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Concept of Transfer Map 
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A set (six) of functions of canonical coordinates. It’s called symplectic if its 
Jacob is symplectic.  

z(s2 ) = M1→2 (z(s1)).

abbreviated map notation 



Concatenation of Maps 
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s2 

Element 1 

L1 s1 s3 
L2 

Element 2 
propagating 
direction 

z(s2 ) = M1→2 (z(s1)),
z(s3 ) = M2→3 (z(s2 )).

If we have the transfer map for each individual elements: 

z(s3 ) = M1→2 !M2→3 (z(s1)) ≡ M2→3 (M1→2z(s1)),

Then the transfer map for the combined elements is given by 

nested functions M1→3



Poisson Bracket 
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[ f ,g]= ( ∂f
∂qii=1

3

∑ ∂g
∂pi

−
∂f
∂pi

∂g
∂qi
)

Given coordinate qi, and its conjugate momentum pi, the Poisson bracket is 
defined as,  

Fundamental brackets: 
[qi,qj ]= 0
[pi,pj ]= 0
[qi,pj ]= δij

It is closely resemble the commutator in Quantum mechanics. It acts like 
a derivative with respect to its conjugate, for example, 

[q1, f ]=
∂f
∂q1



Taylor Series and Exponential Lie Operator 

5/30/17 Yunhai Cai, SLAC 5 

For any function f(s), we have the Taylor expansion 

s1 s2 

element 

L 

a symbolic notation 

direction of propagating 

segment plane 

In particular, if there is no explicit dependent of s in the function f(s), 
namely f(s) = f(x(s),px(s),…), we have  

,::],[ fHfH
ds
df

−≡−=

Used Hamiltonian equation and the definition of the Poisson bracket.  
Combining these symbolic notations, we have the exponential Lie operator  

another symbolic notation 

f(s2 ) =
Ln

n!n=0

∞

∑ dn f
dsn s1

≡ e
L d
dx f(s)s1

f(s2 ) = e
−L:H: f(s)s1



Lie Operator as a Transfer Map 
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f(s2 ) = e
−L:H: f(s)s1.

s1 s2 

element 

L 

direction of propagating 

segment plane 

In the previous slide, we have shown that 

If we apply this formula to a particular function: z=x, or px, or y, or py,  
or δ or l, and then we have    

z(s2 ) = e
−L:H:z(s1).

Therefore, this exponential Lie operator is a transfer map. We have 

M1→2 = e
−L:H :



An Example of a Drift 

HD =
1

2(1+δ)
(px

2 + py
2 ).

Hamiltonian in the paraxial approximation is given by 

x f = e
−L:HD:xi = xi +

pxi
1+δi

L,

pxf = e
−L:HD:pxi = pxi,

y f = e
−L:HD:yi = yi +

pyi
1+δi

L,

pyf = e
−L:HD:pyi = pyi,

δ f = e
−L:HD:δ i = δi,

ℓ f = e
−L:HD:ℓ i = ℓ i +

L
2(1+δi )

2 (pxi
2 + pyi

2 ).

It is easy to show that the exponential Lie operator indeed generates 
the transfer map we have found by solving the Hamiltonian equation. 
Namely, we have 
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However, most time, it is easier to obtain the transfer map by solving 
the Hamiltonian equation. 



Lie Operators and Map Concatenation 
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s2 

H1 

L1 s1 s3 
L2 

H2 

It is obvious that 

f(s+ L) = e−L:H: f(x, px ,...) = f(e
−L:H:x,e−L:H: px ,...) = f(x(s+ L), px (s+ L),...)

obviously true 

just shown 

just shown 

The Lie operator acts only on the arguments of function . This precisely the  
definition of the map concatenation we introduced early. So we have 

M1→3 = M1→2 !M2→3 = e
−L1:H1:e−L2:H2:.

propagating 
direction 

The dot is removed because Lie operator automatically has the property. 



Map and Matrix 
•  Concatenation of linear maps leads to multiplication of 

matrices 
•  Be careful about the order 

–  Map: first is first 
–  Matrix: last is first 

•  Maps are not limited to the linear ones. In Hamiltonian 
system, maps are symplectic. 

