Photonic Band Gap Structures

Evgenya I. Simakov

Los Alamos National Laboratory

For the United States Particle Accelerator School

January 25th, 2018

Outline of this lecture

- Photonic band gap structures: definition and examples.
- Basic theory of 1D and 2D photonic band gap structures.
- Band gaps and global band gaps.

Photonic Band Gap Structures

A photonic bandgap (PBG) structure is a one-, twoor three-dimensional periodic metallic and/or dielectric system (for example, of plates, rods or balls).

1D

J.D.Joannopoulos, R.D.Meade, and J.N.Winn, *Photonic Crystals: Molding the Flow of Light* (Princeton Univ. Press, Princeton, 1995).

Band Gaps

PBG structure arrays reflect waves of certain frequencies while allowing waves of other frequencies to pass through.

Band Gaps

Maxwell equations in PBG structures

- Fields in PBG structures satisfy Maxwell's equations:
 - $\begin{cases} \nabla \times \mathbf{E} = -i\mu_0 \boldsymbol{\omega} \, \mathbf{H} \\ \nabla \times \mathbf{H} = i\varepsilon \, \boldsymbol{\omega} \, \mathbf{E} \\ \nabla \cdot (\varepsilon \, \mathbf{E}) = 0 \\ \nabla \cdot \mathbf{H} = 0 \end{cases}$

 $\psi = E_i, H_i$ must satisfy the Floquet theorem

$$\psi(\mathbf{x}_{\perp}+\mathbf{T}_{m,n})=\psi(\mathbf{x}_{\perp})e^{i\mathbf{k}\cdot\mathbf{T}_{m,n}}$$

Maxwell equations solved for (1)

 $\omega(\mathbf{k})$

Operated by Los Alamos National Security, LLC for NNSA

m,n - integers

 $\mathbf{T}_{m,n} = \hat{e}_{x}bm + \hat{e}_{y}bn,$

2D square lattice:

2D metal PBG structures

Lattice of metal rods:

2D metal PBG structures

Maxwell's equation:

$$\nabla_{\perp}^{2}\psi(\mathbf{x}_{\perp}) + \frac{\omega}{c^{2}}\psi(\mathbf{x}_{\perp}) = 0$$

Boundary conditions:
The TE wave $\psi = H_{z}, \quad \frac{\partial \psi}{\partial n}\Big|_{s} = 0$

2

The TM wave
$$\psi = E_z$$
, $\psi|_S = 0$

Periodic boundary conditions:

$$\psi(\mathbf{x}_{\perp} + \mathbf{T}) = \psi(\mathbf{x}_{\perp})e^{i\mathbf{k}\cdot\mathbf{T}}$$

Reciprocal lattice

Brillouin diagrams

Square and triangular lattices

Periodicity of the square lattice

Periodicity of the triangular lattice

Plane wave approximation

Interaction at thin metal posts

$$\nabla_{\perp}^{2} \psi(\mathbf{x}_{\perp}) + \kappa^{2} \psi(\mathbf{x}_{\perp}) = f(\mathbf{x}_{\perp}), \ \kappa^{2} = \frac{\omega^{2}}{c^{2}} - k_{z}^{2}$$

TM mode: $\psi = E_z$ TE mode: $\psi = H_z$

$$f(\vec{\mathbf{x}}_{\perp}) = \begin{cases} i4\pi k_z \rho(\vec{\mathbf{x}}_{\perp}) - \frac{i4\pi\omega}{c^2} J_z(\vec{\mathbf{x}}_{\perp}) \text{ for the TM case} \\ -4\pi \left(\frac{1}{c}\vec{\nabla}\times\vec{J}\right)_z & \text{for the TE case} \end{cases}$$

Wave equation in the periodic structure

Bloch theorem:
$$\psi(\mathbf{x}_{\perp}) = e^{i\mathbf{k}_{\perp}\cdot\mathbf{x}_{\perp}} \sum_{m,n} \psi_{m,n} e^{i\mathbf{G}_{m,n}\cdot\mathbf{x}_{\perp}}$$

$$\sum_{m,n} \left[\kappa^2 - \left(\mathbf{k}_{\perp} + \mathbf{G}_{m,n} \right)^2 \right] \psi_{m,n} e^{i\mathbf{k}_{\perp} \cdot \mathbf{x}_{\perp} + i\mathbf{G}_{m,n} \cdot \mathbf{x}_{\perp}} = f(\mathbf{x}_{\perp})$$

$$\left[\kappa^{2} - \left(\mathbf{k}_{\perp} + \mathbf{G}_{m,n}\right)^{2}\right] \psi_{m,n} = \frac{1}{A} \int_{el.cell} f(\mathbf{x}_{\perp}) e^{-i\mathbf{k}_{\perp} \cdot \mathbf{x}_{\perp} - i\mathbf{G}_{m,n} \cdot \mathbf{x}_{\perp}} d^{2}\mathbf{x}_{\perp}$$

Quasistatic approximation

Operated by Los Alamos National Security, LLC for NNSA

Near-field region:

$$\nabla^2 \psi_{near}^{(m,n)} | \sim \psi_{near}^{(m,n)} / a^2 \gg \kappa^2 \psi_{near}^{(m,n)}$$

$$\nabla^2 \psi_{near}^{(m,n)} = 0$$

Far-field region: $\left|\nabla^{2}\psi_{far}^{(m,n)}\right| \sim \kappa^{2}\psi_{far}^{(m,n)}$

Matching condition:

$$\psi_{near}^{(m,n)}\Big|_{r\sim 1/\kappa} = \psi_{far}^{(m,n)}\Big|_{r\sim 1/\kappa}$$

