Lecture 8:

#### Map Analysis

#### Yunhai Cai SLAC National Accelerator Laboratory

#### June 14, 2017

USPAS June 2017, Lisle, IL, USA

#### Lie Method Bases Analysis and Tracking Code

Element

Accelerator



## Truncated Power Series Algebra

#### Analytic

TPSA

Given a function,

$$f(x) = \frac{1}{x + \frac{1}{x}}$$

We know that its derivative

$$f'(x) = -\frac{1-\frac{1}{x^2}}{\left(x+\frac{1}{x}\right)^2}$$

In particular, for x=2, we have

$$f(2) = \frac{2}{5}$$
$$f'(2) = -\frac{3}{25}$$

Rules:

$$(a_0, a_1) + (b_0, b_1) = (a_0 + b_0, a_1 + b_1)$$
$$\frac{1}{(a_0, a_1)} = (\frac{1}{a_0}, -\frac{a_1}{a_0^2})$$

Compute:

$$\frac{1}{(2,1) + \frac{1}{(2,1)}} = \frac{1}{(2,1) + (\frac{1}{2}, -\frac{1}{4})}$$
$$= \frac{1}{(\frac{5}{2}, \frac{3}{4})} = (\frac{2}{5}, -\frac{3}{25})$$

Result in:  $f(v) = (f(a_0), f'(a_0))$ Starting:  $v = (a_0, 1)$ 

# Algebra or Rules

The rules can be derived from the rules of derivatives. But they can also be understood using the Taylor expansion,

Plus:  

$$a = a_0 + a_1 x$$
  
 $b = b_0 + b_1 x$   
 $a + b = (a_0 + b_0) + (a_1 + b_1) x$ 

Inverse:

$$a = a_0 + a_1 x$$
  

$$\frac{1}{a} = \frac{1}{a_0 + a_1 x} = \frac{1}{a_0 (1 + \frac{a_1}{a_0} x)} \approx \frac{1}{a_0} (1 - \frac{a_1}{a_0} x) = \frac{1}{a_0} - \frac{a_1}{a_0^2} x$$
  
Multiplication:  

$$ab = (a_0 + a_1 x)(b_0 + b_1 x) \approx a_0 b_0 + (a_0 b_1 + a_1 b_0) x$$

# Symplectic Matrix

M is a sysmplectic matrix if it has the property that

$$\tilde{M}JM=J,$$

where J is

J is anti-symmetric and symplectic.

#### **Dragt-Finn Factorization**

Given a nonlinear Taylor map M, we

$$\mathcal{M}_1^{-1} \mathcal{M} = I_2$$

Here  $M_1$  is the linear part of M. It is clear that  $I_2$  is a second order of nonlinear map near identity. It's lowest perturbation is the second order, indicated with its subscript. Now, we would like to write  $I_2$  as a Lie operator, namely

$$\mathcal{M}_1^{-1} \mathcal{M} = I_2 = \exp[:f_3:]$$

Once we have  $f_3$ , then we can compute the next of by

$$e^{-:f_3:}\mathcal{M}_1^{-1}\mathcal{M}=I_3$$

 ${\rm I}_{\rm 3}$  is a third of order nonlinear map near identity. Similar process can be continued to the next order. Finally, this procedure leads to the Dragt-Finn factorization,

$$\mathcal{M} = \mathcal{M}_1 e^{:f_3:} e^{:f_4:} \dots e^{:f_{n+1}:}$$

Here n is the truncation order of the Taylor map M.

5/30/17

#### Extraction of a First Order Lie Factor

To solve the equation,

$$[f_{n+1}, z] = I_n$$

Here z is the vector in the phase space in the Poisson bracket. Its solution is given by

$$f_{n+1} = \frac{1}{n+1} \sum_{k=1}^{3} \left[ z_{2k} (I_n)_{2k-1} - z_{2k-1} (I_n)_{2k} \right]$$

It is valid only if the map is symplectic.

## Nonlinear Normal Form



Physical coordinates ———— Normalized coordinates Transformation approximated by a 10<sup>th</sup> order Taylor map

## How to Construct "Ascript"

We use eigen vectors to construct a symplectic matrix

$$U = [E_{I}, iE_{-I}, E_{II}, iE_{-II}, E_{III}, iE_{-III}],$$

which is symplectic and has the property that

$$U^{-1}MU = \Lambda = \operatorname{diag}(e^{i2\pi v_{I}}, e^{-i2\pi v_{I}}, e^{i2\pi v_{II}}, e^{-i2\pi v_{II}}, e^{i2\pi v_{III}}, e^{-i2\pi v_{III}}, e^{-i2\pi v_{III}})$$

