Microwave Measurement and Beam Instrumentation Course at Jefferson Laboratory, January 15-26th 2018

> U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology

Lecture: Cylindrical Resonator, Coupled Multi-Cell Resonators and Relevant Parameters

F. Marhauser

Monday, January 15, 2018

This Lecture

- The Cylindrical Resonator
 - *TE* and *TM* Modes Nomenclature
 - Derivation of Electromagnetic Fields
 - Examples of Mode Pattern
 - Lumped Circuit Representation
 - Figures of Merit
 - Quality Factor
 - Stored Energy
 - Power Loss
 - Skin Depth
 - Accelerating voltage
 - Transit Time Factor
 - (Characteristic) Shunt Impedance
 - Phase and Group Velocity (Waveguide) and Consequence for Accelerators
 - Coupled Resonator
 - Phase Velocity for Synchronous Acceleration
 - Eigen-frequencies
 - Dispersion Relation (Brillouin Diagram)
 - Examples of Field Amplitudes in Coupled Resonators
 - Experiment related to this Lecture

Example: Cylindrical Resonator ("Pillbox")

RF Mode Nomenclature

- Nomenclature for cylindrical resonator RF modes:
 - **TE** = only <u>Transverse</u> <u>E</u>lectric modes, $E_z = 0 \forall z$ (also named H-modes)
 - **TM** = only <u>Transverse</u> <u>Magnetic</u>, $H_z = 0 \forall z$ (also named E-modes)
 - Indices describe how many notches field may have in each coordinate direction:
 - Index m = azimuthal (ϕ) direction
 - Index n = radial (r) direction
 - Index p = longitudinal (z) direction
 - Mode can be categorized by azimuthal dependency:
 - m = 0 is monopole mode
 - m = 1 is dipole mode
 - m = 2 is quadrupole mode
 - m = 3 is sextupole mode
 - m = 4 is octupole mode
 - asf.

Cylinder coordinates are more suitable to describe this problem _

Laplace operator in cylinder coordinates:

$$\vec{A}e^{i\omega t} = \begin{pmatrix} A_r \\ A_{\varphi} \\ A_z \end{pmatrix} e^{i\omega t} \qquad \nabla^2 = \Delta = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial z^2}$$

$$\nabla^2 \vec{A} = \frac{1}{r} \frac{\partial A}{\partial r} + \frac{\partial^2 A}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 A}{\partial \varphi^2} + \frac{\partial^2 A}{\partial z^2} = -\mu \epsilon \omega^2 \vec{A}$$

wave equation for time-harmonic fields

Ansatz (separation of variables r,
$$\varphi$$
, and z): $\vec{A} = N(r)M(\varphi)P(z)$
Henceforth abbreviated
w/o variables N, M, P

$$\frac{1}{r}N'MP + N''MP + \frac{1}{r^2}N M''P + NMP'' = -\mu\epsilon\omega^2 NMP$$
; substitute ' for $\frac{\partial}{\partial r}, \frac{\partial}{\partial \varphi}, or \frac{\partial}{\partial z}$

$$\frac{1}{r}N' + N'' + \frac{1}{r^2}N \frac{M''}{M} + N \frac{P''}{P} = -\mu\epsilon\omega^2 N$$
; || $\cdot \frac{1}{NMP}$

$$\frac{1}{r}\frac{N'}{N} + \frac{N''}{N} + \frac{1}{r^2}\frac{M''}{M} + \frac{P''}{P} = -\mu\epsilon\omega^2$$
Jefferson Lab

$$\frac{1}{r}\frac{N'}{N} + \frac{N''}{N} + \frac{1}{r^2}\frac{M''}{M} + \mu\epsilon\omega^2 = -\frac{P''}{P}$$

Right-hand side function only depends on z

$$\frac{1}{r}\frac{N'}{N} + \frac{N''}{N} + \frac{1}{r^2}\frac{M''}{M} + \mu\epsilon\omega^2 = -\frac{P''}{P} = -\gamma^2$$

Can only be fulfilled \forall (r, φ , z) if both sides of equation are **constant ('separation constant')**

- Uses separation constant is - γ^2 (γ is called 'propagation constant')

Right-hand side
$$P'' = \gamma^2 P$$
Ansatz: $P(z) = B_1 e^{-\gamma z} + B_2 e^{+\gamma z}$ forwardsbackwardsforwardstravellingtravellingtravelling γ is generally complex $\gamma = \alpha + i\beta$ [1/m]

- Real part lpha is therefore a damping term ('attenuation constant')
- Imaginary part β is a 'phase constant'

Left-hand side functions

only depend on r and φ

- B's are integration constants. Wave will be reflected at endplates, and thus the so far arbitrary amplitudes must obey $B_1 = B_2$ $P(z) = B_1(e^{-\gamma z} + e^{+\gamma z})$

; strictly only for loss-less case ($\alpha = 0, \gamma = i\beta$)

- Periodicity of field is given by phase constant β (field changes sign after phase of 2π)

$$\beta = \frac{2\pi}{\Lambda}$$

arLambda denotes the resonator (not free) wavelength

Left-hand side

$$\frac{1}{r}\frac{N'}{N} + \frac{N''}{N} + \frac{1}{r^2}\frac{M''}{M} + \mu\epsilon\omega^2 = -\gamma^2$$

;|| $\cdot r^2$

$$r\frac{N'}{N} + r^2\frac{N''}{N} + r^2(\mu\epsilon\omega^2 + \gamma^2) = -\frac{M''}{M}$$

 \longrightarrow Again: Can only be fulfilled \forall (*r*, φ) if both sides of equation are constant

- Separation constant m^2

Right-hand side

 $M^{\prime\prime} = -m^2 M$ Ansa

Ansatz:

 $M(\varphi) = C_1 e^{-im\varphi} + C_2 e^{+im\varphi}$ $M(\varphi) = M(\varphi + 2\pi)$

- Due to cylindrical symmetry

- Consequently *m* is an integer/natural number ($m \in \mathbb{N}^0$, $i. e. \ge 0$)

Left-hand side of uppr equation

$$r\frac{N'}{N} + r^2\frac{N''}{N} + r^2(\mu\epsilon\omega^2 + \gamma^2) = m^2 \qquad ; ||\cdot R$$

$$r^{2}N'' + rN' + (r^{2}(\mu\epsilon\omega^{2} + \gamma^{2}) - m^{2})N = 0$$

This is a Bessel's differential equation

- The only physical solution for integer numbers *m* that exists (is finite) on the resonator axis (r = 0) is Bessel function of the first kind $J_m(r)$ of m-th order

$$N(r) = D_1 J_m \left(r \sqrt{\mu \epsilon \omega^2 + \gamma^2} \right) = D_1 \sum_{j=0}^{\infty} \frac{(-1)^j}{(m+j)! j!} \left(\frac{r \sqrt{\mu \epsilon \omega^2 + \gamma^2}}{2} \right)^{m+2j} for \ j = 0, 1, 2, \cdots$$

- One obtains for the possible resonant vector fields (modes) in a pillbox resonator regarding for the harmonic time dependence:

$$\vec{A}e^{i\omega t} = e^{i\omega t}N(r)M(\varphi)P(z)$$

= $e^{i\omega t} \cdot D_1 J_m \left(r\sqrt{\mu\epsilon\omega^2 + \gamma^2}\right) \cdot (C_1 e^{-m\varphi} + C_2 e^{+m\varphi}) \cdot B_1 e^{-\gamma z} + B_2 e^{+\gamma z}$

- One can distinguish between modes that differentiate by the absence of the electric or magnetic field component in z-direction

 $E_z = 0 \forall z \Leftrightarrow TE$ (Transverse Electric) Modes \Leftrightarrow no electric field along z-direction $H_z = 0 \forall z \Leftrightarrow TM$ (Transverse Magnetic Modes \Leftrightarrow no electric field along z-direction

- TM-like modes are used for particle acceleration in resonators

- Solving for the electromagnetic fields requires to obey **boundary conditions**
- Case: Longitudinal dependency P(z) with boundaries applied
 <u>Boundary condition on endplates</u>: Tangential E-fields vanish, reflection of E_z-field

- Assume ideal (loss-less) conductor, $\alpha = 0$, $B_1 = B_2$ (full reflection at short)

$$\hat{n} \times \vec{E} = 0$$

 $\hat{n} \cdot \vec{H} = 0$; $\hat{n} \perp S$

- What is dependency of z-component of electric field for a TM-mode ?

$$E_z(z) \propto P(z) = P(z) = B_1(e^{-\gamma z} + e^{+\gamma z}) = 2B_1 \cos(\beta z)$$

- This describes a standing wave, i.e. forward and backward wave oscillate with fixed amplitude in z, the amplitude is twice as strong as each individual wave amplitude

- Boundary condition at the resonator end plates

$$P(z = end \ plates) = 2B_1$$
 or $cos(\beta z) = \pm 1$ \longrightarrow $\beta = \pm \frac{\pi p}{L}$ with $p \in \mathbb{N}^0$

- We remember that periodicity of field is given by phase constant β (field changes sign after phase of 2π)

$$\beta = \frac{2\pi}{\Lambda^{TM}} = \frac{\pi p}{L} \qquad \longrightarrow \Lambda^{TM} = \frac{2\pi}{\beta} = \frac{2L}{p}$$

- Case: Radial dependency N(R) with boundaries applied

- <u>Boundary condition on perimeter</u>: Tangential fields vanish, in this case $E_z(r = R)$:

 $E_z(r) \propto N(R) = D_1 J_m \left(R \sqrt{\mu \epsilon \omega^2 + \gamma^2} \right) = 0$

Requires to find roots of Bessel function

- One typically denotes x_{mn} as the n-th root of the Bessel function of m-th order

- This yields the resonant frequencies of TM-modes:

$$\omega^{TM} = 2\pi f^{TM} = \frac{1}{\sqrt{\mu\epsilon}} \sqrt{\left(\frac{\pi p}{L}\right)^2 + \left(\frac{x_{mn}}{R}\right)^2}$$

