Lecture 6:

Cell Design

Yunhai Cai
 SLAC National Accelerator Laboratory

June 13, 2017

USPAS June 2017, Lisle, IL, USA

ESRF at $6 \mathrm{GeV}, 32$ Cells

ESRF DBA Cell

Comments

- Dispersions at the undulator positions are not zero
- Smaler at lower horizontal beta
- There are dispersions at all positions of sextupole so that local chromatic correction is possible
- Dispersion and horizontal beta are minimized at dipole positions

DBA - Structure

DBA -Lattice

TME - Structure

TME - Lattice gives the smallest emittance

$$
\varepsilon_{x}=C_{q} \cdot \gamma^{2} \cdot \frac{1}{J_{x}} \cdot \frac{1}{3} \cdot \frac{1}{4 \sqrt{15}} \cdot \varphi^{3}
$$

The emittance is by a factor of 3 smaller as for the DBA structure

Introduction to Lattice Design

$$
\varepsilon_{\text {horizontal }}=\frac{55}{32 \sqrt{3}} * \frac{\hbar}{m c} * \gamma^{2} * \frac{\left\langle\frac{1}{\rho^{3}} H(s)\right\rangle}{J_{x}\left\langle\frac{1}{\rho^{2}}\right\rangle}
$$

$\mathrm{Cq}=1.47 * 10-6\left[\mathrm{~m} /\left(\mathrm{GeV}^{\wedge} 2\right]\right.$

$$
\begin{gathered}
H=\boldsymbol{\beta} \boldsymbol{\eta}^{\prime} \uparrow \mathbf{2}+\mathbf{2} \boldsymbol{\boldsymbol { \eta }} \boldsymbol{\eta}^{\prime}+\boldsymbol{\gamma} \boldsymbol{\eta} \boldsymbol{2} \\
\varepsilon_{\text {hor }}(\mathrm{nmrad})=1470 * \frac{(E / \mathrm{GeV})^{2}}{J_{x}} * \frac{\Phi^{3}}{12 * \sqrt{15}} * F \\
\varepsilon_{\text {hor }}(\mathrm{nmrad})=31.63 * \frac{(E / G e V)^{2}}{J_{x}} * \frac{\Phi^{3}}{1} * F
\end{gathered}
$$

Longitudinal Bending Gradient

Longitudinal Bending Gradient

Towards a Diffraction Limited Light Source

The layout for the diffraction limited light source utilizing the MBA structure. The bending magnets in the unit cell with a deflection of 5 degrees and the matching section with an angle of $\mathbf{2 . 5}$ degrees. The lattices got the acronym DIFL

Unit Cell of DIFL-Lattice

The arrangements of the magnets within a unit cell of the multi bend Achromat and the corresponding machine functions. The parameters of the magnets are: Bending: $\mathrm{L}=0.931482 \mathrm{~m}, \mathrm{\rho}=10.674 \mathrm{~m}, \mathrm{~B}=0.93749 \mathrm{~T}, \mathrm{k}=-0.900 \mathrm{~m}^{-2}$; QF: L=0.35 m, k=1.992 m${ }^{-2}, g=19.92 \mathrm{~T} / \mathrm{m}, \mathrm{g}^{*} \mathrm{~L}=6.972 \mathrm{~T}$; Sh:L= 0.1 m , $\mathrm{m}=53.347 \mathrm{~m}^{-3}, \Sigma S h^{*} \mathrm{~L}=5.335 \mathrm{~m}^{-2} ; \mathrm{Sv}: \mathrm{L}=0.2 \mathrm{~m}, \mathrm{~m}=-42.730 \mathrm{~m}^{-3}, \Sigma \mathrm{~Sv} \mathrm{~V}^{*} \mathrm{~L}=8.546 \mathrm{~m}^{-2}$

Characteristics of Unit Cell

> Emittance of the unit cell as a function of the strength of the focusing quadrupole.

Horizontal chromaticity of the unit cell of the lattice DIFL

Horiz. Chrom. of the DIFL-Unit-Cell

Characteristics of Unit Cell

Qy

Lattice of DIFL (7BA)

- BetaX /m
 - BetaY /m
 - 10 * DispX /m

Machine function of the chosen lattice DIFL for the proposed diffraction limited light source

Characteristics of DIFL

Dynamic aperture of lattice DIFL for the energy deviations of $\Delta p / p=-3 \%$ (red line), $\Delta p / p=0 \%$ (black line), $\Delta p /$ p = 3\% (blue line).

$$
\begin{gathered}
X(s)=2^{*} 1.33^{*} \eta(s)^{*}(\Delta E / E) \\
A(s)=\left(X(s)^{\wedge} 2\right) / \beta(s),(\Delta E / E)=3 \%
\end{gathered}
$$

$A=5 \mathrm{~mm} * \mathrm{mrad}, \beta(\mathrm{s}=0)=5.2 \mathrm{~m} / \mathrm{rad}$ $\rightrightarrows \mathrm{E}(0)=+/-5.2 \mathrm{~mm}$

Summary (1995)

1995:According to this investigation it should be possible to build Synchrotron Light Sources with an reduction of the emittance by a factor of 10 in comparison to the existing machines.