"Ascript" is defined as A=UK has the property that

$$A^{-1}MA = R = K^{-1}\Lambda K$$

Further more A is symplectic and real. Clearly, it is an extension of one dimension

$$K = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -i & 0 & 0 & 0 & 0 \\ -i & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -i & 0 & 0 \\ 0 & 0 & -i & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -i \\ 0 & 0 & 0 & 0 & -i & 1 \end{pmatrix}$$

# Solution of "Ascript"

Explicitly, "ascript" can be written

$$A = \sqrt{2} [\operatorname{Re} E_{I}, \operatorname{Im} E_{I}, \operatorname{Re} E_{II}, \operatorname{Im} E_{II}, \operatorname{Re} E_{III}, \operatorname{Im} E_{III}],$$

The eigen vectors are normalized as

$$\begin{split} \tilde{E}^{*}_{I,II,III} J E_{I,II,III} &= i, \\ \tilde{E}^{*}_{-I,-II,-III} J E_{-I,-II,-III} &= -i \end{split}$$

How to get "ascript" directly from the one-turn matrix? Given "ascript", we have U=AK<sup>-1</sup>, which we should use in our map analysis. How about propagation of U?  $A_2=M_{1->2}*A_1$  leads to  $U_2=M_{1->2}*U_1$ . But that implies we need to write force in complex, That is rather "dangerous". Therefore, we should use the complex coordinates only in the analysis.

#### Nonlinear Normal Form in eigen bases

Here we switch to map notation. The operator on the left acts first. M is a nonlinear Taylor map, trunked at order n. Let's make a following transformation

$$\Lambda^{-1}\mathcal{U}\mathcal{M}\mathcal{U}^{-1}=I_2$$

It is clear that  $I_2$  is a nonlinear map near identity. It's lowest perturbation is the second order, indicated with its subscript. Now, we would like to make a similarity transformation in the next order of perturbation, namely

$$\begin{split} \Lambda^{-1} e^{:f_{3}(\vec{u}):} \mathcal{U} \, \mathcal{U} \, \mathcal{U}^{-1} e^{-:f_{3}(\vec{u}):} &= I_{3} \\ \Lambda^{-1} e^{:f_{3}(\vec{u}):} \Lambda \Lambda^{-1} \mathcal{U} \, \mathcal{U} \, \mathcal{U}^{-1} e^{-:f_{3}(\vec{u}):} &= I_{3} \\ \Lambda^{-1} e^{:f_{3}(\vec{u}):} \Lambda I_{2} e^{-:f_{3}(\vec{u}):} &= I_{3} \\ e^{:f_{3}(\Lambda^{-1}\vec{u}):} I_{2} e^{-:f_{3}(\vec{u}):} &= I_{3} \end{split}$$

Here we inserted an identity map after e<sup>:f3:</sup> and used the previous equation. In The last step, we performed a similarity transformation on the Lie operator.

5/30/17

#### Nonlinear Normal Form at third-order

We could rewrite this equation as

$$e^{:f_{3}(\Lambda^{-1}\vec{u}):}e^{:\overline{f}_{3}(\vec{u}):}e^{:-f_{3}(\vec{u}):} = \overline{I}_{3}$$
$$e^{:f_{3}(\Lambda^{-1}\vec{u})+\overline{f}_{3}(\vec{u})-f_{3}(\vec{u}):} = \overline{\overline{I}}_{3}$$

where {\bar f}\_3 is Lie operator generates  $I_2$  and {\bar I}\_3 is another map near the identity map third-order perturbation. Since L is diagonal matrix We could easily solve  $f_3$  in terms of {\bar f}\_3. That is reason why we start with the complex base at linear transformation. The solution is

$$f_3(\vec{u}) - f_3(\Lambda^{-1}\vec{u}) = \overline{f_3}(\vec{u})$$

Once  $f_3$  is calculated, we can compute  $I_3$  using

$$e^{:f_3(\Lambda^{-1}\vec{u}):}I_2e^{-:f_3(\vec{u}):}=I_3$$

Note that there are two similarity transformations to be used to simplify the calculation. Clearly,  $f_3$  becomes large near the resonance.

#### Nonlinear Normal Form Fourth-Order and Tune Shifts

In fourth-order,

$$e^{:h_4(u\bar{u}):}\Lambda^{-1}e^{:f_4(\vec{u}):}e^{:f_3(\vec{u}):}\mathcal{U} \mathcal{M} \mathcal{U}^{-1}e^{-:f_3(\vec{u}):}e^{-:f_4(\vec{u}):} = I_4$$

Here we could like to absorb the third-order terms in  $I_3$  to  $f_4$  and  $H_4$ , which foes not have any dependence on the phase of the complex coordinates. Once again it is much easy to obtain  $h_4$  in a complex coordinate. Note, L and  $h_4$  commute.