- Free wavelength is then given by:

$$\lambda^{TM} = \frac{v}{f^{TM}} = \frac{2\pi}{\sqrt{\left(\frac{\pi p}{L}\right)^2 + \left(\frac{x_{mn}}{R}\right)^2}}$$

- Considering

$$\gamma = i\beta = \pm i \sqrt{\mu\epsilon\omega^2 - \left(\frac{x_{mn}}{R}\right)^2} = \pm i \frac{\pi p}{L}$$

- We find that the wavenumber is constrained according to:

$$k_{mn} \equiv \frac{2\pi}{\Lambda^{TM}} = \sqrt{\mu\epsilon\omega^2 - \left(\frac{x_{mn}}{R}\right)^2} = \frac{\pi p}{L}$$

- The **resonator** wavelength is then given by:

$$\Lambda^{TM} = \frac{\lambda^{TM}}{\sqrt{1 - \left(\frac{\lambda^{TM} \cdot x_{mn}}{2\pi R}\right)^2}} = \frac{2L}{p}$$

ightarrow Resonator wavelength always larger than free wavelength

- For p = 0 $\rightarrow \Lambda^{TM} = \infty$, since $E_z(\omega)$ is uniform

Case: Azimuthal dependency $M(\varphi)$ with boundaries applied

 $E_{z}(\phi) \propto \mathcal{M}(\varphi) = C_{1}e^{-im\varphi} + C_{2}e^{+im\varphi} \quad ; \text{ if } \phi = 0 \rightarrow M(\varphi) = C_{1} + C_{2}$

- Only non-trivial solution for $E_z(\phi) \forall \phi$ possible if: $C_1 = C_2$

$$M(\varphi) = C_1(e^{-im\varphi} + e^{+im\varphi}) = 2C_1 cos(m\varphi)$$

- Eventually one obtains:

$$E_{z}(\omega) = E_{0} \cdot J_{m}\left(r \frac{x_{mn}}{R}\right) \cdot \cos(m\varphi) \cdot \cos(\beta z) \cdot e^{i\omega^{TM}t} \quad ; E_{0} = 4B_{1}C_{1}D_{1}$$

- No we finally can solve for the electromagnetic fields

- Knowing E_z one can obtain all other field components E_x , E_y , H_x , and H_y utilizing the wave equations for field components in cylinder coordinates

$$\vec{\nabla} \times \vec{A} = \begin{pmatrix} \frac{1}{r} \frac{\partial A_z}{\partial \varphi} - \frac{\partial A_\varphi}{\partial z} \\ \frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \\ \frac{1}{r} \frac{\partial (rA_\varphi)}{\partial r} - \frac{1}{r} \frac{\partial A_r}{\partial \varphi} \end{pmatrix}$$

- One requires the curl in cylinder coordinates:

$$\begin{pmatrix} \frac{\partial^2}{\partial z^2} + k^2 \\ \frac{\partial^2}{\partial z^2} + k^2 \\ \frac{\partial^2}{\partial z^2} + k^2 \end{pmatrix} \begin{pmatrix} E_{\varphi} \\ H_r \end{pmatrix} = \begin{pmatrix} \frac{1}{r} \frac{\partial}{\partial z} \frac{\partial E_z}{\partial \varphi} + i\omega\mu \frac{\partial H_z}{\partial r} \\ \frac{i\omega\varepsilon}{r} \frac{\partial E_z}{\partial \varphi} + \frac{\partial}{\partial z} \frac{\partial H_z}{\partial r} \end{pmatrix}_{T^2} \begin{pmatrix} \frac{\partial^2}{\partial z^2} + k^2 \\ \frac{\partial^2}{\partial z^2} + k^2 \end{pmatrix} \begin{pmatrix} H_{\varphi} \\ E_r \end{pmatrix} = \begin{pmatrix} \frac{1}{r} \frac{\partial}{\partial z} \frac{\partial H_z}{\partial \varphi} + i\omega\varepsilon \frac{\partial E_z}{\partial r} \\ \frac{i\omega\mu}{r} \frac{\partial H_z}{\partial \varphi} + \frac{\partial}{\partial z} \frac{\partial E_z}{\partial r} \end{pmatrix}_{T^2}$$

Case: Azimuthal dependency $M(\varphi)$ with boundaries applied

 $E_z(\phi) \propto \mathcal{M}(\varphi) = C_1 e^{-im\varphi} + C_2 e^{+im\varphi}$; if $\phi = 0 \rightarrow$

- Only non-trivial solution for $E_z(\phi) \forall \phi$ possible if: $C_1 = C_2$

$$M(\varphi) = C_1(e^{-im\varphi} + e^{+im\varphi}) = 2C_1 cos(m\varphi)$$

- Eventually one obtains:

$$E_{z}(\omega) = E_{0} \cdot J_{m}\left(r \frac{x_{mn}}{R}\right) \cdot \cos(m\varphi) \cdot \cos(\beta z) \cdot e^{i\omega^{TM}t} \quad ; E_{0} = 4B_{1}C_{1}D_{1}$$

- No we finally can solve for the electromagnetic fields

- Knowing E_z one can obtain all other field components E_x , E_y , H_x , and H_y utilizing the wave equations for field components in cylinder coordinates

TM-Mode Field Components

$$E_{r}(\omega) = -E_{0} \cdot p \cdot \left(\frac{\pi R^{2}}{L x_{mn}^{2}}\right) \cdot \frac{\partial J_{m}\left(r\frac{x_{mn}}{R}\right)}{\partial r} \cdot \cos(m\varphi) \cdot \sin\left(\frac{\pi p}{L}z\right) \cdot e^{i\omega^{TM}t}$$

$$E_{\varphi}(\omega) = E_0 \cdot \left(\frac{p \, m}{r}\right) \cdot \left(\frac{\pi R^2}{L \, x_{mn}^2}\right) \cdot J_m\left(r \frac{x_{mn}}{R}\right) \cdot \sin(m\varphi) \cdot \sin\left(\frac{\pi p}{L}z\right) \cdot e^{i\omega^{TM}t}$$

$$E_{z}(\omega) = E_{0} \cdot J_{m}\left(r \ \frac{x_{mn}}{R}\right) \cdot \cos(m\varphi) \cdot \cos\left(\frac{\pi p}{L}z\right) \cdot e^{i\omega^{TM}t}$$

$$H_r(\omega) = -iE_0 \cdot \left(\frac{m}{r}\right) \cdot \left(\frac{\omega^{TM} \varepsilon R^2}{x_{mn}^2}\right) \cdot J_m\left(r\frac{x_{mn}}{R}\right) \cdot sin(m\varphi) \cdot \cos\left(\frac{\pi p}{L}z\right) \cdot e^{i\omega^{TM}t}$$

$$H_{\varphi}(\omega) = -iE_0 \cdot \left(\frac{\omega^{TM} \varepsilon R^2}{x_{mn}^2}\right) \cdot \frac{\partial J_m\left(r\frac{x_{mn}}{R}\right)}{\partial r} \cdot \cos(m\varphi) \cdot \cos\left(\frac{\pi p}{L}z\right) \cdot e^{i\omega^{TM}t}$$

 $H_z(\omega)=0$

$$\omega^{TM} = \frac{1}{\sqrt{\mu\epsilon}} \sqrt{\left(\frac{\pi p}{L}\right)^2 + \left(\frac{x_{mn}}{R}\right)^2}$$

Note: H-fields are shifted by $-i=e^{-i\pi/2} = -90^{\circ}$ to E-fields

Analogous Derivation for TE-Modes

$E_z = 0 \forall z \Leftrightarrow \text{TE}$ (Transverse Electric) Modes \Leftrightarrow no electric field along z-direction

- What is dependency of z-component of magnetic field for a TE-mode ?

- $H_z(z)$ must vanish at end plates (no perpendicular fields allowed)

$$H_z(z) \propto P(z) = B_1 e^{-i\beta z} + B_2 e^{+i\beta z} = -i2B_1 sin(\beta z)$$
; $B_1 = -B_2$

 $P(z = end \ plates) = 0$ or $sin(\beta z) = 0$ $\left| \beta = \frac{\pi p}{L} \text{ with } p \in \mathbb{N}, p \neq 0 \right|$

- $H_z(\phi)$ is tangential to surface

$$H_z(\varphi) \propto M(\varphi) = 2C_1 cos(m\varphi)$$

- Azimuthal fields of $E_{\phi}(r=R)$ must vanish at cavity perimeter ($\forall \phi$)

- Together with E_z =0 this leads to the condition

$$\frac{\delta H_z(r=R)}{\delta r} = 0$$

- That implies

$$\frac{\partial N(r=R)}{\partial r} = D_1 \frac{\partial}{\partial r} J_m \left(R \sqrt{k^2 + \gamma^2} \right) = 0$$

Proof (use 1 st component)				
$ \begin{pmatrix} \frac{\partial^2}{\partial z^2} + k^2 \\ \frac{\partial^2}{\partial z^2} + k^2 \end{pmatrix} \binom{E_{\varphi}}{H_r} = \begin{pmatrix} \frac{1}{r} \frac{\partial}{\partial z} \frac{\partial E_z}{\partial \varphi} + i\omega\mu \frac{\partial H_z}{\partial r} \\ \frac{i\omega\varepsilon}{r} \frac{\partial E_z}{\partial \varphi} + \frac{\partial}{\partial z} \frac{\partial H_z}{\partial r} \end{pmatrix} = \begin{pmatrix} i\omega\mu \frac{\partial H_z}{\partial r} \\ \frac{\partial}{\partial z} \frac{\partial H_z}{\partial r} \end{pmatrix} $				
$\left[\left(\frac{\partial^2}{\partial z^2} + k^2\right)E_{\varphi} = i\omega\mu\frac{\partial H_z}{\partial r}\right] \boxed{E_{\varphi}(r=R) = 0}$				