•  If one uses Taylor map as an approximation. Its zeroth order 
can be considered as a reference orbit. Therefore their 
concatenation includes the feed-down effects of magnets 
–  For example, a horizontal offset of sextupole generates a 

quadrupole field  
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M1→2 !M2→3

M2→3 ⋅M1→2



Lie Method Bases Analysis and Tracking Code 

Hamiltonian 
Lie form 
e(-:H:s) 

Element                                                                              Accelerator 

Solvable 
Solution (Map) 

Symplectic 
Integrator 

Tracking map Taylor map 

Similarity  
transformation 
CBH theorem 
 

Tracking phase vector Dynamic aperture? 

Factorization 
Normal form Symplecticity 

A-1e(-:H:)A 
e(:f2:)…e(:fn:) 

e(-:H:) 
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Similarity Transformation 
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:::::::: :: BeABA A

eeee =−

Here is a proof. Set f=e-:A:g, so we have  

]...]]],,...[[,[
!

:::::: fBBB
n

efee ABA ∑=
1

=
1
n!∑ e:A:[B,[B,...[B, f ]...]]

=
1
n!∑ [e:A:B,e:A:[B,...[B, f ]...]]

=
1
n!∑ [e:A:B,[e:A:B,...[e:A:B,e:A: f ]...]]

=
1
n!∑ [e:A:B,[e:A:B,...[e:A:B,g]...]]

= e:e
:A:B:g

We used  e:A:[ f1, f2 ]= [e
:A: f1,e

:A: f2 ] ],[][ ::::::
x

AA
x

A pexex,pe =(                                     ) 



The Cambell-Baker-Hausdorf 
(CBH) Theorem 
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:...],[::::: +++
=

BA
2
1BABA eee

The bracket notes the Poisson bracket. This theorem can be shown easily 
using the definition of the exponential Lie operator and the Jacob identity 
for the Poisson brackets: 

To combine two exponential Lie operators, we have 

0[C,[A,B]][B,[C,A]][A,[B,C]] =++

In general, it should be considered as a part of perturbation theory. It is  
good when A and B are small. 

:::::: BABA eee +=
This a necessary condition for the exponential Lie operator being a  
transfer map of the element that can be described by a Hamiltonian.  

( actually, this is an exact result ) 



Linear Similarity Transformation 
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Me:B(z):M -1 = e:B(Mz ):.
A specially useful transformation is given by 

Here, M is a symplectic linear map. As an example, let us to consider a  
pair of identical thin lens sextupoles with integrated strength S2,separated 
by –I transformation. For simplicity, we limit to the transverse dimensions.  
The transfer map is given by 

e
−:s2
6
(x3−3xy3 ):

(−I)e
−:s2
6
(x3−3xy3 ):

= (−I)(−I)e
−:s2
6
(x3−3xy3 ):

(−I)e
−:s2
6
(x3−3xy3 ):

= (−I)e
−:s2
6
((−x )3−3(−x )(−y)3 ):

e
−:s2
6
(x3−3xy3 ):

= (−I)

Similarity transformation 

CBH theorem 

We obtain the well-known result by Karl Brown. 



Courant-Synder Invariance 

5/30/17 Yunhai Cai, SLAC 14 

ρG (x, px )∝ exp[−
(γ xx

2 + 2αxxpx +βx px
2 )

2λx
]

It can be shown that the Lie operator: 

is the transfer map of the Courant-Synder matrix: 

Mx =
cosµx +αx sinµx βx sinµx

−γ x sinµx cosµx −αx sinµx

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Gaussian beam distribution: 

exp[−µx :
(γ xx

2 + 2αxxpx +βx px
2 )

2
] :



Calculate Nonlinear Hamiltonian 
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Consider a set of multipoles separated by linear maps. We can represent 
the nonlinear transfer map by 

