Model a cylindrical cavity with the CST Microwave Studio

Evgenya I. Simakov

Los Alamos National Laboratory

For the United States Particle Accelerator School

January 22nd, 2018

Model set up for the π -mode

- Draw a cylindrical cavity with iris.
 - Length: $\lambda/2$ (π -mode)
 - Thickness of the iris: 2 mm
 - Three iris radii: 0.05*λ, 0.1*λ, 0.2*λ
- Tune to 11.424 GHz:
 - Radius: optimize numerically

Model set up for the $2\pi/3$ -mode

- Draw a cylindrical cavity with iris.
 - Length: λ/3 (2π/3-mode)
 - Thickness of the iris: 2 mm
 - Iris radius 0.1*λ
- Define periodic boundary conditions.
- Tune to 11.424 GHz:
 - Radius: optimize numerically
- Plot the dispersion curve: frequency vs. phase shift per cell (~ 5 points).

Compute:

- Quality factor Q₀.
- Shunt impedance R_s.
- Accelerating gradient E_a.
- Peak surface electric field E_p.
- Peak surface magnetic field H_p.
- The ratios of E_p/E_a , zH_p/E_a .

Scattering matrix studies

 Calculate the scattering matrix for the half-cell with the iris radius 0.1*λ.

Study the 2π/3-mode cavity with iris radii 0.05*λ and 0.2*λ. Tune, compute the dispersion curves and the accelerator characteristics.

Results for the π -mode, a=0.05* λ .

- R0=10.078 mm, L=13.12 mm.
- Quality factor $Q_0 = 8550$.
- Shunt impedance R_s=1.71*10⁶.
- Voltage V=3.788*10⁶. Accelerating gradient E_a= 288 MV/m.
- Peak surface electric field $E_p = 570 \text{ MV/m}$.
- Peak surface magnetic field $H_p = 753$ kA/m.
- E_p/ E_a=1.97; Z*H_p/ E_a=0.98.

Results for the π -mode, a=0.1* λ .

- R0=10.167 mm, L=13.12 mm.
- Quality factor $Q_0 = 8609$.
- Shunt impedance R_s=1.61*10⁶.
- Voltage V=3.660*10⁶. Accelerating gradient E_a= 279 MV/m.
- Peak surface electric field $E_p = 548 \text{ MV/m}$.
- Peak surface magnetic field H_p = 748 kA/m.
- E_p/ E_a=1.96; Z*H_p/ E_a=1.01.

Results for the π -mode, a=0.2* λ .

- R0=10.394 mm, L=13.12 mm.
- Quality factor $Q_0 = 8919$.
- Shunt impedance R_s=1.64*10⁶.
- Voltage V=3.630*10⁶. Accelerating gradient E_a= 277 MV/m.
- Peak surface electric field $E_p = 410 \text{ MV/m}$.
- Peak surface magnetic field H_p = 720 kA/m.
- E_p/ E_a=1.48; Z*H_p/ E_a=0.98.

Results for the $2\pi/3$ -mode, $a=0.05*\lambda$.

- R0=10.101 mm, L=8.75 mm.
- Quality factor $Q_0 = 6534$.
- Shunt impedance R_s=1.04*10⁶.
- Voltage V=3.381*10⁶. Accelerating gradient E_a= 387 MV/m.
- Peak surface electric field $E_p = 730 \text{ MV/m}$.
- Peak surface magnetic field $H_p = 967 \text{ kA/m}$.
- E_p/ E_a=1.89; Z*H_p/ E_a=0.94.

Dispersion for the $2\pi/3$ -cavity, $a=0.05^*\lambda$.

Results for the $2\pi/3$ -mode, $a=0.1^*\lambda$.

- R0=10.299 mm, L=8.75 mm.
- Quality factor $Q_0 = 6563$.
- Shunt impedance R_s=0.657*10⁶.
- Voltage V=2.681*10⁶. Accelerating gradient E_a= 306 MV/m.
- Peak surface electric field $E_p = 718 \text{ MV/m}$.
- Peak surface magnetic field H_p = 958 kA/m.
- E_p/ E_a=2.34; Z*H_p/ E_a=1.18.

Dispersion for the $2\pi/3$ -cavity, $a=0.1*\lambda$.

Results for the $2\pi/3$ -mode, $a=0.2^*\lambda$.

- R0=11.289 mm, L=8.75 mm.
- Quality factor $Q_0 = 6767$.
- Shunt impedance R_s=2.23*10⁵.
- Voltage V=1.539*10⁶. Accelerating gradient E_a= 176 MV/m.
- Peak surface electric field $E_p = 669 \text{ MV/m}$.
- Peak surface magnetic field $H_p = 907$ kA/m.

Dispersion for the $2\pi/3$ -cavity, $a=0.2^*\lambda$.