Jefferson Lab

- One typically denotes **x'**_{mn} as the n-th root of the derivative of the Bessel function of m-th order

$$x'_{mn} = R\sqrt{\mu\epsilon\omega^{2} + \gamma^{2}}$$

$$y = \pm \sqrt{\left(\frac{x'_{mn}}{R}\right)^{2} - \mu\epsilon\omega^{2}}$$

$$x'_{mn} = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \pm \sqrt{\left(\frac{x'_{mn}}{R}\right)^{2} - \mu\epsilon\omega^{2}}$$

$$x'_{mn} = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$x'_{mn} = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \pm \sqrt{\left(\frac{x'_{mn}}{R}\right)^{2} - \mu\epsilon\omega^{2}}$$

$$x'_{mn} = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$x'_{mn} = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 2 + 3 + 4}$$

$$y = \frac{x'_{mn}}{1 + 3 + 3 + 3}$$

$$y = \frac{x'_{mn}}{1 + 3 + 3 + 3}$$

$$y = \frac{x'_{mn}}{1 + 3 + 3 + 3}$$

$$y = \frac{x'_{mn}}{1 + 3 + 3 + 3}$$

$$y = \frac{x'_{mn}}{1 + 3 + 3 + 3}$$

$$y = \frac{x'_{mn}}{1 + 3 + 3 + 3}$$

$$y = \frac{x'_{mn}}{1 + 3 + 3 + 3}$$

$$y = \frac{x'_{mn}}{1 + 3 + 3 + 3}$$

$$y = \frac{x'_{mn}}{1 + 3 + 3 + 3}$$

$$y = \frac{x'_{mn}}{1 + 3 + 3 + 3}$$

$$y = \frac{x'_{mn}}{1 + 3 + 3 + 3}$$

$$y = \frac{x'_{mn}}{1 + 3 + 3 + 3}$$

$$\gamma = i\beta = i\sqrt{\mu\epsilon\omega^2 - \left(\frac{x'_{mn}}{R}\right)^2} = i\frac{\pi p}{L}$$

; loss-less (
$$\alpha$$
 = 0) ; $\beta = \frac{\pi p}{L}$ with $p \in \mathbb{N}, p \neq 0$

- Due to boundary condition, p = 0 is not allowed (E₁₁ to end plates must vanish)

$$\Lambda^{TE} = \frac{2\pi}{\beta} = \frac{2L}{p}$$

$$\gamma = i\beta = i\sqrt{\mu\epsilon\omega^2 - \left(\frac{x'_{mn}}{R}\right)^2} = i\frac{\pi p}{L}$$
 $p \neq 0$

- This yields the resonant frequencies of TE-modes:

$$\omega^{TE} = 2\pi f^{TE} = \frac{1}{\sqrt{\mu\epsilon}} \sqrt{\left(\frac{\pi p}{L}\right)^2 + \left(\frac{x'_{mn}}{R}\right)^2}$$

- The **free** wavelength is then given by:

- The **resonator** wavelength is then given by:

$$\Lambda^{TE} = \frac{\lambda_c^{TE}}{\sqrt{1 - \left(\frac{\lambda^{TE} x'_{mn}}{2\pi R}\right)^2}} = \frac{2L}{p}$$

$$H_z(\varphi) \propto \mathcal{M}(\varphi) = C_1 e^{-im\varphi} + C_2 e^{+im\varphi}$$

; if $\varphi = 0 \rightarrow M(\varphi) = C_1 + C_2$ e if: $C_1 = C_2$ - Only non-trivial solution for $H_z(\phi) \forall \phi$ possible if:

$$M(\varphi) = C_1(e^{-im\varphi} + e^{+im\varphi}) = 2C_1 cos(m\varphi)$$

- Eventually one obtains:

 $E_z = 0$

$$H_{z}(\omega) = H_{0} \cdot J_{m}\left(r \frac{x'_{mn}}{R}\right) \cdot \cos(m\varphi) \cdot \sin(\beta z) \cdot e^{i\omega^{TE}t} \quad ; H_{0} = -4B_{1}C_{1}D_{1} = -iE_{0}$$

- Knowing H_z one can obtain all other field components E_x , E_y , H_x , and H_y utilizing the wave equations for field components in cylinder coordinates

$$E_{r} = -i\omega\mu \cdot \frac{1}{r} \cdot \frac{R^{2}}{x'_{mn}^{2}} \cdot \frac{\partial H_{z}}{\partial \varphi} \qquad \qquad H_{r} = \frac{R^{2}}{x'_{mn}^{2}} \cdot \frac{\partial}{\partial z} \frac{\partial H_{z}}{\partial r}$$
$$E_{\varphi} = i\omega\mu \cdot \frac{R^{2}}{x'_{mn}^{2}} \cdot \frac{\partial H_{z}}{\partial r} \qquad \qquad H_{\varphi} = \frac{1}{r} \cdot \frac{R^{2}}{x'_{mn}^{2}} \cdot \frac{\partial}{\partial z} \frac{\partial H_{z}}{\partial \varphi}$$

TE-Mode Field Components

$$E_r(\omega) = iH_0 \cdot \left(\frac{m}{r}\right) \cdot \left(\frac{\omega^{TE} \mu R^2}{(x'_{mn})^2}\right) \cdot J_m\left(r\frac{x'_{mn}}{R}\right) \cdot sin(m\varphi) \cdot sin\left(\frac{\pi p}{L}z\right) \cdot e^{i\omega^{TE}t}$$

$$E_{\varphi}(\omega) = iH_0 \cdot \left(\frac{\omega^{TE} \mu R^2}{(x'_{mn})^2}\right) \cdot \frac{\partial J_m\left(r\frac{x'_{mn}}{R}\right)}{\partial r} \cdot \cos(m\varphi) \cdot \sin\left(\frac{\pi p}{L}z\right) \cdot e^{i\omega^{TE}t}$$

$$E_z(\omega)=0$$

$$H_{r}(\omega) = H_{0} \cdot p \cdot \left(\frac{\pi R^{2}}{L (x'_{mn})^{2}}\right) \cdot \frac{\partial J_{m}\left(r\frac{x'_{mn}}{R}\right)}{\partial r} \cdot \cos(m\varphi) \cdot \cos\left(\frac{\pi p}{L}z\right) \cdot e^{i\omega^{TE}t}$$

$$H_{\varphi}(\omega) = -H_0 \cdot \left(\frac{p \, m}{r}\right) \cdot \left(\frac{\pi R^2}{L \, (x'_{mn})^2}\right) \cdot J_m\left(r\frac{x'_{mn}}{R}\right) \cdot \sin(m\varphi) \cdot \cos\left(\frac{\pi p}{L}z\right) \cdot e^{i\omega^{TE}t}$$

$$H_{z}(\omega) = H_{0} \cdot J_{m}\left(r \frac{x'_{mn}}{R}\right) \cdot \cos(m\varphi) \cdot \sin\left(\frac{\pi p}{L}z\right) e^{i\omega^{TE}t}$$

$$\omega^{TE} = \frac{1}{\sqrt{\mu\epsilon}} \sqrt{\left(\frac{\pi p}{L}\right)^2 + \left(\frac{x'_{mn}}{R}\right)^2}$$

 $p \neq 0$

Note: E-fields are shifted by $i=e^{i\pi/2} = 90^{\circ}$ to H-fields

TM modes

These modes posses longitudinal electric field components parallel to cavity axis

$$m = 0$$

 $n = 2$
 $p = 0, 1$

TE modes

These modes do not posses longitudinal electric field components parallel to cavity axis

Example: Cylinder Resonator ("Pillbox")

p = 0, e.g. TM_{110} is possible

Resonator Figures of Merit Equivalent Circuit

- A resonating circuit can be presented by an inductance L and a capacitance C
- A hollow metallic resonator (e.g. accelerating cavity) can therefore be described with an equivalent circuit

In an accelerating cavity, the beam excites a voltage along the so-called shunt impedance, (R = V·I_{beam}), which is described as a resistor added in parallel to L and C
 The total complex impedance of the parallel circuit is

- So in resonance, Z is real and at its maximum amplitude

Resonator Figures of Merit Equivalent Circuit

- To feed energy to the circuit, we need a generator oscillating at frequency $\boldsymbol{\omega}$
- This forces a current to flow in the resonator circuit

- There will be a phase difference between the generator and circuit current

$$\varphi = \arctan\left(\frac{Im(Z)}{Re(Z)}\right) = \arctan\left(R \cdot \left(\omega C - \frac{1}{\omega L}\right)\right)$$

$$\varphi = \arctan\left(\frac{RC}{\omega} \cdot (\omega^2 - \omega_0^2)\right) \qquad ; L = \frac{1}{\omega_0^2 \cdot C}$$

- In resonance $\varphi = 0$

- If the resonator is oscillating freely (shutting off generator), the initially stored energy will decay due to resistant losses occurring in the metallic wall (heat due to conductive currents)
- The resistant losses can be described as resulting from a real resistor in series with L
- One generally desires to minimize the power dissipated in the wall surface (normal RF conducting \rightarrow superconducting RF cavities)
- Average power = energy decay per oscillation cycle T=1/ f_0

 $P_{avg} = -\left(\frac{\Delta U_S}{T}\right) \qquad T = \frac{2\pi}{\omega_o} = \frac{1}{f}$

- The quality factor Q_0 (0 means unloaded, no external losses) of a resonator is defined as:
- This leads to a differential equation:

$$-\frac{dU_S}{U_S} = \frac{\omega_0}{Q_0} dt$$

$$U_S(t) = U_S(t_0) \cdot e^{-\frac{\omega_0}{Q_0}(t-t_0)}$$

$$Q_0 \equiv \omega_0 \cdot \frac{U_S}{P_{avg}} = 2\pi \cdot \frac{U_S}{-\left(\frac{\Delta U_S}{T}\right)}$$

