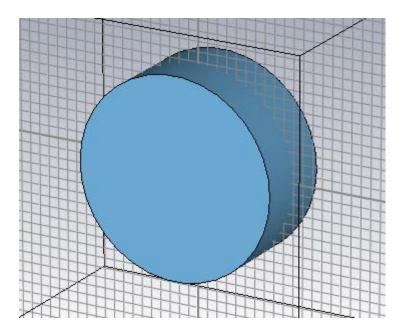
# Model a cylindrical cavity with the CST Microwave Studio

# Evgenya I. Simakov

# Los Alamos National Laboratory

For the United States Particle Accelerator School


January 22nd, 2018





#### Model set up

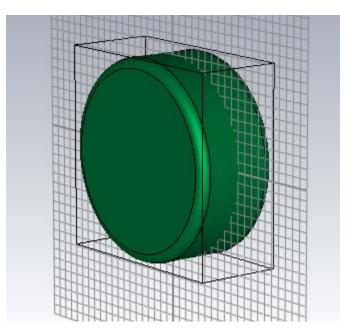
- Draw a cylindrical cavity.
- Tune to 11.424 GHz:
  - Length:  $\lambda/3$
  - Radius: optimize numerically







## **Compute:**


- Quality factor Q<sub>0</sub>.
- Shunt impedance R<sub>s</sub>.
- Accelerating gradient E<sub>a</sub>.
- Peak surface electric field E<sub>p</sub>.
- Peak surface magnetic field H<sub>p</sub>.
- The ratios of  $E_p/E_a$ ,  $zH_p/E_a$ .





# **Challenge problem:**

Investigate the effect of rounding the cavity's corners







### **Results:**

- R0=10.044 mm, L=8.724 mm.
- Quality factor  $Q_0 = 7548$ .
- Shunt impedance R<sub>s</sub>=1.67\*10<sup>6</sup>.
- Voltage V=3.98\*10<sup>6</sup>. Accelerating gradient E<sub>a</sub>= 456 MV/m.
- Peak surface electric field  $E_p = 551 \text{ MV/m}$ .
- Peak surface magnetic field  $H_p = 852 \text{ kA/m}$ .
- E<sub>p</sub>/ E<sub>a</sub>=1.21; Z\*H<sub>p</sub>/ E<sub>a</sub>=0.70.





### **Results for blended corner with rb = 1 mm:**

- R0=10.094 mm, L=8.724 mm.
- Quality factor  $Q_0 = 7899$ .
- Shunt impedance R<sub>s</sub>=1.74\*10<sup>6</sup>.
- Voltage V=3.98\*10<sup>6</sup>. Accelerating gradient E<sub>a</sub>= 456 MV/m.
- Peak surface electric field  $E_p = 551 \text{ MV/m}$ .
- Peak surface magnetic field  $H_p = 850$  kA/m.
- E<sub>p</sub>/ E<sub>a</sub>=1.21; Z\*H<sub>p</sub>/ E<sub>a</sub>=0.70.





#### **Results for blended corner with rb = 2 mm:**

- R0=10.239 mm, L=8.724 mm.
- Quality factor  $Q_0 = 8133$ .
- Shunt impedance R<sub>s</sub>=1.81\*10<sup>6</sup>.
- Voltage V=3.974\*10<sup>6</sup>. Accelerating gradient E<sub>a</sub>= 455 MV/m.
- Peak surface electric field  $E_p = 550 \text{ MV/m}$ .
- Peak surface magnetic field H<sub>p</sub> = 845 kA/m.
- E<sub>p</sub>/ E<sub>a</sub>=1.21; Z\*H<sub>p</sub>/ E<sub>a</sub>=0.70.