M0,1e
−:V1(z)M1,2e

−:V2 (z)...Mn−1,ne
−:Vn (z)Mn,n+1

= M0,1e
−:V1 (z):M1,2e

−:V2 (z):...Mn−1,nMn,n+1Mn,n+1
−1 e−:Vn (z):Mn,n+1

= M0,1e
−:V1 (z):M1,2e

−:V2 (z):...Mn−1,nMn,n+1e
−:Vn (Mn,n+1

−1 z):

= M0,n+1e
−:V1(M1,n+1

−1 z):e−:V2 (M2,n+1
−1 z):...e−:Vn (Mn,n+1

−1 z):

= M0,n+1e
−:HNL:

similarity 
transformation 

CBH theorem 

We can use the similarity transformation and CBH theorem to obtain an  
effective Hamiltonian so that the transfer map consists of a linear map   
followed by an exponential Lie operator for the nonlinearity. It is very  
useful for understanding of the nonlinear effects and their compensation.   
Clearly, it is an approximation to a real accelerator. 

z is the coordinates at the end. 



Perturbation of Sextupoles 
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xi = βx (si )(cosΔψi,n+1x − sinΔψi,n+1px ),

yi = βy (si )(cosΔφi,n+1y− sinΔφi,n+1py ),

VS (x, y) =
S2
6
(x3 − 3xy2).

For a sextupole magnet, we have the potential 

So  
VS (Mi,n+1

−1 z) = S2
6
(xi

3 − 3xiyi
2 ),

with 

where x,px,y,py are the normalized coordinates at n+1 position. The 
effective Hamiltonian based on the CBH theorem is 

HNL =
S

2

i

6
(xi

3 − 3xiyi
2 )

i=1

n

∑ +
1
2

S
2

i S
2

j

36
[(xi

3 − 3xiyi
2 )

i< j

n

∑ , (x j
3 − 3x jyj

2 )]

The first term is the same as the first-order canonical perturbation  
theory. Except the reference point is the end rather then the beginning. 



Nonlinear Hamiltonian of Sextupoles 
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HNL =
S

2

i

6
(xi

3 − 3xiyi
2 )

i=1

n

∑

+
1
2

S
2

i S
2

j βx,iβx, j
i< j

n

∑ {sin(Δφi,n+1 −Δφ j,n+1)βy,iβy, j xix j yiyj

+sin(Δψi,n+1 −Δψ j,n+1)(βx,i xi
2 −βy,i yi

2 )(βx, j x j
2 −βy, j y j

2 ) / 4}

The Poisson bracket can be evaluated, we have 

We see that two sextupoles generate octopole like terms. 



Second-Order Symplectic Integrators  
Separate Hamiltonian into two exactly solvable parts: 

H = H0 +H1

Approximation with symplectic integrators: 

            exact                                       kick                        error 

1.   The residual term can be easily see from the CBH theorem 
2.   It becomes the exact solution at the limit of infinite number of segments 
3.   Preserves symplectic condition during the integration  

propagator 

e−:H :L = e−:H :Δs
i=1

n

∏ ≈ [e
−
:H0:
2

Δs
e−:H 1:Δse

−
:H0:
2

Δs
+O(Δs)3

i=1

n

∏ ]

e
−
1
2
Δs:H0:e−Δs:H1:e

−
1
2
Δs:H0:

= e
−
1
2
Δs:H0:e

−Δs:(H1−
1
2
H0 )+

Δs2

4
[H1,H0 ]:+O(Δs)

3:

= e−Δs:(H1+H0 ):+O(Δs)
3

5/30/17 Yunhai Cai, SLAC 18 



Summary 
•  Lie algebra is a powerful method for nonlinear analysis. 

It is equivalent to the Hamiltonian perturbation 
•  Exponential Lie operator is a representation of the 

transfer map 
–  Used to derive symplectic integrator 
–  Define transfer map of a beamline  

•  Similarity transformation and the CBH theorem are two 
important tools in the Lie method 
–  Derive the nonlinear Hamiltonian 

•  Courant-Synder invariance can be used as a quadratic 
polynomial for a Lie operator 
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