- The stored energy at time $t = t_0$ decays with relaxation time - Used for decay time measurements of Q_0 , i.e. when energy decays to 1/e of its original value from given time

$$\tau = \frac{Q_0}{\omega_0} \quad \frac{U_S(t_0)}{U_S(\tau)} = \frac{U_S(t_0)}{e}$$

- The stored energy itself is oscillating between the electrically (in capacitor) and magnetically (in inductor) stored energy
- The total stored energy in resonance is the sum of the time-averaged electric and magnetic energy

$$U_S = \overline{U}_e + \overline{U}_m$$

- The time can be chosen such the total energy is either fully stored in the capacitor or the inductor

$$U_S = U_{e,pk} = U_{m,pk}$$

- For the resonant circuit at the inductor:
- The real power loss in resistor:

$$U_{m,pk} = \frac{1}{2}L \cdot I_{pk}^2$$

$$P_{pk} = R_S \cdot I_{pk}^2$$

$$P_{avg} = \frac{1}{2}R_S \cdot I_{pk}^2$$

$$Q_0 = \omega_0 \cdot \frac{U_S}{P_{avg}} = \omega_0 \cdot \frac{\frac{1}{2}L \cdot I_{pk}^2}{\frac{1}{2}R_S \cdot I_{pk}^2} = \omega_0 \cdot \frac{L}{R_S} = \frac{1}{\omega_0 \cdot R_S \cdot C} = \frac{1}{R_S} \cdot \sqrt{\frac{L}{C}} \qquad ; \omega_0 = \sqrt{\frac{1}{L \cdot C}}$$

- How can the quality factor expressed by derived RF fields in a cylindrical cavity
- We need the stored energy and power loss in terms of RF field parameters
- The total stored energy is given by the volume integral over the RF field at times either the electric or magnetic field peaks:

$$U_{S} = U_{e,pk} = \frac{1}{2} \cdot \epsilon \iiint_{V} dV \vec{E} \cdot \vec{E}^{*} = U_{m,pk} = \frac{1}{2} \cdot \mu \iiint_{V} dV \vec{H} \cdot \vec{H}^{*} \qquad ; \vec{E} \cdot \vec{E}^{*} = |E_{pk}|^{2}$$

- For the case of *TM*_{0n0} (m=0, p=0) monopole modes in a cylindrical resonator we only get:

- Therefore we obtain in cylindrical coordinates:

$$\begin{aligned} U_{e,pk,0n0} &= \frac{1}{2} \cdot \epsilon \iiint_{V} dV \cdot E_{0}^{2} \cdot J_{0} \left(r \frac{x_{0n}}{R}\right)^{2} \\ &= \frac{E_{0}^{2}}{2} \cdot \epsilon \cdot \int_{0}^{L} dz \cdot \int_{0}^{2\pi} d\varphi \cdot \int_{0}^{R} dr \, r \cdot J_{0} \left(r \frac{x_{0n}}{R}\right)^{2} \\ &= \pi \cdot L \cdot \epsilon \cdot E_{0}^{2} \cdot \int_{0}^{R} dr \cdot r \cdot J_{0} \left(r \frac{x_{0n}}{R}\right)^{2} \\ &= \pi \cdot L \cdot \epsilon \cdot E_{0}^{2} \cdot \left(\frac{R}{x_{0n}}\right)^{2} \cdot \int_{0}^{x_{0n}} dy \cdot y \cdot J_{0}(y)^{2} \\ &= \pi \cdot L \cdot \epsilon \cdot E_{0}^{2} \cdot \left(\frac{R}{x_{0n}}\right)^{2} \cdot \left\{\frac{y^{2}}{2} \cdot \left(J_{0}^{2}(y) + J_{1}^{2}(y)\right)\right\} \Big|_{0}^{x_{0n}} \\ &= \pi \cdot L \cdot \epsilon \cdot E_{0}^{2} \cdot \frac{R^{2}}{2} \cdot J_{1}^{2}(x_{0n}) \end{aligned}$$

$$E_r = E_{\varphi} = H_r = H_z = 0$$

$$R = \text{Radius}$$

$$L = \text{Length}$$

$$U = \text{Length}$$

$$V = r \cdot \frac{x_{0n}}{R}; \text{ dr} = \text{dy} \cdot \frac{R}{x_{0n}}$$

$$W = r \cdot \frac{y_0}{R}; \text{ dr} = \text{dy} \cdot \frac{R}{x_{0n}}$$

$$W = r \cdot \frac{y_0}{R}; \text{ dr} = \frac{1}{2} \cdot (J_0^2 + J_1^2)$$

$$W = r \cdot \frac{y_0}{R}; \text{ dr} = \frac{y_0^2}{2} \cdot (J_0^2 + J_1^2)$$

; at limits:
$$J_1(0) = 0, J_0(0) = 0, J_0(x_{0n}) = 0$$

; identi ; proof

$$U_{e,pk,0n0} = \pi \cdot L \cdot \epsilon \cdot E_0^2 \cdot \frac{R^2}{2} \cdot J_1^2(x_{0n})$$

- In the metallic surface power losses arise from (eddy) currents induced by the time varying magnetic fields tangential to the cavity surface
- The time-averaged power loss in the whole resonator surface is given

 $P_{avg} = \frac{R_S}{2} \iint_S H_S^2 \cdot dS$

 $R_{\rm s}$ is the **effective surface resistance** [Ω] of the metal H-field is parallel to wall

Note: H is the peak field, the average power is due to factor $\frac{1}{2}$

- The eddy currents are opposed to the current inside the metal, which leads to the **skin effect**, i.e. the current density J decreases from the RF surface to the inside of the metal
- This yields to the surface resistance being dependent on the skin depth 1

 $R_S = \frac{1}{\sigma \cdot \delta}$

 δ is the **skin depth**

RF surface

RF surface

skin effec

surface magnetic fields H(m)

eddy current opposing

currents deeper within the metal

- What is dependence of J(x) with distance x from surface that defines the skin depth ?

- In the metallic surface power losses arise from (eddy) currents induced by the time varying magnetic fields tangential to the cavity surface

 ∂x

∂t

$$\oint_{\partial S} \vec{H} \cdot d\vec{l} = \iint_{S} \vec{J} \cdot d\vec{S} + \iint_{S} \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S}$$

$$\oint_{\partial S} \vec{H} \cdot d\vec{l} = H_{y} (x + dx)\Delta b - H_{y} (x)\Delta b = J_{z}(x)dx\Delta b$$

$$\frac{H_y(x+dx) - H_y(x)}{dx} = J_z(x) \qquad \qquad 1) \qquad \frac{\partial H_y(x)}{\partial x} = J_z(x) = \sigma E_z \qquad ; \vec{J} = \sigma \vec{E} = \frac{1}{\rho} \vec{E}$$

- A second condition is provided by the magnetic flux

$$\oint_{\partial S} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \iint_{S} \vec{B} \cdot d\vec{S} = -\frac{d\Phi_{B}}{dt}$$

$$\Rightarrow E_{z}(x)\Delta l - E_{z}(x + dx)\Delta l = -\mu \frac{\partial H_{y}(x)}{\partial t} dx\Delta l \quad \Rightarrow \quad 2) \quad -\frac{\partial E_{z}(x)}{\partial x} = -\mu \frac{\partial H_{y}(x)}{\partial t}$$

1)
$$\frac{\partial H_{y}(x)}{\partial x} = J_{z}(x) = \sigma E_{z}$$
2)
$$-\frac{\partial E_{z}(x)}{\partial x} = -\mu \frac{\partial H_{y}(x)}{\partial t}$$
- Combine 1) and 2)
$$\frac{\partial J_{z}(x)}{\partial x} = \mu \sigma \frac{\partial H_{y}(x)}{\partial t} \longrightarrow \frac{\partial J_{z}(x)}{\partial x} = i\mu \sigma \omega \cdot H_{y}(x)$$
; $\vec{H}_{y} = H_{y}(x)e^{i\omega t}$
- Differential equation:
$$\frac{\partial^{2} J_{z}(x)}{\partial x^{2}} - i \cdot \mu \sigma \omega \cdot \frac{\partial J_{z}(x)}{\partial x} = 0$$
- General solution:
$$J_{z}(x) = J_{z}(0)e^{-\sqrt{i \cdot \mu \sigma \omega \cdot x}} + J'_{z}(0)e^{+\sqrt{i \cdot \mu \sigma \omega \cdot x}} - J_{z}(0) = J_{0} \text{ is current density}$$
at RF surface

- Since the current density must be finite for $x \rightarrow \infty$, $J'_{z}(0) = 0$

$$\int J_{z}(x) = J_{0}e^{-\sqrt{i \cdot \mu \sigma \omega} \cdot x}$$
Note:
$$\sqrt{i} = \frac{1}{\sqrt{2}}(1+i)$$
With the abbreviation
$$\delta = \sqrt{\frac{2}{\mu \sigma \omega}}[m] \rightarrow J_{z}(x) = J_{0} \cdot e^{-\frac{x}{\delta}} \cdot e^{-i \cdot \frac{x}{\delta}}$$

$$J_{z}(x) = \frac{J_{0}}{e} \cdot e^{-i} \qquad ; \text{at } x = \delta$$
phase changes by 1 radian
per skin depth
$$J_{z}(x) = \frac{J_{0}}{e} \cdot e^{-i} \qquad ; \text{at } x = \delta$$
phase changes by 1 radian
per skin depth
$$H_{y}(x) = H_{0} \cdot e^{-\frac{x}{\delta}} \cdot e^{-i \cdot \frac{x}{\delta}}$$

$$H_{z}(x) = \frac{I_{0}}{g} \cdot e^{-i} \qquad ; \text{at } x = \delta$$
phase changes by 1 radian
per skin depth
$$F_{avg} = \frac{R_{s}}{2} \iint_{S} H_{s}^{2} \cdot ds$$
; equivalent to $P = \frac{1}{2} R \cdot I_{pk}^{2}$
Jefferson Lab

