Lecture 6:

Cell Design

Yunhai Cai SLAC National Accelerator Laboratory

June 13, 2017

USPAS June 2017, Lisle, IL, USA

ESRF at 6 GeV, 32 Cells

ESRF DBA Cell

Courtesy of Raimondi

Comments

 Dispersions at the undulator positions are not zero

- Smaler at lower horizontal beta

- There are dispersions at all positions of sextupole so that local chromatic correction is possible
- Dispersion and horizontal beta are minimized at dipole positions

DBA - Structure

TME - Structure

Introduction to Lattice Design

$$\varepsilon_{horizontal} = \frac{55}{32\sqrt{3}} * \frac{\hbar}{mc} * \gamma^2 * \frac{\langle \frac{1}{\rho^3} H(s) \rangle}{J_x \langle \frac{1}{\rho^2} \rangle}$$

Cq=1.47*10-6 [m/(GeV^2]

 $H = \beta \eta' f^2 + 2 \alpha \eta \eta' + \gamma \eta f^2$

$$\varepsilon_{hor}(nmrad) = 1470 * \frac{(E/GeV)^2}{J_x} * \frac{\Phi^3}{12*\sqrt{15}} * F$$

$$\varepsilon_{hor}(nmrad) = 31.63 * \frac{(E/GeV)^2}{J_x} * \frac{\Phi^3}{1} * F$$

Low Emitt.-Lat.-Design: MBA-Designs, D. Einfeld

Longitudinal Bending Gradient

Longitudinal Bending Gradient

Low Emitt.-Lat.-Design: MBA-Designs, D. Einfeld

Barcelona: 23-24th April 2015

Towards a Diffraction Limited Light Source

The layout for the diffraction limited light source utilizing the MBA structure. The bending magnets in the unit cell with a deflection of 5 degrees and the matching section with an angle of 2.5 degrees. The lattices got the acronym DIFL

Barcelona: 23-24th April 2015

Unit Cell of DIFL-Lattice

The arrangements of the magnets within a unit cell of the multi bend Achromat and the corresponding machine functions. The parameters of the magnets are: Bending: L=0.931482 m, ρ =10.674 m, B = 0.93749 T, k=-0.900 m⁻² ; QF: L =0.35 m, k=1.992 m⁻², g=19.92 T/m, g*L = 6.972 T; Sh:L= 0.1 m, m=53.347m⁻³, Σ Sh*L=5.335 m⁻² ; Sv: L=0.2 m, m = -42.730 m⁻³, Σ Sv*L=8.546 m⁻²

Characteristics of Unit Cell

Emittance of the unit cell as a function of the strength of the focusing quadrupole.

Low Emitt.-Lat.-Design: MBA-Designs, D. Einfeld

Characteristics of Unit Cell

Dynamic aperture of the unit cell for the energy deviations of $\Delta p/p = -3\%$ (green line), $\Delta p/$ p = 0% (blue line), $\Delta p/p = 3\%$ (red line).

Low Emitt.-Lat.-Design: MBA-Designs, D. Einfeld

Barcelona: 23-24th April 2015

Lattice of DIFL (7BA)

Machine function of the chosen lattice DIFL for the proposed diffraction limited light source

Low Emitt.-Lat.-Design: MBA-Designs, D. Einfeld

Barcelona: 23-24th April 2015

Characteristics of DIFL

Dynamic Aperture of DIFL 10 Vertical Axis [mm] 6 5 4 3 2 DP/P=0% DP/P=3% DP/P=-3% -12 -10 -8 -2 2 -6 0 10 12 14 16 Horizontal - Axis [mm]

Dynamic aperture of lattice DIFL for the energy deviations of $\Delta p/p = -3\%$ (red line), $\Delta p/p = 0\%$ (black line), $\Delta p/p = 3\%$ (blue line).

X(s)=2*1.33*η(s)*(ΔΕ/Ε)

A(s)=(X(s)^2)/ β (s), (ΔE/E)=3%

A=5 mm*mrad, β(s=0)=5.2 m/rad ⇒ E(0)= +/- 5.2 mm

Longitufinal direction [m]

Low Emitt.-Lat.-Design: MBA-Designs, D. Einfeld

Barcelona: 23-24th April 2015

Summary (1995)

1995:According to this investigation it should be possible to build Synchrotron Light Sources with an reduction of the emittance by a factor of 10 in comparison to the existing machines.