$$\begin{split} e^{:h_4(u\bar{u}):} \Lambda^{-1} e^{:f_4(\vec{u}):} e^{:f_3(\vec{u}):} \mathcal{U} \ \mathcal{M} \ \mathcal{U}^{-1} e^{-:f_3(\vec{u}):} e^{-:f_4(\vec{u}):} = I_4 \\ e^{:h_4(u\bar{u}):} \Lambda^{-1} e^{:f_4(\vec{u}):} \Lambda \Lambda^{-1} e^{:f_3(\vec{u}):} \mathcal{U} \ \mathcal{M} \ \mathcal{U}^{-1} e^{-:f_3(\vec{u}):} e^{-:f_4(\vec{u}):} = I_4 \\ e^{:h_4(u\bar{u}):} \Lambda^{-1} e^{:f_4(\vec{u}):} \Lambda I_3 e^{-:f_4(\vec{u}):} = I_4 \\ e^{:h_4(u\bar{u}):} e^{:f_4(\Lambda^{-1}\vec{u}):} I_3 e^{-:f_4(\vec{u}):} = I_4 \end{split}$$

It is easy to see the solution is

$$f_4(\vec{u}) - f_4(\Lambda^{-1}\vec{u}) = \overline{f}_4(\vec{u})$$
$$h_4(u\overline{u}) = -\overline{h}_4(u\overline{u})$$

5/30/17

## Nonlinear Normal Form

This procedure can be continued until the right hand side becomes identity due to the truncation (n-th order) of the Taylor Map. The result is the normal form presentation of map

$$\mathcal{M} = \mathcal{U}^{-1} e^{-:f_{3}:} \dots e^{-:f_{n+1}:} \Lambda e^{:h_{3}+\dots+h_{n+1}:} e^{:f_{n+1}:} \dots e^{:f^{3}:} \mathcal{U}$$

It is clear from the expression that we should perform linear transformation and then order-by-order nonlinear transformation to the nonlinear normal form. It is also easier to see the resonances in the complex coordinates. To go back to real space, we substitute  $\mathcal{U}=\mathcal{K}^{-1}\mathcal{A}$ 

$$\begin{aligned} \mathcal{M} &= \mathcal{A}^{-1} \mathcal{K} e^{-:f_{3}:} \dots e^{-:f_{n+1}:} \Lambda e^{:h_{3}+\dots+h_{n+1}:} e^{:f_{n+1}:} \dots e^{:f^{3}:} \mathcal{K}^{-1} \mathcal{A} \\ &= \mathcal{A}^{-1} \mathcal{K} e^{-:f_{3}:} \mathcal{K}^{-1} \mathcal{K} \dots e^{-:f_{n+1}:} \mathcal{K}^{-1} \mathcal{K} \Lambda \mathcal{K}^{-1} \mathcal{K} e^{:h_{3}+\dots+h_{n+1}:} e^{:f_{n+1}:} \dots \mathcal{K}^{-1} \mathcal{K} e^{:f^{3}:} \mathcal{K}^{-1} \mathcal{A} \\ &= \mathcal{A}^{-1} e^{-:\hat{f}_{3}:} \dots e^{-:\hat{f}_{n+1}:} \mathcal{R} e^{:\hat{h}_{3}+\dots+\hat{h}_{n+1}:} e^{:\hat{f}_{n+1}:} \dots e^{:\hat{f}^{3}:} \mathcal{A} \end{aligned}$$

Be careful, here we used map notation, so the left acts first. In real coordinates, we have

$$\hat{f}_n(\vec{x}) = f_n(\boldsymbol{\varkappa}\vec{u}), \hat{h}_n(\vec{x}) = h_n(\boldsymbol{\varkappa}\vec{u})$$

#### Footprint in Tune Space



## Summary

- Concept of truncated Taylor map is important. The map analysis should not go beyond the order of the map when it is extracted from an accelerator.
- Dragt-Finn factorization is fundamental in map analysis. The Lie factors can be compared to the analytic calculation.
- Normal form gives us the beam footprint in the tune space. It is an essential metric in design of the storage rings.



- 1) Alex J. Dragt and John M. Finn, "Normal form for mirror machine Hamiltonian," J. Math. Phys. 20(12), (1979).
- Alexander W. Chao, "Evaluation of beam distribution parameters in an electron storage ring," J. Appl. Phys. 50, 595 (1979).
- M. Berz, "Differential algebraic description of beam dynamics to very high orders," Particle Accelerator 24, pp. 109-124 (1989).
- 4) E. Forest, M. Berz, and J. Irwin, "Normal form methods for complicated periodic systems: a complete solution using differential algebra," Particle Accelerator 24, pp. 91-107 (1989).

# Acknowledgements

Many thanks to Alex Chao, John Irwin, Etienne Forest, Yiton Yan form who I have learned over the years.