- **Exampl**e: Skin depth and surface resistance as a function of frequency for copper and aluminum at room temperature

- Coming back to power loss

$$P_{avg} = \frac{1}{2} \cdot \frac{1}{\sigma\delta} \cdot \iint_{S} \vec{H}^{2} dS = \frac{1}{2} \cdot \sqrt{\frac{\mu\omega}{2\sigma}} \iint_{S} \vec{H}^{2} dS$$

- In a cylindrical resonator we can sum up losses over lateral surface and endplates considering symmetry

 $P_{avg} = \bar{P}_{lateral} + 2 \cdot \bar{P}_{endplate}$

- In cylindrical coordinates $(dx \cdot dy = r \cdot dr \cdot d\varphi)$ we obtain

$$P_{avg} = \frac{1}{2} \cdot \frac{1}{\sigma \delta} \cdot \left\{ R \int_{0}^{L} dz \cdot \int_{0}^{2\pi} d\varphi \cdot \left(H_{\varphi}^{2}(R) + H_{z}^{2}(R) \right) + 2 \int_{0}^{R} dr \cdot r \int_{0}^{2\pi} d\varphi \cdot \left(H_{r}^{2}(r) + H_{\varphi}^{2}(r) \right) \right\}$$

; with $H_r(r=R) = 0$ on lateral surface

; with $H_{z}(r) = 0$ everywhere on endplates

Case Example: *TM*_{0n0} (m=0, p=0) monopole modes

- Again we only have the following field components to consider:

$$E_r = E_{\varphi} = H_r = H_z = 0 \qquad E_z = E_0 \cdot J_0 \left(r \, \frac{x_{0n}}{R} \right) \cdot e^{i\omega t} \qquad H_{\varphi} = -iE_0 \cdot \left(\frac{\omega \varepsilon R^2}{x_{0n}^2} \right) \cdot \frac{\partial J_0 \left(r \, \frac{x_{0n}}{R} \right)}{\partial r} \cdot e^{i\omega t}$$

- 1st term of power loss:

$$\overline{P}_{lateral} = \frac{1}{2} \cdot \frac{1}{\sigma \delta} \cdot \int_{0}^{L} dz \int_{0}^{2\pi} d\varphi \cdot H_{\varphi}^{2}(R,\varphi,t)$$

$$= \frac{1}{2} \cdot \frac{R}{\sigma \delta} \cdot L \cdot E_{0}^{2} \cdot 2\pi \cdot \left(\frac{\omega_{0n0} \varepsilon R^{2}}{x_{0n}^{2}}\right)^{2} \cdot \frac{\partial J_{0}\left(r\frac{x_{0n}}{R}\right)^{2}}{\partial r}$$

$$= \frac{1}{\sigma \delta} \cdot R \cdot L \cdot E_{0}^{2} \cdot \pi \cdot \left(\frac{\omega_{0n0} \varepsilon R^{2}}{x_{0n}^{2}}\right)^{2} \cdot \left(\frac{x_{0n}}{R}\right)^{2} \cdot J_{1}(x_{0n})^{2}$$

$$= \frac{1}{\sigma \delta} \cdot R \cdot L \cdot E_{0}^{2} \cdot \pi \cdot \left(\frac{\omega_{0n0} \varepsilon R}{x_{0n}}\right)^{2} \cdot J_{1}(x_{0n})^{2}$$

; identity
$$\frac{\partial J_m(r \cdot \frac{x_{mn}}{R})}{\partial r} = \frac{m}{r} J_m\left(r \cdot \frac{x_{mn}}{R}\right) - \frac{x_{mn}}{R} J_{m+1}\left(r \cdot \frac{x_{mn}}{R}\right)$$

; identity $\frac{\partial J_0(r \cdot \frac{x_{0n}}{R})}{\partial r} = -\frac{x_{0n}}{R} J_1\left(r \cdot \frac{x_{m0}}{R}\right)$; $r = R$

- 2^{nd} term for power loss for TM_{0n0} (m=0, p=0) monopole modes

$$\begin{split} \overline{P}_{endplates} &= \frac{1}{\sigma\delta} \cdot \int_{0}^{R} dr \cdot r \int_{0}^{2\pi} d\varphi \cdot H_{\varphi}^{2}(r,\varphi,0) \\ &= \frac{1}{\sigma\delta} \cdot E_{0}^{2} \cdot 2\pi \cdot \left(\frac{\omega_{0n0} \varepsilon R^{2}}{x_{0n}^{2}}\right)^{2} \cdot \int_{0}^{R} dr \cdot r \cdot \frac{\partial J_{0}\left(r\frac{x_{0n}}{R}\right)^{2}}{\partial r} \\ &= \frac{1}{\sigma\delta} \cdot E_{0}^{2} \cdot 2\pi \cdot \left(\frac{\omega_{0n0} \varepsilon R^{2}}{x_{0n}^{2}}\right)^{2} \cdot \int_{0}^{R} dr \cdot r \cdot \left(\frac{x_{0n}}{R}\right)^{2} \cdot J_{1}\left(r \cdot \frac{x_{0n}}{R}\right)^{2} \\ &= \frac{1}{\sigma\delta} \cdot E_{0}^{2} \cdot 2\pi \cdot \left(\frac{\omega_{0n0} \varepsilon R^{2}}{x_{0n}^{2}}\right)^{2} \cdot \int_{0}^{R} dr \cdot r \cdot \left(\frac{x_{0n}}{R}\right)^{2} \cdot J_{1}\left(r \cdot \frac{x_{0n}}{R}\right)^{2} \cdot J_{1}(y)^{2} \\ &= \frac{1}{\sigma\delta} \cdot E_{0}^{2} \cdot 2\pi \cdot \left(\frac{\omega_{0n0} \varepsilon R^{2}}{x_{0n}^{2}}\right)^{2} \cdot \int_{0}^{\lambda_{nn}} dy \cdot y \cdot J_{1}(y)^{2} \\ &= \frac{1}{\sigma\delta} \cdot E_{0}^{2} \cdot 2\pi \cdot \left(\frac{\omega_{0n0} \varepsilon R^{2}}{x_{0n}^{2}}\right)^{2} \cdot \left\{-J_{0}(y) \cdot y \cdot J_{1}(y) + \frac{y^{2}}{2} \cdot \left(J_{0}^{2}(y) + J_{1}^{2}(y)\right)\right\}\Big|_{0}^{x_{0n}} \\ &= \frac{1}{\sigma\delta} \cdot E_{0}^{2} \cdot 2\pi \cdot \left(\frac{\omega_{0n0} \varepsilon R^{2}}{x_{0n}^{2}}\right)^{2} \cdot \frac{x_{0n}^{2}}{2} \cdot J_{1}(x_{0n})^{2} \\ &= \frac{1}{\sigma\delta} \cdot E_{0}^{2} \cdot 2\pi \cdot \left(\frac{\omega_{0n0} \varepsilon R^{2}}{x_{0n}^{2}}\right)^{2} \cdot \frac{x_{0n}^{2}}{2} \cdot J_{1}(x_{0n})^{2} \\ &= \frac{1}{\sigma\delta} \cdot E_{0}^{2} \cdot \pi \cdot \left(\frac{\omega_{0n0} \varepsilon R^{2}}{x_{0n}^{2}}\right)^{2} \cdot J_{1}(x_{0n})^{2} \\ &= \frac{1}{\sigma\delta} \cdot E_{0}^{2} \cdot \pi \cdot \left(\frac{\omega_{0n0} \varepsilon R^{2}}{x_{0n}^{2}}\right)^{2} \cdot J_{1}(x_{0n})^{2} \end{aligned}$$

Combining both terms this yields:

$$P_{avg} = \bar{P}_{lateral} + \bar{P}_{endplates}$$

$$= \frac{1}{\sigma\delta} \cdot R \cdot L \cdot E_0^2 \cdot \pi \cdot \left(\frac{\omega_{0n0}\varepsilon R}{x_{on}}\right)^2 \cdot J_1(x_{on})^2 + \frac{1}{\sigma\delta} \cdot E_0^2 \cdot \pi \cdot \left(\frac{\omega_{0n0}\varepsilon R^2}{x_{on}}\right)^2 \cdot J_1(x_{on})^2$$

$$P_{avg} = \frac{1}{\sigma\delta} \cdot E_0^2 \cdot \pi \cdot \left(\frac{\omega_{0n0}\varepsilon R}{x_{on}}\right)^2 \cdot J_1(x_{on})^2 \cdot (R \cdot L + R^2)$$

$$\delta = \sqrt{\frac{2}{\mu\sigma\omega}}$$
Skin depth

Total stored energy (Note: does not depend on metal surface (conductivity, skin depth))

$$U_{e,pk} = \frac{R^2}{2} \cdot L \cdot E_0^2 \cdot \pi \cdot \varepsilon \cdot J_1(x_{0n})^2$$

Quality factor

$$Q_{0} = \omega \cdot \frac{U_{e,pk}}{P_{avg}} = \frac{\omega \cdot \frac{R^{2}}{2} \cdot L \cdot E_{0}^{2} \cdot \pi \cdot \varepsilon \cdot J_{1}(x_{0n})^{2}}{\frac{1}{\sigma \delta} \cdot E_{0}^{2} \cdot \pi \cdot \left(\frac{\omega_{0n0} \cdot \varepsilon \cdot R}{x_{0n}}\right)^{2} \cdot J_{1}(x_{0n})^{2} \cdot (R \cdot L + R^{2})} = \frac{\sigma \delta \cdot x_{0n}^{2}}{2 \cdot \omega_{0n0} \cdot \varepsilon} \cdot \frac{L}{(R \cdot L + R^{2})}$$

$$Q_{0} = \sqrt{\frac{\sigma}{2\mu\omega}} \cdot \frac{x_{0n}^{2}}{\omega_{0n0} \cdot \varepsilon} \cdot \frac{L}{(R \cdot L + R^{2})}$$
Effects Lab

Resonator Figures of Merit Accelerating Voltage and Transit Time Factor

- A beam particle experiences an acceleration along or parallel to the beam axis by the electric field
- For a given beam current (*I*), the accelerating voltage ($V = I \cdot R_{sh}$) should be maximized, wherein R_{sh} is the shunt impedance (similar to Ohm's law)
- *TM*-modes can be used for acceleration since *TE*-modes have no electric field component along the axis field $E_z(\omega) = E_0 \cdot J_m \left(r \frac{x_{mn}}{R}\right) \cdot \cos(m\varphi) \cdot \cos\left(\frac{\pi p}{L}z\right) \cdot e^{i\omega^{TM}t}$
- Efficient for acceleration are monopole modes (TM_{Onp}) with near constant field around the cylindrical axis
- If we neglect time-dependence for now, voltage 'seen' by a particle traveling parallel to resonator axis:

$$V_{z,0} = \int_{-\frac{1}{2}L}^{+\frac{1}{2}L} dz \cdot |E_z| = E_0 \cdot J_0\left(r \frac{x_{0n}}{R}\right) \cdot \int_{-\frac{1}{2}L}^{\frac{1}{2}L} dz \cdot \cos\left(\frac{\pi p}{L}z\right)$$

$$= E_0 \cdot J_0\left(r \frac{x_{0n}}{R}\right) \cdot \frac{L}{\pi p} \cdot \left\{\sin\left(\frac{\pi p}{L}z\right)\right\} \Big|_{-\frac{1}{2}L}^{\frac{1}{2}L} = L \cdot E_0 \cdot J_0\left(r \frac{x_{0n}}{R}\right) \cdot \frac{\sin\left(\frac{\pi p}{2}\right)}{\frac{\pi p}{2}}$$

$$V_{z,0} = L \cdot E_0 \cdot J_0\left(r \frac{x_{0n}}{R}\right) \cdot \frac{\sin\left(\frac{\pi p}{2}\right)}{\frac{\pi p}{2}}$$
Note:
$$\lim_{p \to 0} \frac{\sin\left(\frac{\pi p}{2}\right)}{\frac{\pi p}{2}} = 1$$

$$Maximum value for TM_{010} -mode:
$$V_{z,0} = L \cdot E_0 \cdot J_0\left(r \frac{x_{0n}}{R}\right) = L \cdot E_0$$$$

Resonator Figures of Merit Accelerating Voltage and Transit Time Factor

- However, we need to take into account the change of the field amplitude during the transit time of the beam
- For symmetry reasons let us shift the zero to the center of the cavity

$$V_{z,eff} = \int_{-L/2}^{+L/2} dz \cdot Re[E_z(\omega)] = E_0 \cdot J_0\left(r \frac{x_{0n}}{R}\right) \cdot \int_{-L/2}^{+L/2} dz \cdot \cos\left(\frac{\pi p}{L}z\right) \cdot \cos(\omega \cdot t + \varphi)$$
; φ is phase relative to crest of field

- Depending on velocity of the beam, the experienced fields may vary, so it is a function of z $t(z) = \int_{0}^{z} dz$ - Moreover: velocity increases while beam is accelerated (v(z))
- If velocity increase is however small $(v_b \sim \text{constant}, \text{e.g. already relativistic beam or short accelerating gap})$ $\rightarrow t(z) = z/v_b \text{ with } v_b = \beta_b \cdot c_0$ $\boxed{\cos(\omega t) = \cos\left(\frac{2\pi c_0}{\lambda} \cdot \frac{z}{\beta_b \cdot c_0} + \varphi\right) = \cos\left(\frac{2\pi \cdot z}{\lambda\beta_b} + \varphi\right)}$

$$\begin{split} V_{z,eff} &= E_0 \cdot J_0 \left(r \ \frac{x_{0n}}{R} \right) \cdot \int_{-\frac{1}{2L}}^{+\frac{1}{2}L} dz \cdot \cos\left(\frac{\pi p}{L}z\right) \cdot \cos(\omega t + \varphi) \\ &= E_0 \cdot J_0 \left(r \ \frac{x_{0n}}{R} \right) \cdot \int_{-\frac{1}{2L}}^{\frac{1}{2L}} dz \cdot \cos\left(\frac{\pi p}{L}z\right) \cdot (\cos(\omega t) \cdot \cos\varphi - \sin(\omega t) \cdot \sin\varphi) \\ &= E_0 \cdot J_0 \left(r \ \frac{x_{0n}}{R} \right) \cdot \left(\cos\varphi \cdot \int_{-\frac{1}{2L}}^{\frac{1}{2L}} dz \cdot \cos\left(\frac{\pi p}{L}z\right) \cdot \cos(\omega t) - \sin\varphi \cdot \int_{-\frac{1}{2L}}^{\frac{1}{2L}} dz \cos\left(\frac{\pi p}{L}z\right) \sin(\omega t) \right) \\ &= E_0 \cdot J_0 \left(r \ \frac{x_{0n}}{R} \right) \cdot \cos\varphi \cdot \left(\int_{-\frac{1}{2L}}^{\frac{1}{2L}} dz \cdot \cos\left(\frac{\pi p}{L}z\right) \cdot \cos(\omega t) \right) \end{split}$$

; identity: $\cos(\alpha+\beta) = \cos\alpha\cdot\cos\beta - \sin\alpha\cdot\sin\beta$

; If a particle is at center of resonator when the field peaks (electrical center), then:

$$\int_{-\frac{1}{2}L}^{\frac{1}{2}L} dz \cos\left(\frac{\pi p}{L}z\right) \sin(\omega t) = 0$$

Resonator Figures of Merit Accelerating Voltage and Transit Time Factor

- Since we already solved the integral without time dependence:

$$V_{z,eff} = V_{z,0} \cdot \cos\varphi \cdot TTF$$
$$V_{z,eff} = L \cdot E_0 \cdot J_0 \left(r \frac{x_{0n}}{R}\right) \cdot \frac{\sin\left(\frac{\pi p}{2}\right)}{\frac{\pi p}{2}} \cos\varphi \cdot TTF$$

$$TTF = \frac{\int_{-\frac{1}{2}L}^{\frac{1}{2}L} dz \cdot \cos\left(\frac{\pi p}{L}z\right) \cdot \cos(\omega t)}{\int_{-\frac{1}{2}L}^{\frac{1}{2}L} dz \cdot \cos\left(\frac{\pi p}{L}z\right)}$$

TTF = transit time factor

- Unless argument of sine is small (short accelerating gap L and φ = 0) an efficient acceleration is achieved, when sin(~) = 1

$$\rightarrow L = \frac{\beta_b \lambda}{2}$$
 and $\varphi = 0$ T

$$TF = \frac{\lambda\beta_b}{L\pi} = \frac{2}{\pi} \approx 0.636$$

; for $L > \frac{\beta_b\lambda}{2} \to TTF < \frac{2}{\pi}$

$$E_{x,eff} = \frac{2}{\pi} L \cdot E_0 \cdot J_0 \left(r \frac{x_{0n}}{R} \right)$$
Jefferson Lab

Resonator Figures of Merit Shunt Impedance

- For accelerating resonators the longitudinal shunt impedance is an important figure of merit
- It defines how effective a particle beam is accelerated by a given electric field along the resonating RF cavity \rightarrow shunt impedance for accelerating mode should be maximized
- We previously defined the shunt impedance as a resistor (R_{sh}) in the parallel circuit

$$P_{pk} = \frac{V_{pk}^{2}}{R_{sh}} P_{avg} = \frac{1}{2} \cdot \frac{V_{pk}^{2}}{R}$$

$$P_{avg} = \frac{1}{2} \cdot \frac{V_{pk}^{2}}{R}$$

$$R_{sh} = \frac{(V_{z,0} \cdot \cos\varphi \cdot TTF)^{2}}{2 \cdot P_{avg}} = \frac{(V_{z,0} \cdot \cos\varphi \cdot TTF)^{2}}{2 \cdot \omega_{0} \cdot U_{S}} \cdot Q_{0} \quad ; Q_{0} = \omega_{0} \cdot \frac{U_{S}}{P_{avg}}$$
Note: This is the circuit definition of the R_{sh} (also knows as the EU-definition), numerical codes rather calculate twice the circuit shunt impedance (US or linac definition)

- Shunt impedance depends on surface material properties, as a resistor (R) in the parallel circuit
- Benefit of resonance structures is obvious due to product with Q_0
- (Q₀ is few 1e4 in normal conducting RF structures at room temperature, few 1e10 in superconducting RF structures at 2 Kelvin)
- For *TM*_{0n0}-modes:

$$R_{sh} = \frac{\left(L \cdot E_0 \cdot J_0\left(r\frac{x_{0n}}{R}\right) \cdot \cos\varphi \cdot TTF\right)^2}{2 \cdot P_{avg}} = \frac{\left(L \cdot E_0 \cdot J_0\left(r\frac{x_{0n}}{R}\right) \cdot \cos\varphi \cdot \frac{2}{\pi}\right)^2}{\frac{2}{\sigma\delta} \cdot E_0^2 \cdot \pi \cdot \left(\frac{\omega_{0n0}\varepsilon R}{x_{0n}}\right)^2 \cdot J_1(x_{0n})^2 \cdot (R \cdot L + R^2)} = \frac{2\sigma\delta \cdot x_{0n}^2 \cdot \cos\varphi^2}{\pi^3 \cdot (\omega_{0n0} \cdot \varepsilon)^2} \cdot \left(\frac{J_0\left(r\frac{x_{0n}}{R}\right)}{J_1(x_{0n})}\right)^2 \cdot \frac{L^2}{R^2(R \cdot L + R^2)}$$

$$; P_{avg} = \frac{1}{\sigma\delta} \cdot E_0^2 \cdot \pi \cdot \left(\frac{\omega_{0n0}\varepsilon R}{x_{0n}}\right)^2 \cdot J_1(x_{0n})^2 \cdot (R \cdot L + R^2)$$

Resonator Figures of Merit Characteristic Shunt Impedance

- The characteristic shunt impedance (short R/Q-value) is defined by

$$\frac{R}{Q} = \frac{R_{sh}}{Q_0} = \frac{\left(V_{z,0} \cdot \cos\varphi \cdot TTF\right)^2}{2 \cdot P_{avg}} = \frac{\left(V_{z,0} \cdot \cos\varphi \cdot TTF\right)^2}{2 \cdot \omega_0 \cdot U_S}$$

- The characteristic shunt t impedance does not depend on surface material properties, and only on the geometry of the structure
- One usually aims to optimize/maximize the R/Q-value in normal conducting RF structure (e.g. cavity with nose-cones in order to minimize the power losses dissipated at heat in the metal surface
- This is not as crucial for superconducting RF structure since power losses are comparably small in the walls
 → the accelerating cavities then can afford larger beam tubes (good for beam dynamics)
- The shunt impedance can also be expressed by

$$R_{sh} = \frac{R}{Q} \cdot Q_0$$

- This is handy for experimental assessment of the shunt impedance, since the R/Q-value of a mode can be readily and accurately calculated with numerical codes since not depending on assumptions of surface losses, while one can measure the Q_0 -values reliably, which includes the real loss mechanisms

- For *TM*_{0n0}-modes:

$$\frac{R}{Q} = \frac{\left(L \cdot E_0 \cdot J_0\left(r \frac{x_{0n}}{R}\right) \cdot \cos\varphi \cdot TTF\right)^2}{2 \cdot \omega_{0n0} \cdot U_S} = \frac{\left(L \cdot E_0 \cdot J_0\left(r \frac{x_{0n}}{R}\right) \cdot \cos\varphi \cdot \frac{2}{\pi}\right)^2}{2 \cdot \omega_{0n0} \cdot \frac{R^2}{2} \cdot L \cdot E_0^2 \cdot \pi \cdot \varepsilon \cdot J_1(x_{0n})^2} = \frac{4 \cdot \cos\varphi^2}{\pi^3 \cdot \omega_{0n0} \cdot \varepsilon} \cdot \left(\frac{J_0\left(r \frac{x_{0n}}{R}\right)}{J_1(x_{0n})}\right)^2 \cdot \frac{L}{R^2}$$
$$; U_{e,pk} = \frac{R^2}{2} \cdot L \cdot E_0^2 \cdot \pi \cdot \varepsilon \cdot J_1(x_{0n})^2$$
Jefferson Lab

Phase and Group Velocity in Waveguide

- In a waveguide the wavenumber is constrained compared to free space ($k = \sqrt{\mu\epsilon}\omega$)

$$k_{z} = \beta = \frac{2\pi}{\Lambda} = \sqrt{\mu\epsilon} \sqrt{\omega^{2} - \omega_{c}^{2}} \qquad \qquad \omega = \sqrt{\frac{k_{z}^{2}}{\mu\epsilon} + \omega_{c}^{2}} \qquad \text{, wherein } \omega_{c} \text{ is the cutoff frequency of waveguide (see Lecture: Transmission line and Waveguides)}$$

$$v_{gr} = \frac{d\omega}{dk_{z}} \qquad \text{Group velocity (energy flows at group velocity)}$$

$$v_{gr} = \frac{d\omega}{dk_{z}} = \frac{k_{z}}{\mu\epsilon \cdot \omega} = \frac{1}{\sqrt{\mu\epsilon}} \frac{\sqrt{\omega^{2} - \omega_{c}^{2}}}{\omega} = v \cdot \sqrt{1 - \frac{f_{c}^{2}}{f^{2}}} \qquad \text{Group velocity is < speed of light}$$

$$v_{ph} = \frac{\omega}{k_{z}} = f \cdot \Lambda \qquad \text{Phase velocity } ; \text{ in free space } v_{ph} = c_{0} \text{ due to } k^{2} = \mu\epsilon\omega^{2}$$

$$v_{ph} = \frac{\omega}{k_z} = \frac{\omega}{\sqrt{\mu\epsilon}\sqrt{\omega^2 - \omega_c^2}} = \frac{v}{\sqrt{1 - \frac{f_c^2}{f^2}}}$$

Phase velocity is always > speed of light

 This has technical implications for accelerating structures, particularly for long cavity structures (when requiring high energy gain) since particle velocity can never be synchronous with phase of mode
 (→ poor accelerating efficiency)

Phase and Group Velocity in Waveguide

Coupled Resonators Phase Velocity and Dispersion

- How to reduce the phase velocity to be synchronous with particle velocity ?
- E.g. implement aperture holes ightarrow creates multi-cell coupled resonator

- But now we created a series of resonators coupled with each other from a round waveguide
- What is the phase velocity now?
- Due to coupling of RF fields between cells, each mode in a single cell splits into N modes in multi-cell coupled resonator (N = number of cells) → these N modes form a single passband
- Each mode (TE_{mnp} , TM_{mnp}) exsiting in single-cell resonator is augmented by factor N, and the N modes within the same passband differ by a phase advance φ_j per cavity cell period (L_{cell})

Example : 2-cell cavity with beam tubes (<i>TM</i> ₀₁₀ -like mode)		Analogous to coupled pendulum	
in phase (0-mode)	out of phase by 180° (π -mode)	in phase (0-mode)	out of phase by 180° (π -mode)

Coupled Resonators Phase Velocity and Dispersion

- How to reduce the phase velocity to be synchronous with particle velocity ?
- E.g. implement aperture holes ightarrow creates multi-cell coupled resonator

- But now we created a series of resonators coupled with each other from a round waveguide
- What is the phase velocity now?
- Due to coupling of RF fields between cells, each mode in a single cell splits into N modes in multi-cell coupled resonator (N = number of cells) → these N modes form a single passband
- Each mode (TE_{mnp} , TM_{mnp}) exsiting in single-cell resonator is augmented by factor N, and the N modes within the same passband differ by a phase advance φ_j per cavity cell period (L_{cell})
- Periodicity of field is then achieved after $2\pi/arphi_j$ number of cells
- The resonator wavelength is then
- The phase velocity is thus:

$$\Lambda_{j} = \frac{2\pi}{\varphi_{j}} \cdot L_{cell} \longrightarrow k_{j} = \frac{2\pi}{\Lambda_{j}}$$
$$v_{ph} = \frac{\omega}{k_{j}} = \Lambda_{j} \cdot \frac{\omega}{2\pi} = \frac{\omega}{\varphi_{j}} \cdot L_{cell}$$

Coupled Resonators Phase Velocity and Dispersion

- The phase velocity should equal the particle velocity v_b for the accelerating mode :

$$\mathsf{v}_b = \mathsf{v}_{ph} = \frac{\omega}{\varphi_j} \cdot L_{cell}$$

Condition for synchronous acceleration

- We then obtain solution for cell length resulting in synchronous motion of particle with wave

$$L_{cell} = \frac{\mathsf{v}_b \cdot \varphi_j}{\omega} = \frac{\beta_b c_0 \cdot \varphi_j}{2\pi f} = \frac{\beta_b \lambda}{2\pi} \cdot \varphi_j$$

; normalized particle velocity; $\beta_{\rm b} = c_0 / v_{\rm b}$

Example: for a $\varphi_j = \pi$ mode the cell length should be: $L_{cell} = \frac{\beta_b \lambda}{2}$

- For non-relativistic particles that still significantly change their velocity when accelerated, the cell length must then be adapted according to the $\beta_{\rm b}$ -value
- For e.g. proton SRF linac cavities (such as used in SNS, Oak Ridge), there is only one medium and one high beta section each with a fixed cell length (so-called geometrical beta (β_g), which for SNS is β_g = 0.61 and $\beta_g = 0.81$ for the SRF linac)
- These fixed cell lengths are chosen such to cover the whole particle velocity range, though the TTF-value is continuously changing, but covers the peak value in each fixed-beta range for overall efficient energy gain

Coupled Resonators Passband Mode Frequencies

- What are the Eigenfrequencies of modes in a passband compared to a single resonator cell?
- Lumped circuit analysis (no derivation here) yields a solution for identical cell-to-cell coupling factor (K) using matrix formalism (Eigenwert solution)
- The solution yields:

$$\omega_j = \frac{\omega_0}{\sqrt{1 \pm K \cdot \cos\varphi_j}}$$

Dispersion Relation

- The dispersion relation accounts for dependency of the Eigenfrequency with the phase advance $arphi_j$ per cell
- Eigen frequencies thus vary in a passband
- Only when $\varphi_i = \pi/2$ (i.e. $\cos \varphi_i = 0$) is the Eigenfrequency equal to the natural frequency of an individual cell
- The larger the coupling factor K, the larger the spread of frequencies in a passband
- Various boundary condition are possible at the end of the cavity and can be accounted for
- Typically these boundary conditions are identical on ends, i.e.
 - Electric boundaries (0-mode, no π -mode)
 - Magnetic boundaries (no 0-mode, π -mode)
- Mixed boundaries are possible

$$\varphi_j = j \cdot \frac{\pi}{N}$$
 with $j = 0, 1, \cdots, N$

$$\varphi_j = \left(j - \frac{1}{2}\right) \cdot \frac{\pi}{N}$$
 with $j = 0, 1, \cdots, N$

- Dispersion relation can be best illustrated in **Brillouin Diagram** $\omega_i(\varphi_i)$

Coupled Resonators Dispersion per Brillouin Diagram

- Example: Nine-cell cavity (red dots, e.g. TESLA cavity), curve is for infinite number of cells

Field Amplitudes in a coupled 5-cell Cavity

- Analytical formalism also allows to calculate relative peak amplitudes (X_m) in each cell (m)