First proposal of MAX IV (2003)

Layout of MAX IV (2014)

Layout of MAX IV (2014)

Emittance of MAX-IV Unit Cell

3 GeV Storage Ring Commissioning (cont.)

- First attempts at measuring/adjusting linear chromaticity
- First light seen on diagnostic beamline Nov 2

3 GeV Storage Ring Commissioning (cont.)

- First attempts at measuring/adjusting linear chromaticity
- First light seen on diagnostic beamline Nov 2

Sigma polarized SR, 632.8 nm , SRW calculation (left) and measured image (right). The simu done for $\varepsilon_{\mathrm{x}}=320 \mathrm{pm} \mathrm{rad}, \beta_{\mathrm{y}}=1.5 \mathrm{~m}$.
Both figures show a $2 \times 2 \mathrm{~mm}^{\wedge} 2$ area of the image plane.
The fringe pattern is too weak to be visible.
Optical magnification of $m=-2.28$ is taken into account in the SRW model
Horizontal opening angle: 6 mrad
Vertical opening angle: 8 mrad
Exposure time: 2.9 ms
-

$$
x=4 \mathrm{~nm}
$$

- Cell packed with magnets
- Stronger focusing: tunes
- Chromaticity:
- Smaller β functions
- Smaller dispersion

Less radiated power (x2 less)

$$
\begin{array}{ccc}
36.44 / 13.39 & \rightarrow & 75.66 / 27.60 \\
-130 /-58 & \rightarrow & -102 /-75
\end{array}
$$

$$
x=0.13 \mathrm{~nm}
$$

$\} \Rightarrow\left\{\begin{array}{l}\text { Chromaticity correction needs } \\ \text { stronger sextupoles }\end{array}\right.$

1 period

$=2.364$	1 period
$x=0.863$	$C=26.400$

Preliminary features:

- 2 dipole families
- 1 with gradient
- 7 quadrupole families
- 2 sextupole families
- ID straight: 5 m long instead of 7.84 m (in " 6 m " section)
- No more alternating highand low- β sections

Electron beam size [偘]		
ESRF		New
High- β	412	
Low- β	50	28

Electron beam divergence [山rad]		
ESRF	New	
High- β	11	
Low- β	107	5

	ESRF	New lattice
Dipole [T]	0.86	0.49
Quadrupole $[\mathrm{T} / \mathrm{m}]$	$17(25)$	112
Sextupole $[\mathrm{T} / \mathrm{m} 2]$	460	1650

- Weak bending magnet with strong gradient
- Equivalent to a quadrupole of $33 \mathrm{~T} / \mathrm{m}$ offset by 1.5 cm
- Strong quadrupoles
- Strong sextupoles
- Dynamic aperture comparable (factor 1-3 smaller) with the present lattice
- Chromatic correction made with "standard"sextupoles
- Total bend length more than doubled => energy lost in synchrotron radiation halved

Summary

- We have seed how the lattices were evolved from DBA, TME to MBA, HMBA. There are many key innovations, among them,
- Compact magnets
- Stronger transverse gradient bends
- Longitudinal gradient bends
- "-l" paired chromatic sextupoles
- Dispersion bumps
- Harmonic sextupoles
- Better chromatic corrections
- Resonance mitigations and cancellations
- Lattice design is also an art. There is its intrinsic beauty.

References

1) M. Sommer, LAL Report No. LAL/RT/83-15, (1983).
2) L.C. Teng, "Minimizating the emittance in designing the lattice of an electron storage ring," TM-1269, (1984).
3) D. Einfeld et al. "Design of a Diffraction Limited Light Source (DIFL)," PAC proceeding, (1996).
4) S.C. Leemann et al. "Beam dynamics and expected performance of Sweden's new storage-ring source:MAX-IV," PRSTAB, 12, 120701 (2009).
5) D. Einfeld, "MBA designs," talk at Low Emittance Workshop, Barcelona, Spain 2015.
6) P. Raimondi, "Emittance gymnastic studies," ESRF, 2012.