First proposal of MAX IV (2003)

Layout of MAX IV (2014)

Layout of MAX IV (2014)

Low Emitt.-Lat.-Design: MBA-Designs, D. Einfeld

Barcelona: 23-24th April 2015

3 GeV Storage Ring Commissioning (cont.)

- First attempts at measuring/adjusting linear chromaticity
- First light seen on diagnostic beamline Nov 2

IPAC'**16**, WEPOW034

3 GeV Storage Ring Commissioning (cont.)

• First attempts at measuring/adjusting linear chromaticity

250

300

350

400

450

500

550

600

250

300

350

• First light seen on diagnostic beamline Nov 2

Sigma polarized SR, 632.8 nm, SRW calculation (left) and measured image (right). The simu done for $\varepsilon_x = 320$ pm rad, $\beta_y = 1.5$ m. Both figures show a 2 x 2 mm² area of the image plane.

1.0

The fringe pattern is too weak to be visible.

0.0

Horizontal Position

SRW simulation

 $\varepsilon_x = 320 \text{ pm rad}, \beta_x = 1.5 \text{ m}$

-0.5

0.5 -

0.0 -

-0.5 -

-1.0mm

-1.0mm

Vertical Position

Optical magnification of m=-2.28 is taken into account in the SRW model Horizontal opening angle: 6 mrad Vertical opening angle: 8 mrad Exposure time: 2.9 ms

0.5

Figure 3: Vertical profile of imaged π -polarized SR at 488 nm wavelength. Measurement (blue dots) and SRW calculation (red lines). The vertical beam size is 11.5 µm.

vertical position [mm]

Courtesy J. Breunlin

IPAC'16, WEPOW034

.0.3 Ē

01

25

20

New lattice

- Cell packed with magnets
- Stronger focusing: tunes
 - Chromaticity:
- Smaller β functions
- Smaller dispersion
- Less radiated power (x2 less)

- 36.44/13.39
 - -130/-58
 - \Rightarrow
- → 75.66/27.60
- → -102/-75

Chromaticity correction needs stronger sextupoles

New lattice

A light for Science

Preliminary features:

- 2 dipole families1 with gradient
- 7 quadrupole families
- 2 sextupole families
- ID straight:
 5 m long instead of
 7.84 m (in "6 m" section)
- No more alternating highand low-β sections

Electron beam size [µm]			
ESRF		New	
High-β	412	28	
Low-β	50		

s [m]

Electron beam divergence [µrad]			
ESRF		New	
High-β	11	F	
Low-β	107	Э	

European Synchrotron Radiation Facility

New Lattice

	ESRF	New lattice
Dipole [T]	0.86	0.49
Quadrupole [T/m]	17 (25)	112
Sextupole [T/m2]	460	1650

- Weak bending magnet with strong gradient
 - Equivalent to a quadrupole of 33 T/m offset by 1.5 cm
- Strong quadrupoles
- Strong sextupoles
- Dynamic aperture comparable (factor 1-3 smaller) with the present lattice
 - Chromatic correction made with "standard" sextupoles
 - Total bend length more than doubled => energy lost in synchrotron radiation halved

Summary

- We have seed how the lattices were evolved from DBA, TME to MBA, HMBA. There are many key innovations, among them,
 - Compact magnets
 - Stronger transverse gradient bends
 - Longitudinal gradient bends
 - "-I" paired chromatic sextupoles
 - Dispersion bumps
 - Harmonic sextupoles
 - Better chromatic corrections
 - Resonance mitigations and cancellations
- Lattice design is also an art. There is its intrinsic beauty.

References

- 1) M. Sommer, LAL Report No. LAL/RT/83-15, (1983).
- 2) L.C. Teng, "Minimizating the emittance in designing the lattice of an electron storage ring," TM-1269, (1984).
- D. Einfeld et al. "Design of a Diffraction Limited Light Source (DIFL)," PAC proceeding, (1996).
- S.C. Leemann et al. "Beam dynamics and expected performance of Sweden's new storage-ring source:MAX-IV," PRSTAB, 12, 120701 (2009).
- 5) D. Einfeld, "MBA designs," talk at Low Emittance Workshop, Barcelona, Spain 2015.
- 6) P. Raimondi, "Emittance gymnastic studies," ESRF, 2012.