-t Tune

Output of delta-t program displaying search of amplitude (ASP) and phase (PSP) while minimizing values of (DTB) and (DTC).

NATIONAL LABORATORY

Delta-t Tuning Issues

Delta-t tuning procedure works well only when particles perform significant longitudinal oscillations within RF tanks. If longitudinal oscillations are "frozen", then combination of $\Delta \mathrm{t}_{\mathrm{B}}, \Delta \mathrm{t}_{\mathrm{c}}$ can be obtained with infinitely large number of combinations of $\left(E, \varphi_{s}\right)$.

In linac phase advance of longitudinal oscillation per module drops as

$$
\mu_{o a} \sim \sqrt{\frac{E\left|\sin \varphi_{s}\right|}{(\beta \gamma)^{3}}}
$$

Phase Oscillations

Phase Scans

Phase scan: measurement of time of arrival of the beam to downstream pickup loop versus RF phase of the accelerating

Measurement of Beam Energy by Difference in BPM RF Phases

Reference RF Line

Beam velocity

$$
\beta=\frac{L}{\lambda\left(N+\frac{\varphi_{\text {loop } 2}-\varphi_{\text {loop } 1}+\Delta \varphi_{\text {corr }}}{2 \pi}\right)}
$$

Beam RF phases measured at delta-t loops.

Time-Of-Flight Measurement of Absolute Beam Energy

Beam velocity

$$
\beta=\frac{L}{c\left[t-\left(\tau_{\text {cable } 2}-\tau_{\text {cable } 1}\right)\right]}
$$

$$
W=m c^{2}\left(\frac{1}{\sqrt{1-\beta^{2}}}-1\right)
$$

Longitudinal Beam Emittance Measurement

Measurement of Beam Energy Spread

High-dispersive part of 800 MeV beamline

Faraday cup

Magnetic energy analyzer

Beam energy- spread-dependent wire scan
Beam size in point with high dispersion:

$$
\sigma_{\text {tot }}=\sqrt{\sigma+\left(\eta_{\text {disp }} \frac{\sigma_{p}}{p}\right)^{2}}
$$

(

Bunch Shape Monitor (A. Feschenko, PAC2001)

Figure 1: General configuration of Bunch Shape Monitor (1 -wire target, 2 -input collimator, 3 -deflector, 4 -output collimator, 5 -electron collector).

Operated by

Figure 7: Bunch boundaries transformed to the entrance $\overline{S A}$ of CCL\#1 and an equivalent phase ellipse.

Figure 4: 3D-BSM for CERN Linac-2.

Figure 14: Behaviour of bunch shape in time, beam cross-section and longitudinally-transversal distribution measured at the exit of CERN Linac-2 with the 3D-BSM.
Y.K. Batygin Basics of Beam Acceleration USPAS 2019

[^0]: Operated by Los Alamos National Security, LLC for the U.S. Department of E

[^1]: - Los Alamos

 NATIONAL LABORATORY