Quasistatic approximation for the TM case

$$\vec{\nabla}^2 \psi_{near}^{m,n} = 0$$
 $\psi_{near}^{m,n} = \psi_{far}^{m,n} \left[1 - \frac{\ln(\kappa r)}{\ln(\kappa a)} \right]$

The source function:

$$f^{m,n}(r) = \vec{\nabla}_{\perp}^2 \psi_{near}^{m,n} = -\frac{\psi_{far}^{m,n}}{\ln(\kappa a)} \vec{\nabla}_{\perp}^2 \ln(\kappa r) = -\frac{2\pi}{\ln(\kappa a)} \psi_{far}^{m,n} \delta(r)$$

The wave equation with the source:

$$\vec{\nabla}_{\perp}^2 \psi(\mathbf{x}_{\perp}) + \kappa^2 \psi(\mathbf{x}_{\perp}) = -\frac{2\pi}{Aln(\kappa a)} \sum_{m,n} \psi(\mathbf{x}_{\perp}) \,\delta\big(\mathbf{x}_{\perp} - \mathbf{T}_{m,n}\big)$$

Dispersion equation for the TM case

$$\left[\kappa^{2} - \left(\boldsymbol{k}_{\perp} + \boldsymbol{G}_{m,n}\right)^{2}\right]\psi_{m,n} = -\frac{2\pi}{A\ln(\kappa a)}\sum_{m,n}\psi_{m,n}$$

Dispersion curves for the TM case

a/b=0.05

Quasistatic approximation for the TE case

$$\vec{\nabla}^2 \psi_{near}^{m,n} = 0 \qquad \qquad \psi_{near}^{m,n} = a_0 + \left(\vec{r} \cdot \vec{\nabla}_{\perp} \psi_{far}^{m,n}\right) \left[1 + \frac{a^2}{r^2}\right]$$

The source function:

$$f^{m,n}(r) = \vec{\nabla}_{\perp}^{2} \psi_{near}^{m,n} = \left(\vec{r} \cdot \vec{\nabla}_{\perp} \psi_{far}^{m,n}\right) \vec{\nabla}_{\perp}^{2} \frac{a^{2}}{r^{2}} = 2\pi a^{2} \vec{\nabla}_{\perp} \psi_{far}^{m,n} \cdot \vec{\nabla}_{\perp} \delta(r)$$

The wave equation with the source:

$$\vec{\nabla}_{\perp}^2 \psi(\mathbf{x}_{\perp}) + \kappa^2 \psi(\mathbf{x}_{\perp}) = 2\pi a^2 \sum_{m,n} \vec{\nabla}_{\perp} \psi(\mathbf{x}_{\perp}) \cdot \vec{\nabla}_{\perp} \,\delta\big(\mathbf{x}_{\perp} - \mathbf{T}_{m,n}\big)$$

Dispersion equation for the TE case

$$\left[\kappa^{2}-\left(\boldsymbol{k}_{\perp}+\boldsymbol{G}_{m,n}\right)^{2}\right]\psi_{m,n}=-\frac{2\pi a^{2}}{A}\sum_{m',n'}\psi_{m',n'}\left(\boldsymbol{k}_{\perp}+\boldsymbol{G}_{m',n'}\right)\cdot\left(\boldsymbol{k}_{\perp}+\boldsymbol{G}_{m,n}\right)$$

$$M = \begin{matrix} k_{\perp}^{2} & -\frac{2\pi a^{2}}{A} (\mathbf{k}_{\perp} + \mathbf{G}_{0,1}) \cdot \mathbf{k}_{\perp} & -\frac{2\pi a^{2}}{A} (\mathbf{k}_{\perp} + \mathbf{G}_{m,n}) \cdot \mathbf{k}_{\perp} & \dots \\ -\frac{2\pi a^{2}}{A} (\mathbf{k}_{\perp} + \mathbf{G}_{0,1}) \cdot \mathbf{k}_{\perp} & (\mathbf{k}_{\perp} + \mathbf{G}_{0,1})^{2} & \dots \\ \vdots & \ddots & \vdots \\ -\frac{2\pi a^{2}}{A} (\mathbf{k}_{\perp} + \mathbf{G}_{m,n}) \cdot \mathbf{k}_{\perp} & -\frac{2\pi a^{2}}{A} (\mathbf{k}_{\perp} + \mathbf{G}_{0,1}) \cdot (\mathbf{k}_{\perp} + \mathbf{G}_{m,n}) & \dots \\ \vdots & \ddots & \vdots \\ -\frac{2\pi a^{2}}{A} (\mathbf{k}_{\perp} + \mathbf{G}_{m,n}) \cdot \mathbf{k}_{\perp} & -\frac{2\pi a^{2}}{A} (\mathbf{k}_{\perp} + \mathbf{G}_{0,1}) \cdot (\mathbf{k}_{\perp} + \mathbf{G}_{m,n}) & \dots \\ \vdots & \ddots & \vdots \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \end{matrix}$$

Dispersion curves for the TE case

a/b=0.1

Finite difference scheme

Grid nodes: $x_{i,j} = h(i + j/2)$ $y_{i,j} = h\sqrt{3}/2j$ Grid step: $h = \frac{b}{2N+1}$ Helmholtz equation: $4(\psi_{i+1,j} + \psi_{i-1,j} + \psi_{i,j+1} + \psi_{i,j-1}) -$

 $-(\psi_{i+1, i+1} - \psi_{i+1, i-1} - \psi_{i-1, i+1} + \psi_{i-1, i-1})$ $=(3h^2\lambda+16)\psi_{i}$

Global Band Gaps

Global band gap: a wave cannot propagate in either direction. Example of a band gap diagram: square lattice of metal rods, TM waves

Global band gap diagrams for the structures of metal rods

Photonic band gap resonators

A defect in a PBG structure may form a PBG resonator:

