Digital Signal Processing in RF Applications

Part I

Thomas Schilcher

PAUL SCHERRER INSTITUT

What are RF applications?

- any application which measures properties of an RF field (amplitude, phase, frequency, ...); typical frequencies in accelerators: MHz – tens of GHz
- applications which process the measured quantities to control and regulate RF fields (feedback and feedforward)

Typical RF applications

Accelerators:

- CW / pulsed machines
- Iinear / circular machines
- electron/hadron/ion accelerators
- normal-/superconducting RF systems

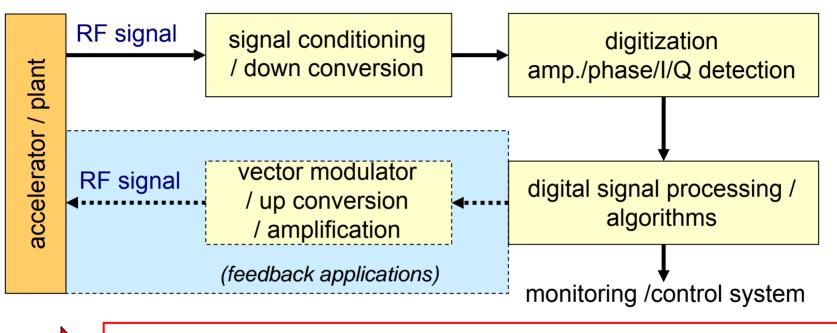
Application areas (examples):

- cavity field loops
- klystron loops
- tuner loops
- radial and phase loops
- "RF gymnastics"

(amplitude and phase)(amplitude and phase)(cavity tuning)(circular machines)(bunch splitting and merging)

Why digital RF applications?

	Digital	Analogue		
Implementation	Learning curve + s/w effort	Easier/known 🙂		
Latency	Longer	Short 🙂		
DAQ/control	I/Q sampling (also direct) or DDC	Ampli/phase , IF downconversion		
Algorithms	Sophisticated. 🙂 State machines, exception handling	Simple. Linear, time-invariant (ex: PID)		
Multi-user	Full 🙂	Limited		
Remote control & diagnostics	Easy, often no additional h/	Difficult, extra h/w		
Flexibility / reconfigurability	High (easier upgrades) 🙂	Limited		
Drift/tolerance	No drifts, repeatability 🙂	Drift (temperature), components tolerance		
Transport distance without distortion	Longer 🙂	Short		
Radiation sensitivity	High	Small 🙂		
I. E. Angoletta "Digital LLRF" EPAC'06				

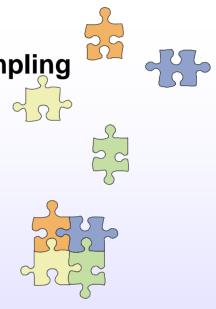

M. E. Angoletta "Digital LLRF

EPAC'06

Key components of digital RF applications

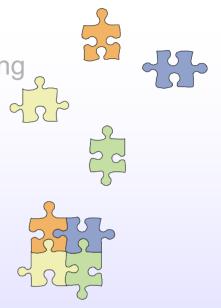
LLRF looks very similar to many other applications,

e.g. diagnostics (bunch-by-bunch feedback, position monitoring, ...)


for feedback systems: ultimate error is dominated by the measurement process (systematic error, accuracy, linearity, repeatability, stability, resolution, noise)

Outline

- 1. signal conditioning / down conversion
- 2. detection of amp./phase by digital I/Q sampling
 - I/Q sampling
 - non I/Q sampling
 - digital down conversion (DDC)
- 3. upconversion
- 4. algorithms in RF applications
 - feedback systems
 - adaptive feed forward
 - system identification



Outline

1. signal conditioning / down conversion

- 2. detection of amp./phase by digital I/Q sampling
 - □ I/Q sampling
 - □ non I/Q sampling
 - □ digital down conversion (DDC)
- 3. upconversion
- 4. algorithms in RF applications
 - feedback systems
 - adaptive feed forward
 - system identification

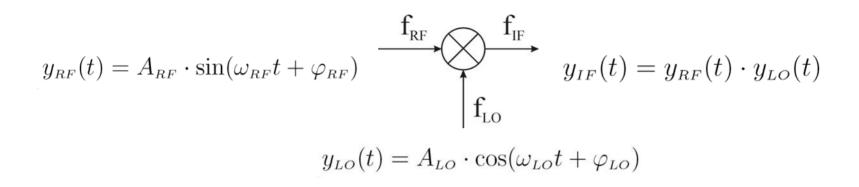
7

Signal conditioning / down conversion

Why down conversion of the RF signal?

- ADC speeds are limited.
 It is not reasonable/possible today to digitize high-frequency carriers directly. (f>500 MHz)
- ADC dynamic range is limited.

 $\begin{array}{l} 10 \text{ bit} \rightarrow 60 \text{ dB} \\ 12 \text{ bit} \rightarrow 72 \text{ dB} \\ 14 \text{ bit} \rightarrow 84 \text{ dB} \end{array}$

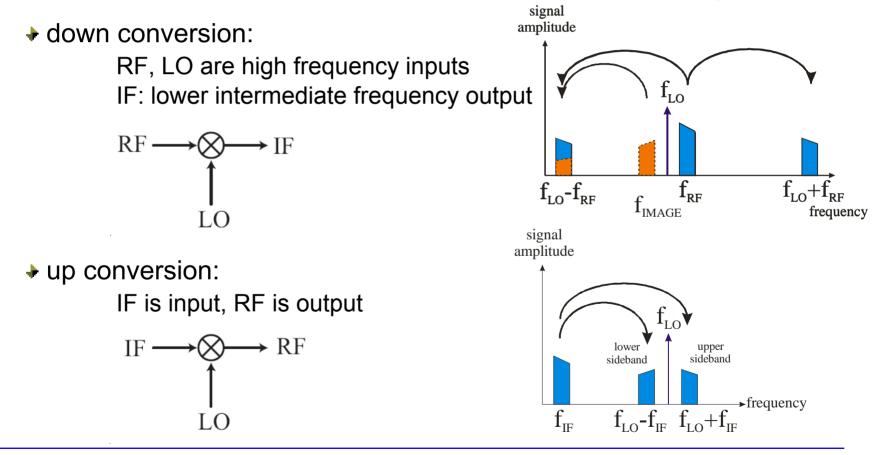

- often better: use analogue circuits in conjunction with the ADC to implement automated gain control (AGC) functions to ensure that this range is best used
- ADC clock and aperture jitter become critical at high frequencies (especially for undersampling schemes)

RF mixers are essential for digital high frequency applications

RF mixer (ideal)

mixer: linear time varying circuit, non-linear circuit (diodes...)

$$\Rightarrow y_{IF}(t) = \frac{1}{2} A_{LO} A_{RF} \cdot \left(\frac{\sin[(\omega_{RF} - \omega_{LO}) t + (\varphi_{RF} - \varphi_{LO})]}{+ \sin[(\omega_{RF} + \omega_{LO}) t + (\varphi_{RF} + \varphi_{LO})]} \right)$$
 lower sideband upper sideband


• even ideal mixers produce two sidebands

RF mixer (ideal)

ideal mixer: output is the multiplication of the two input signals

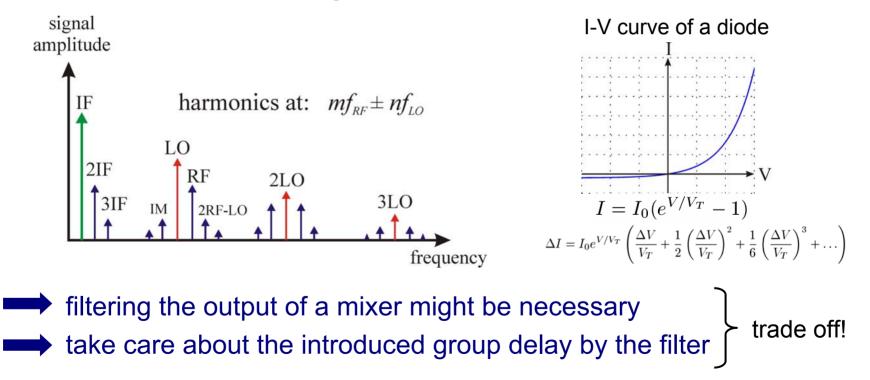
RF mixer (ideal)

down conversion:

 $y_{IF}(t) = \frac{1}{2} A_{LO} A_{RF} \cdot \left(\sin \left[(\omega_{RF} - \omega_{LO}) t + (\varphi_{RF} - \varphi_{LO}) \right] + \sin \left[(\omega_{RF} + \omega_{LO}) t + (\varphi_{RF} + \varphi_{LO}) \right] \right)$ low pass filtering the upper sideband: $\implies y_{IF}(t) = A_{IF} \cdot \sin \left(\omega_{IF} t + \varphi_{IF} \right)$ $\omega_{IF} = \omega_{RF} - \omega_{LO}$ $A_{IF} = \frac{1}{2} A_{LO} A_{RF} \sim A_{RF} \quad \text{with constant } A_{LO}$ $\varphi_{IF} = \varphi_{RF} - \varphi_{LO} \sim \varphi_{RF} \quad \text{with constant } \varphi_{LO}$ basic properties of RF signal are conserved (ampl./phase)

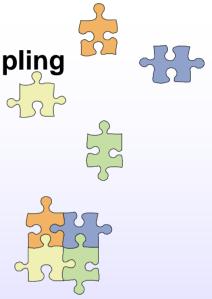
important properties:

- phase changes/jitter are conserved during down conversion,
 - e.g. 1° @ f_{RF} =1.5 GHz \leftrightarrow 1° @ f_{IF} =50 MHz
- Let comparison: sampling IF or RF (direct sampling)? timing jitter results in different phases! (e.g. 10 ps @ 500 MHz → 1.8°; 10 ps @ 50 MHz → 0.18°)


tougher requirements for direct RF sampling !

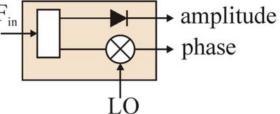
RF mixer (real)

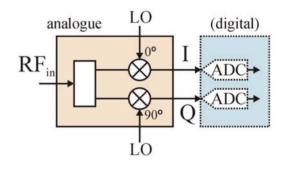
real mixers = non linear devices


- many undesired harmonics in frequency spectrum
- non-linearities in IF signal

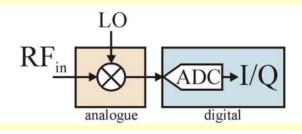
Outline

- signal conditioning / down conversion 1.
- detection of amp./phase by digital I/Q sampling 2.
 - I/Q sampling
 - non I/Q sampling
 - digital down conversion (DDC)
- upconversion 3.
- algorithms in RF applications 4.
 - feedback systems
 - adaptive feed forward
 - system identification



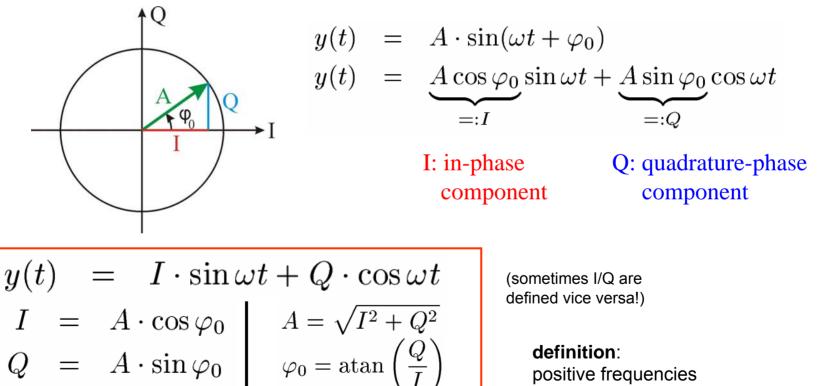


Amplitude and phase detection


direct amplitude phase detectors RF_{in}

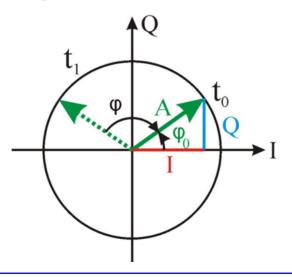
analogue IQ detection

digital IQ sampling / **Digital Down Conversion (DDC)**

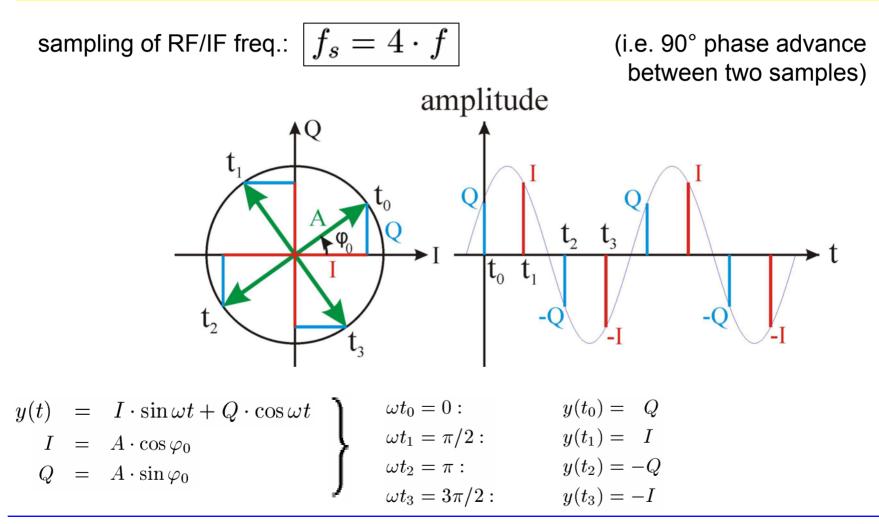

CAS, Sigtuna, Sweden DSP - Digital Signal Processing T. Schilcher

UPPSALA

RF vector representation


representation of any sinusoidal RF signal: phasor (assumption: we measure the vertical component with ADC)

IQ sampling (1)


- **goal**: monitor amplitude/phase (A/ϕ_0) variations of incoming RF/IF signal possible also to monitor I/Q at a reference time (reference phase)
 - "process" sampled I/Q values for comparison,
 i.e. rotate phasor back to reference phasor if phase advance between sampling is well known

IQ sampling (2)

IQ sampling (3)

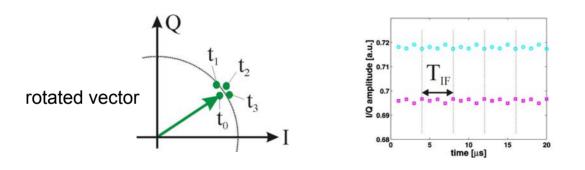
$\begin{pmatrix} y_2 \\ y_2 \end{pmatrix} \qquad \uparrow Q \qquad \begin{pmatrix} y_1 \\ y_1 \end{pmatrix}$	build up I/Q vector based on two successive samples		
$(y_1)_{t_1}$ $(y_0)_{t_0}$ $(y_0)_{t_0}$ $(y_0)_{t_0}$	rotate corresponding I/Q vector by -90° / -180 ° / -270 ° in order to compare to initial I/Q values		
$\begin{pmatrix} y_3 \\ y_2 \end{pmatrix}_{t_2} \begin{pmatrix} y_4 \\ y_3 \end{pmatrix}_{t_3}$	$y_0 = y(t_0) = Q$ $y_1 = y(t_1) = I$ $y_2 = y(t_2) = -Q$ $y_3 = y(t_3) = -I$	rotation matrix with angle $\Delta \varphi$: $\begin{pmatrix} \cos \Delta \varphi & -\sin \Delta \varphi \\ \sin \Delta \varphi & \cos \Delta \varphi \end{pmatrix}$	
$t_0: \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_0 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_0 \end{pmatrix} = \begin{pmatrix} I \\ Q \end{pmatrix}_{t_0}$	$t_2:$	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} y_3 \\ y_2 \end{pmatrix} = \begin{pmatrix} -y_3 \\ -y_2 \end{pmatrix} = \begin{pmatrix} I \\ Q \end{pmatrix}_{t_2}$	
$t_1: \qquad \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} y_2 \\ y_1 \end{pmatrix} = \begin{pmatrix} y_1 \\ -y_2 \end{pmatrix} = \begin{pmatrix} I \\ Q \end{pmatrix}$	$\Big)_{t_1}$ $t_3:$	$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \cdot \left(\begin{array}{c} y_4 \\ y_3 \end{array}\right) = \left(\begin{array}{c} -y_3 \\ y_4 \end{array}\right) = \left(\begin{array}{c} I \\ Q \end{array}\right)_{t_3}$	

 \rightarrow I/Q processing with sampling frequency f_s

IQ sampling (4)

general:
$$f_s/f_{IF} = m$$
, m : integer

phase advance between consecutive samples: $\Delta \varphi = \frac{2\pi}{T}$

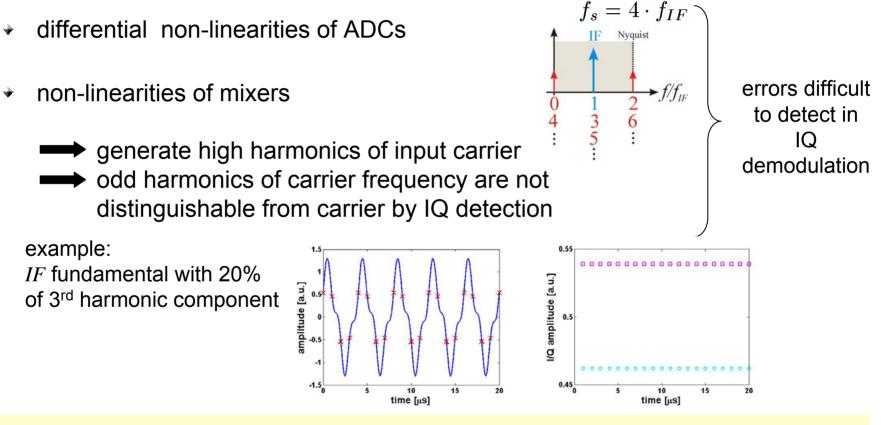

1. relation between measured amplitudes and I/Q $\begin{pmatrix} \mathbf{y}_2 \\ \mathbf{v}_2 \end{pmatrix}$ $\begin{pmatrix} I_n \\ Q_n \end{pmatrix} = \frac{1}{\sin \Delta \varphi} \cdot \begin{pmatrix} 1 & -\cos \Delta \varphi \\ 0 & \sin \Delta \varphi \end{pmatrix} \cdot \begin{pmatrix} y_{n+1} \\ y_n \end{pmatrix}$ 2. rotation of $\binom{I_n}{Q_n}$ to $\binom{I_0}{Q_0} = \binom{y_1}{y_0}$ with angle $-n\Delta\varphi$: $\begin{pmatrix} I_0 \\ Q_0 \end{pmatrix} = \frac{1}{\sin \Delta \varphi} \cdot \begin{pmatrix} \cos n\Delta \varphi & -\cos(n+1)\Delta \varphi \\ -\sin n\Delta \varphi & \sin(n+1)\Delta \varphi \end{pmatrix} \cdot \begin{pmatrix} y_{n+1} \\ y_n \end{pmatrix}$ 3. rotation of $\begin{pmatrix} I_0 \\ Q_0 \end{pmatrix}$ to $\begin{pmatrix} I \\ Q \end{pmatrix}$ with angle $-\varphi$: $\begin{pmatrix} I \\ Q \end{pmatrix} = \frac{1}{\sin \Delta \varphi} \cdot \begin{pmatrix} \cos \left(\varphi + n\Delta \varphi\right) & -\cos \left(\varphi + (n+1)\Delta \varphi\right) \\ -\sin \left(\varphi + n\Delta \varphi\right) & \sin \left(\varphi + (n+1)\Delta \varphi\right) \end{pmatrix} \cdot \begin{pmatrix} y_{n+1} \\ y_n \end{pmatrix}$

IQ sampling – potential problems (1)

- DC offsets of carrier frequency
- samples are not exactly 90° apart (e.g. due to ADC clock jitter)

ripple on I/Q values with freq. of carrier (e.g. f_{IF})

"easily" detectable errors in IQ demodulation


 choosing phase advances "far" away from 90° can worsen signal to noise ratio

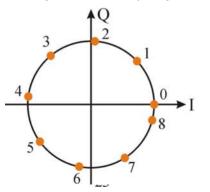
$$\begin{pmatrix} I_0 \\ Q_0 \end{pmatrix} = \underbrace{\frac{1}{\sin \Delta\varphi}}_{-\sin n\Delta\varphi} \begin{pmatrix} \cos n\Delta\varphi & -\cos(n+1)\Delta\varphi \\ -\sin n\Delta\varphi & \sin(n+1)\Delta\varphi \end{pmatrix} \cdot \begin{pmatrix} y_{n+1} \\ y_n \end{pmatrix}$$

IQ sampling – potential problems (2)

if input phase and amplitude changes, the distortion changes and can corrupt the measurement

Non-IQ sampling

recall:
$$y(t) = I \cdot \sin \omega t + Q \cdot \cos \omega t$$


choose sampling frequency f_s and IF frequency f_{IF} such that:

$$N \cdot T_s = M \cdot T_{IF}$$
 $f_s = rac{N}{M} \cdot f_{IF}$ N, M : integers
N samples in M IF periods

→ phase advance between two samples: $\Delta \varphi = \omega_{IF} T_s = 2\pi \frac{T_s}{T_{IF}} = 2\pi \frac{M}{N}$

 \rightarrow sampling "whole" IF sinusoidal signal if *M*, *N* are properly chosen

example: *M*=3 (IF periods), *N*=25

$$y_{0} = I \cdot \sin \varphi_{0} + Q \cdot \cos \varphi_{0}$$

$$y_{1} = I \cdot \sin \varphi_{1} + Q \cdot \cos \varphi_{1}$$

$$y_{2} = I \cdot \sin \varphi_{2} + Q \cdot \cos \varphi_{2}$$
...
$$y_{(N-1)} = I \cdot \sin \varphi_{(N-1)} + Q \cdot \cos \varphi_{(N-1)}$$

where
$$\varphi_i = i \cdot \Delta \varphi = i \cdot 2\pi \frac{M}{N}$$

- overestimated system of linear equations
- ➡ can be solved by least mean square algorithm

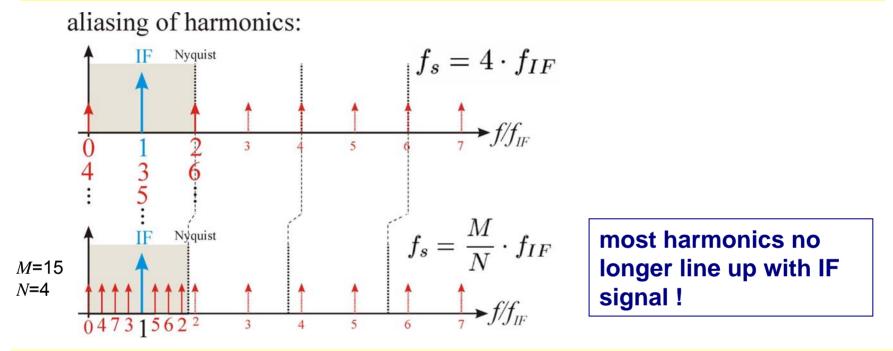
UNIVERSITE

Non-IQ sampling (2)

least mean square algorithm: minimize with respect to I,Q

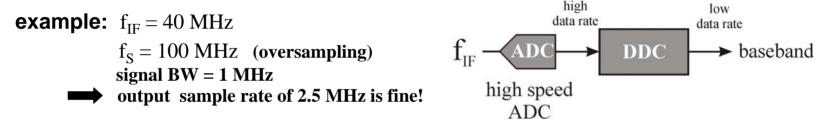
$$f(I,Q) = \sum_{i=0}^{N-1} (I \cdot \sin \varphi_i + Q \cdot \cos \varphi_i - y_i)^2$$
$$\frac{\partial f}{\partial I} = 0, \quad \frac{\partial f}{\partial Q} = 0$$

if
$$N \cdot T_s = M \cdot T_{IF}$$


(sin and cos can be pre-calculated and stored in look-up tables)

$$\varphi_i = i \cdot \Delta \varphi = i \cdot 2\pi \frac{M}{N}$$

Non-IQ sampling (3)


- errors from DC offsets, clock jitter, ADC quantization, noise reduced
- but more latency due to sampling *M IF* periods
- trade-off between noise reduction and linearity improvement and low latency
- choose M,N properly !

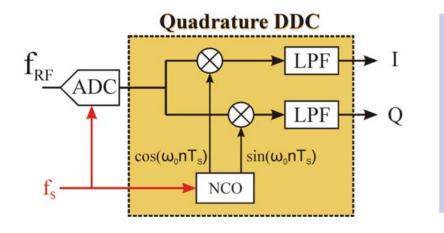
Digital Down Conversion (DDC)

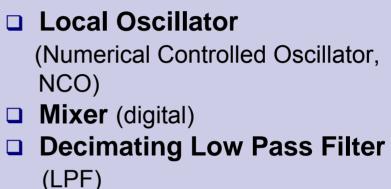
(sometimes referred to as "Digital Drop Receiver" (DDR))

Goal: shift the digitized band limited RF or IF signal from its carrier down to baseband

reduce the amount of required subsequent processing of the signal without loss of any of the information carried by the IF signal

filtering and data reduction !


- implementation on FPGA, DSP or ASIC
- two classes of DDCs:
 - narrowband (decimation R \geq 32, \rightarrow CIC filter [cascaded Integrator comb])
 - (decimation R<32, \rightarrow FIR / multi-rate FIR filters) wideband

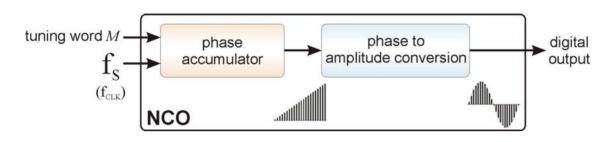


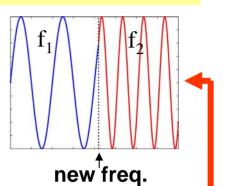
DDC (2)

inside DDC: three major sections

DDC building blocks:

- NCO: direct digital frequency synthesizer (DDS) sine and cosine lookup table
- digital mixers: "ideal" multipliers → two output frequencies


(sum and difference freq. signals)

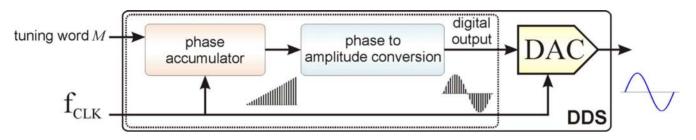

decimating low pass (anti alias) filter (often implemented as CIC and FIR)

DDC building block: NCO

NCO functionality:

- → phase accumulator → calculate new phase @ f_S with phase advance defined by tuning word. (NCO clock: sample rate f_S)
- convert phase to amplitude

 (often done in ROM based sine lookup tables; either one full sin wave is stored or
 only a quarter with some math on the pointer increment)
- * phase accumulator overflow \rightarrow wrap around in circular lookup table


NCO advantages:

- tuning word is programmable
 - Frequencies up to nearly $f_s/2$ (Nyquist) possible
- extremely fast "hopping speed" in tuning output frequency, phase-continuous
 frequency hops with no over/undershoot or analog-related loop settling time anomalies.

addendum: Direct Digital Synthesis (DDS)

DDS properties:

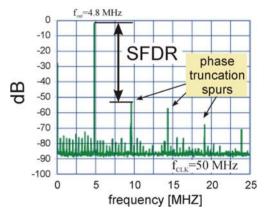
- produce an analog waveform by generating a time-varying signal in digital form
- size of lookup table (phase to amp. conv.) is determined by:
 - number of table entries
 - bit width of entries (determines amplitude output resolution)

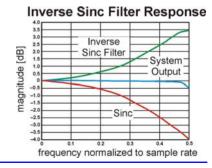
 → output frequency: f_{out} = M · f_{CLK} 2^N
 (M: tuning word, N: length in bits of phase accumulator)
 example: N=32 bit ; f_s=50 MHz
 → df= 12 mHz

but: do we need 2^N (8 bit entries \rightarrow 4 GByte!) entries in lookup table?

Direct Digital Synthesis (2)

Phase truncation:

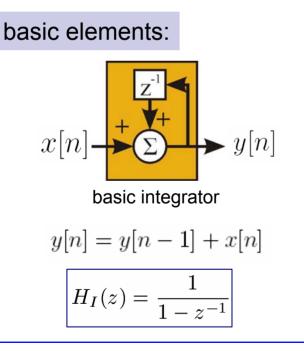

- in order to save memory in lookup table:
 - truncate phase before the lookup table!

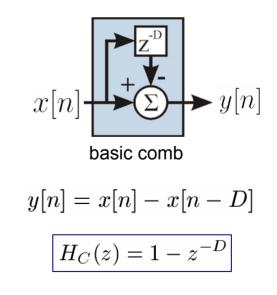

example: N=32: keep only upper most 12 bits, truncate lower 20 bits

- implications:
 - introduce phase error which is periodic in time
 - result in amplitude errors during phase to amplitude conversion
 - phase truncation spurs

Output precompensation:

- sin(X)/X rolloff response due to DAC output spectrum which is quite significant
- precompensate output before DAC with inverse sinc filter

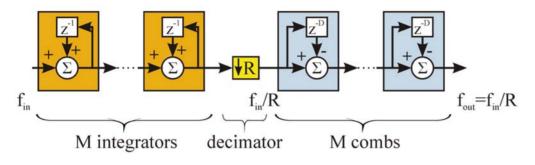



29 UPPSALA

DDC building block: Cascaded Integrator Comb Filter (CIC)

(introduced by Eugene Hogenauer, 1981)

- computationally efficient implementations of narrowband low pass filters (no multipliers needed!)
- multi-rate filter (decimation/interpolation) \mathbf{P}


CAS, Sigtuna, Sweden DSP - Digital Signal Processing T. Schilcher


UPPSAL

CIC filter (2)

filter structure for decimating CIC:

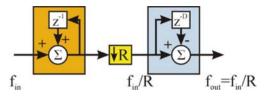
filter structure for interpolating CIC:

D: differential delay

reference sampling rate for transfer function: always higher freq.

➡ basic comb filter (referenced to the high input sample rate):

$$H_C(z) = 1 - z^{-RD}$$


FIR filter! (stable)

How to understand CIC?

example: decimating CIC (1st order) with integer decimation factor R

CIC: originate from the concept of a recursive running-sum filter (efficient form of a non-recursive moving average filter [boxcar filter])

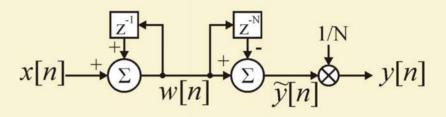
boxcar filter, length *N*: (moving average)

$$y[n] = \frac{1}{N} \left(x[n] + x[n-1] + \dots + x[n-N+1] \right)$$

$$x[n] = \frac{1}{N} \left(x[n] + x[n-1] + \dots + x[n-N+1] \right)$$

$$x[n] = \frac{1}{N} \left(x[n] + x[n-1] + \dots + x[n-N+1] \right)$$

$$H(z) = \frac{1}{N} \left(1 + z^{-1} + \dots + z^{-(N-1)} \right) = \frac{1}{N} \underbrace{\sum_{k=0}^{N-1} z^{-k}}_{\text{geometric sum}} = \frac{1}{N} \frac{1 - z^{-N}}{1 - z^{-1}}$$



How to understand CIC (2)

recursive running-sum:

(alternate implementation of boxcar filter)

$$y[n] = y[n-1] + \frac{1}{N} (x[n] - x[n-N])$$

 $\begin{array}{c} w[n] = z^{-1}w[n] + x[n] \\ y[n] = \frac{1}{N} \Big(w[n] + z^{-N}w[n] \Big) \end{array} \end{array} \begin{array}{c} \text{transfer function:} \\ H(z) = \frac{1}{N} \frac{1 - z^{-N}}{1 - z^{-1}} \end{array}$

in many applications: boxcar followed by decimation R=N $x[n] \xrightarrow{z} \\ x[n] \xrightarrow{y[m]} \\ x[n] \xrightarrow{y$

boxcar/recursive running-sum filters have the same transfer function as a 1st order CIC (except: 1/N gain; general diff. delay D)

CIC properties

applications:

- anti-aliasing filtering prior to decimation
- □ typically employed in applications that have a large excess sample rate. → system sample rate is much larger than the bandwidth occupied by the signal (remember example: $f_{IF} = 40$ MHz, $f_S = 100$ MHz, signal BW = 1 MHz)

Л

- resources: uses additions and subtractions only
- frequency response: evaluate H(z) at $z = e^{i\omega T_S} = e^{i2\pi \frac{J}{f_S}}$

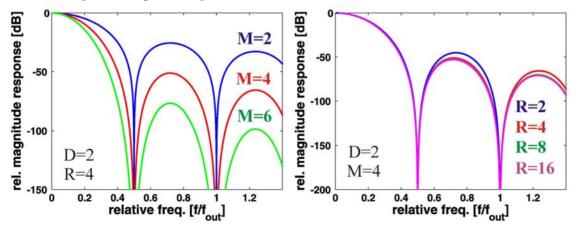
$$H(e^{i\omega T_S})| = \left|\frac{\sin\left(\pi RD\frac{f}{f_S}\right)}{\sin\left(\pi\frac{f}{f_S}\right)}\right|^{I}$$

frequency response with respect to the output frequency $f_0 = \frac{JS}{R}$

$$|H(f)| = \left| \frac{\sin\left(\pi D \frac{f}{f_0}\right)}{\sin\left(\frac{\pi}{R} \frac{f}{f_0}\right)} \right|^{N}$$

design parameter *D* determines locations of zeros:

$$f = k \cdot \frac{f_0}{D}$$
 (k: integer)



CIC properties (2)

DC gain: net gain of CIC at DC: (RD)^M

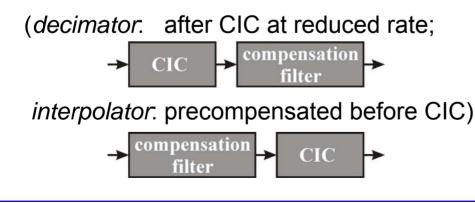
$$\lim_{f \to 0} |H(f)| = (RD)^M \quad \implies \text{ plot relative freq. response } \frac{|H(f)|}{|H(0)|}$$

- \rightarrow Each additional integrator must add another bits width of (*RD*) for each stage (implementation with two's complement (nonsaturating) arithmetic due to overflows at each integrator)
- **frequency response:** (*M*: number of CIC stages. *D*: differential delay)

important characteristic: shape of the filter response changes very little as a function of the decimation ratio *R*

CAS, Sigtuna, Sweden DSP – Digital Signal Processing T. Schilcher

|TT (e)|


CIC properties (3)

to improve alias rejection \rightarrow increase number of CIC stages (M)

but:

- \rightarrow this increases passband droop
- \rightarrow droop is frequently corrected using an additional (non-CIC-based) stage of filtering

compensation filter

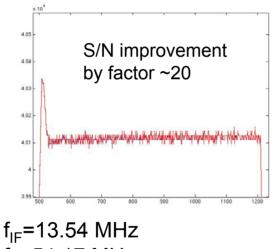
UPPSALA

DDC or IQ demodulation?

DDC

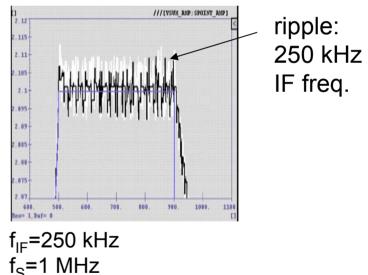
- long group delay (depending on clock speed and number of taps in the CIC/FIR filters)
- very flexible (NCO can follow f_{IF} over a broad range)
- data reduction and good
 S/N ratio
 - applications with large varying IF, need for good S/N ration and reasonable latency

IQ demodulation


- low latency,
 simple implementation
- f_s is fixed to IF
- sensitive to clock jitter and non-linearities
- non-IQ sampling provides better S/N ratio on cost of latency
- feedback applications with fixed IF and ultra-short latency

Examples for DDC and IQ demodulation

DDC

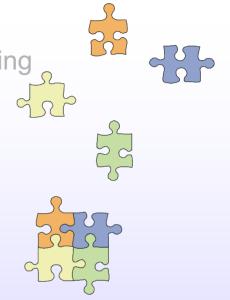

 super conducting cavity field (amplitude)

 f_{S}^{F} =54.17 MHz f_{CLK} (FPGA)=75 MHz 5 stage CIC+ 21 tap FIR delay: 25 clk cycles

IQ demodulation

 super conducting cavity field (amplitude)

f_S=1 MHz f_{CLK}(FPGA)=75 MHz delay: 4 clk cycles

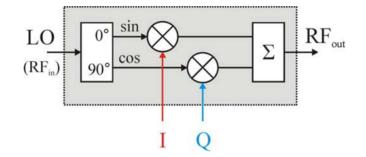


Outline

- 1. signal conditioning / down conversion
- 2. detection of amp./phase by digital I/Q sampling
 - □ I/Q sampling
 - □ non I/Q sampling
 - digital down conversion (DDC)

3. upconversion

- 4. algorithms in RF applications
 - feedback systems
 - adaptive feed forward
 - system identification