Field Amplitudes in a 5-cell Cavity

- Analytical formalism also allows to calculate relative peak amplitudes (X_m) in each cell (m)

Adding Beam Tubes for Accelerating Cavities

- When adding beam tubes, the fields are distorted especially in the end cells
- If fields start to propagate out of beam tubes, the situation becomes more involved depending on boundary conditions (can be far away from the cavity ends)

Example: USPAS cavity (3-cell coupled structure)

Elliptical Accelerating Cavity

- SRF accelerating cavities exhibit elliptical cell contour
- Consequence: RF fields deviate from pure pillbox fields
 - No closed analytical expression of fields possible
 - Numerical codes required for RF field computations
- Deviations to pure pillbox field can be significant such that e.g. *TE*-dipole Higher Order Modes (HOMs) become dangerous as well for beam dynamics since non-vanishing electrical fields in longitudinal direction may exist (can kick beam off axis)

Unloaded/Loaded/External Q

- Typically we measure the loaded $Q(Q_1)$ of the RF structure, since all external couplers required to feed energy extract power (P_{ext}), which add to the losses
- Power losses in external coupling lines are usually not negligible
- Coupling factor of an external circuit attached to the RF structure under test is given by the ratio of the externally dissipated power in the i-th external circuit to the intrinsically dissipated power

$$k_{j} = \frac{P_{ext,i}}{P_{intr.}} = \frac{Q_{0}}{Q_{ext,i}} \qquad ; Q_{0} = \omega \cdot \frac{U_{e,pk}}{P_{avg}}$$

- The total power dissipation is simply the sum of intrinsic and external losses

yields the loaded Q
$$\frac{1}{Q_l} = \frac{P_{total}}{\omega U} = \frac{P_{intr.} + P_{ext,1} + P_{ext,2} + \cdots}{\omega U}$$

is equivalent to:
$$\frac{1}{Q_l} = \frac{1}{Q_0} + \frac{1}{Q_{ext}} \quad with \quad \frac{1}{Q_{ext}} = \frac{1}{Q_{ext,1}} + \frac{1}{Q_{ext,2}} + \cdots \qquad Q_l < Q_0, Q_{ext}$$

- When Q_0 -value is very large (i.e. in SRF cavities), then $Q_l pprox Q_{ext}$
- Solving for Q_0 , yields:

- This

- This

$$Q_0 = \left(\frac{1}{Q_l} - \frac{1}{Q_{ext}}\right)^{-1} \qquad Q_0 \text{ always} > Q_l$$

Q₀ and Reflection Response Under-coupled and Over-coupled Conditions

- Re-ordering terms

$$\frac{1}{Q_{l}} = \frac{P_{total}}{\omega U} = \frac{P_{intr.} + P_{ext,1} + P_{ext,2} + \cdots}{\omega U} = \frac{P_{intr.}}{\omega U} \cdot \left(1 + \frac{P_{ext,1}}{P_{intr.}} + \frac{P_{ext,2}}{P_{intr.}}, + \cdots\right) \quad ; k_{j} = \frac{P_{ext,i}}{P_{intr.}} + \frac{P_{ext,j}}{P_{intr.}} + \frac{P_{ext,j}}{P_{intr.$$

- In terms of the coupling factors once then can re-write:

$$\frac{1}{Q_l} = \frac{1}{Q_0} \cdot (1 + k_1 + k_2 + \dots)$$

$$Q_0 = Q_l \cdot (1 + k_1 + k_2 + \cdots)$$

- Complex reflection coefficient (S_{11}) can be measured with Vector Network Analyzer (VNA)
- In polar chart we see a coupling loop around the resonance

Note:

or

- If the loop encompasses the origin, then the external circuit is **over-coupled** ($P_{ext} > P_{intr.}$)
- If the loop does not encompasses the origin, then the external circuit is under-coupled (P_{ext} < P_{intr.})

RF Structure with Single Coupling Probe in Reflection

RF Structure with Two Coupling Probes in Transmission

Measuring the Q-factor with the VNA

- Q-values are convenient measurable with VNA
- Note: S-Parameters signal ~ VP
- Q-definition is equivalent to

 $Q = \frac{\omega_0 \cdot U_{pk}}{P_{avg}} = \omega_0 \cdot \tau_0 = \frac{\omega}{\Delta \omega_{1/2}}$

- To determine the Q, we search for the amplitude (S-Parameter) that is reduced by factor $1/\sqrt{2}$ of the amplitude in resonance, which is equivalent to 1/2 the energy stored in resonance (or power dissipated)
- Note that in logarithmic scale

$$dB = 10 \cdot \log\left(\frac{P_{\text{out}}}{P_{\text{in}}}\right) = 20 \cdot \log\left(\frac{V_{\text{out}}}{V_{\text{in}}}\right)$$

- We need to find the points to either side of the resonance, where the energy is $\frac{1}{2}$ of that at the resonance, which is at $10 \cdot Log(1/2) = 20 \cdot Log(1/\sqrt{2}) =$ ≈-3.0103 *dB*
- Commonly one uses -3 dB points (though not truly exact)
- Equivalent to measure at phases +45° and -45° apart from the resonance in the phase plot 61

 $\Delta \omega_{-3.01dB}$

Experiment related to this Lecture

- Coupled Cavity Linac Main tasks:
 - 1) Measure dispersion through S_{11} measurements using VNA
 - 2) Repeat dispersion measurement with S_{21} and measure Q values of each mode
 - 3) Measure individual frequency of each cell by detuning other cells
 - 4) Set up manual bead-pull measurement and determine the electric field amplitudes along the cavity before tuning
 - 5) Use tuners in each cell to tune cavity to achieve same frequency in each cell
 - 6) Repeat the dispersion measurement and compare with the previously measured dispersion
 - 7) Tune cavity cells to flatten field distribution of last passband mode and determine the electric field amplitudes along the cavity

http://www.agilent.com/

Appendix

Special Proof of Identities for Bessel Function

$$\int dy \cdot y \cdot J_{1}(y)^{2} = -J_{0} \cdot y \cdot J_{1} + \frac{y^{2}}{2} \cdot (J_{0}^{2} + J_{1}^{2}) \qquad \int dy \cdot y \cdot J_{0}(y)^{2} = \frac{y^{2}}{2} \cdot (J_{0}^{2} + J_{1}^{2})$$

$$\int dy \cdot (y \cdot J_{1}) \cdot J_{1} = \int dy \cdot \left(\int dy(y \cdot J_{0})\right) \cdot J_{1} = \int dy \cdot J_{1} \cdot \int dy \cdot (y \cdot J_{0}) - \int dy \cdot \left(\int dy \cdot J_{1}\right) \cdot (y \cdot J_{0}) \qquad ; \text{ partial integration } \int dy f' g = fg - \int dy fg'$$

$$= -J_{0} \cdot \int dy \cdot (y \cdot J_{0}) + \int dy \cdot (y \cdot J_{0}) - \int dy \cdot \left(\int dy \cdot J_{1}\right) \cdot (y \cdot J_{0}) \qquad ; \text{ partial integration } \int dy f' g = fg - \int dy fg'$$

$$= -J_{0} \cdot y \cdot J_{1} + \int dy \cdot (y \cdot J_{0} \cdot J_{0}) \qquad ; \text{ identity: } (y \cdot J_{1})' = y \cdot J_{0}$$

$$= -J_{0} \cdot y \cdot J_{1} + \frac{y^{2}}{2} \cdot J_{0} \cdot J_{0} - \frac{1}{2} \int dy \cdot y^{2} \cdot \frac{d}{dy} (J_{0} \cdot J_{0}) \qquad ; \text{ partial integration } \int dy f' g = fg - \int dy fg'$$

$$= -J_{0} \cdot y \cdot J_{1} + \frac{y^{2}}{2} \cdot J_{0} \cdot J_{0} + \int dy \cdot (y \cdot J_{1}) \cdot \frac{d}{dy} (y \cdot J_{1}) \qquad ; \text{ identity: } (y \cdot J_{1})' = y \cdot J_{0}$$

$$= -J_{0} \cdot y \cdot J_{1} + \frac{y^{2}}{2} \cdot J_{0} \cdot J_{0} + \int dy \cdot (y \cdot J_{1}) \cdot \frac{d}{dy} (y \cdot J_{1}) \qquad ; \text{ identity: } (y \cdot J_{1})' = y \cdot J_{0}$$

$$= -J_{0} \cdot y \cdot J_{1} + \frac{y^{2}}{2} \cdot J_{0} \cdot J_{0} + \int dy \cdot (y \cdot J_{1}) \cdot \frac{d}{dy} (y \cdot J_{1}) \qquad ; \text{ identity: } (y \cdot J_{1})' = y \cdot J_{0}$$

$$= -J_{0} \cdot y \cdot J_{1} + \frac{y^{2}}{2} \cdot J_{0} \cdot J_{0} + \int dy \cdot (y \cdot J_{1}) \cdot \frac{d}{dy} (y \cdot J_{1}) \qquad ; \text{ identity: } (y \cdot J_{1})' = y \cdot J_{0}$$

$$= -J_{0} \cdot y \cdot J_{1} + \frac{y^{2}}{2} \cdot J_{0} \cdot J_{0} + \int dy \cdot (y \cdot J_{1}) \cdot \frac{d}{dy} (y \cdot J_{1}) \qquad ; \text{ identity: } (y \cdot J_{1})' = y \cdot J_{0}$$

$$= -J_{0} \cdot y \cdot J_{1} + \frac{y^{2}}{2} \cdot (J_{0}^{2} + J_{1}^{2}) \qquad ; \text{ identity: } f \, dy \, f' f = \frac{ff}{2}$$
Rules:
$$\frac{d}{dy} (y^{m} \cdot J_{m}(y)) = y^{m} J_{m-1}(y) \rightarrow y \cdot J_{1}(y) = \int dy \cdot y \cdot J_{0}(y)$$