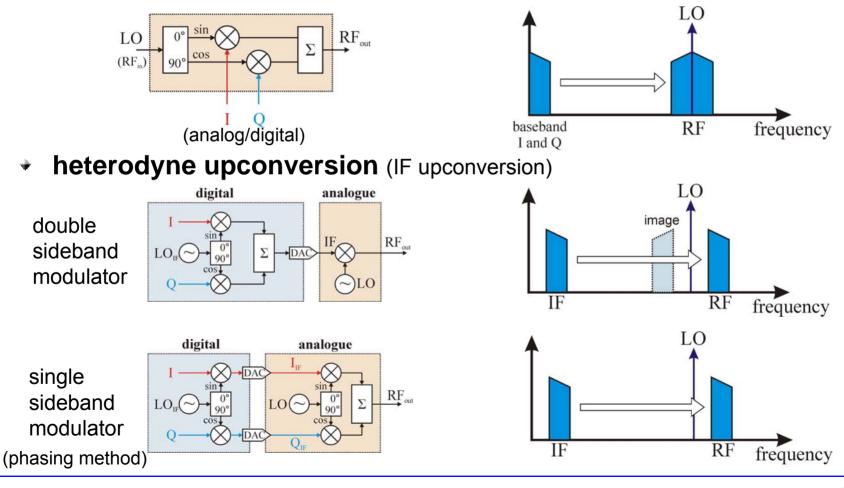


Up conversion – vector modulator

- RF signal: split into two branches, 90° phase shift (sin, cos)
- block diagram :

mixer operated as amplitude control elements ₩. any phase and amplitude of carrier can be generated

pure amplitude	$I(t) = A_0(t) \cdot \cos \varphi_0$	pure phase	$I(t) = A_0 \cdot \cos \varphi_0(t)$
modulation:	$Q(t) = A_0(t) \cdot \sin \varphi_0$	modulation:	$Q(t) = A_0 \cdot \sin \varphi_0(t)$

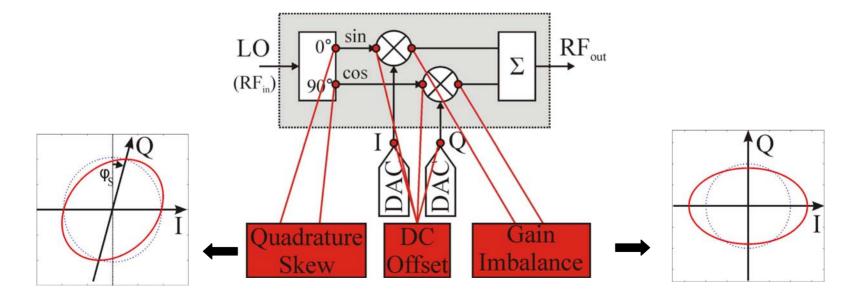


UPPSAL

Vector modulator

homodyne upconversion (direct upconversion, baseband upconversion):

CAS, Sigtuna, Sweden DSP - Digital Signal Processing T. Schilcher

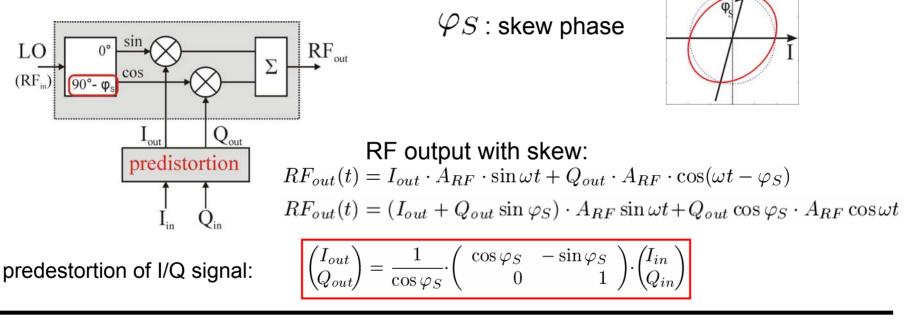

UPPSALA

Vector modulator

practical problems (homodyne vec. mod.): 1st order sources of errors

- offsets at mixer inputs
- □ two channels not exactly 90° apart
- gains of two RF paths and I/Q drives not exactly the same
 - → I / Q imbalance errors

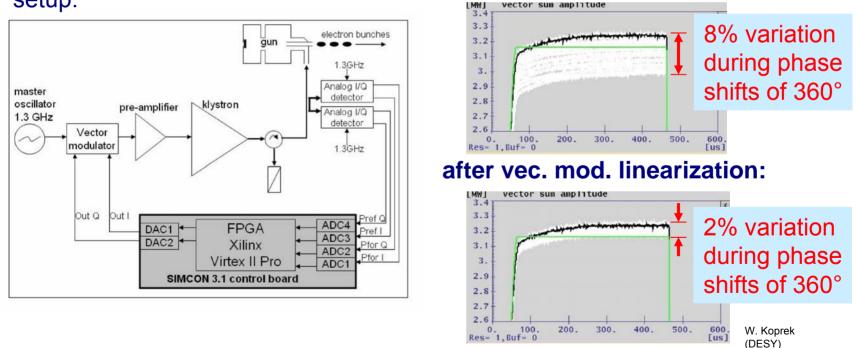
→ I / Q skew



Vector modulator – digital predistortion

I/Q skew compensation

gain/offset compensation


define individual gain scaling factors and offset compensation constants for I/Q; pre-scale I/Q digitally before applying to vector modulator

Vector modulator – digital predistortion (2)

 example of I/Q skew compensation: RF gun control for FLASH boundary condition: no field probe to detect field in RF cavity predistortion: adjust for skew and for gain imbalance

setup:

06 June 2007

CAS, Sigtuna, Sweden DSP – Digital Signal Processing T. Schilcher

before vec. mod. linearization:

44 UPPSALA