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Synchrotron Radiation Power 
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Using the Lienard-Wiechert formula  
of the radiated field at a low velocity 
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Tracking with Classical Radiation 
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From the relativistic Lamor formula, we have   

where CK=2reγ0
3/3. The magnetic field is known inside a tracking procedure of  

the element. Further more, using the Hamilton equation for the sixth coordinate, 
we can rewrite it as   
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It can be used for step of the integration. The radiation damping with the 
proper partition is a result of this change of the momentum. Note that there  
Is no dependence on the Planck constant. 



Radiation Damping 
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Instantaneous synchrotron radiated power is given by 

Energy loss per turn is 
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which is at order of the damping increments. Therefore the damping time 
t~T0E/U0.The damping of the emittance is  

εext = εinje
−2t /τ +εequ(1− e

−2t /τ )



Longitudinal Radiation Damping 
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For a single RF in a ring, every turn  
we have  

Ds is due to the fact that the  
energy loss depends in the deviation 
of the energy from the synchronous 
particle. 

υs =
hα p

2π
eVRF
E0

cosϕs ,

Synchrotron tune is given by 
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Radiation Damping 
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As we have illustrated that energy loss as a function of the energy deviation  
results in the radiation damping, it easily see that the damping increments 
are given by 
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where 
Only important one combined 
function magnets are used.  
Note that K1 < 0 reduces the  
horizontal emittance. 

Jx, Jy, and Js are called the damping partitions and Jx+Jy+Js=4. The damping 
time is given by τ=|1/α|. 



Sawtooth and Tapering (120 GeV) 
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Quantum Effects of Synchrotron Radiation 
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Instantaneous radiated power is given by 

and spectrum, 
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where ωc=3cγ3/2ρ and S is defined as, 

K5/3 is the modified Bessel function. 
Then the quantum distribution function 
is  
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and photon number spectrum F 
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Envelope Formulation 

5/30/17 Yunhai Cai, SLAC 10 

Σs2
=Ms1→s2

Σs1
!Ms1→s2

+ dΣq

Propagation of the sigma matrix or the second moment of a Gaussian  
distribution is given by, 

where M is the transfer matrix between the position s1 and s2 and dΣq is the 
contribution due to the quantum diffusion. For each integration step, we  
have, 
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An equilibrium can be reached after a few damping times. 



Energy Spread and Emittance 
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,

where                                     and 

•  The quantum constant Cq = 3.8319x10-13 m for electron 
•  γ is the Lorentz factor (energy) 

Balance between the quantum excitation and radiation damping results 
in an equilibrium Gaussian distribution with relative energy spread σδ  
and horizontal emittance εx: 
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Minimization of Emittance 

ε0 = F
Cqγ

2

Jx
θ 3

For an electron ring without damping wigglers, the horizontal emittnace 
 is given by 

Fmin
DBA =

1
4 15

Fmin
TME =

1
12 15

where F is a form factor determined by choice of cell and θ is bending angle of 
dipole magnet in cell. In general, stronger focusing makes F smaller. Often 
there is a minimum achievable value of F for any a given type of cell. For 
example, we have 

There is a factor of three between the minimum values of DBA and TME  
cells. That’s the price paid for an achromat, namely fixing the dispersion 
and its slop at one end of dipole. 
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Types of Periodic Cell 
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Emittance Reduction Using 
Damping Wiggler 

5/30/17 Yunhai Cai, SLAC 14 



Optimization of Wigglers Parameters 
Emittance = 11 pm-rad at 4.5 GeV with  

parameters λw=5 cm, Bw=1.5 T 

     Wiggler Field Optimization       Wiggler Length Optimization 
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Average beta function at the wiggler section is 12.4 meter. 



Positron Damping Ring  
for FACET-II 

Energy, E [MeV] 335.0 
Circumference, C [m] 21.4137 
Tune, νx νy, 4.58, 2.58 
Emittance, γϵx,y[µm-rad] 5.5 
Bunch length, σz [mm] 3.9 
Energy spread, σδ [%] 0.062 
Damping partition, 𝐽𝑥,  𝐽𝑦,  𝐽𝑧  2.15, 1.0, 0.85 
Damping time, τx, τy, τz [ms] 16.9, 36.4, 43.0 
Natural Chromaticity, ξx0, ξy0 -6.5, -4.4 
Energy loss per turn, U0 [keV] 1.362 
RF voltage, VRF [MV] 1.1 
RF frequency, fRF [MHz] 714.0 
Synchrotron Tune 0.037 

5/30/17 Yunhai Cai, SLAC 16 

Diameter: 3 meter 



Emittance Scaling 

Natural emittance: 

For FODO cell: 

--- µy=µx/2 
--- µy=µx/3 

For FB cell 

900 phase advance per cell 
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CELL
Positron Damping Ring in FACET2
 Unix version 8.51/15s 18/05/17  16.30.52
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Combine Function Magnet 
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Dispersion Suppressor 
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Positron Damping Ring in FACET2
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0.0

0.325

0.650

0.975

1.300

1.625

1.950

2.275

2.600

2.925

3.250

β
(m

)

0.0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Dx
(m

)

βx βy Dx

5/30/17 Yunhai Cai, SLAC 20 

K1<0 



FACET-II Positron Damping Ring 
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Table name = TWISS

RING
Positron Damping Ring in FACET2
 Unix version 8.51/15s 18/05/17  16.51.12
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•  Ring consists of two “5-bend” achromats 
•  Injection and extraction in vertical plane 



Nonlinear Analysis 

Derivatives of tunes	 Values	

∂νx,y /∂δ +0.5,+0.5	
∂2νx,y /∂δ2	 +16.3, +25.6	
∂3νx,y /∂δ3	 -279.0, -1734.6	
∂νx /∂Jx [m-1]	 +49.2	
∂νx,y /∂Jy,x [m-1]	 -78.6	
∂νy /∂Jy [m-1]	 +213.1	

Nonlinear chromaticities and tune shifts due to betatron amplitudes:  

•  Two families of sextupoles are used for chromatic compensation 
•  These nonlinear terms are very modest 
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Dynamic Aperture 

•  Synchrotron oscillation is included in simulation 
•  Normalized emittances: 2.5/2.2 mm-rad 
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Round Beam  

 Tune Emittance 

•  About 1% coupling initially  
•  A family of quadrupoles is adjusted 
•  1000 particles used in simulation 
•  No loss seen 
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Intra-Beam Scattering 

•  Growth rates are calculated using the Bjorken-Mtingwa 
formulas and the Nagaitsev algorithm for efficient computation 
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Summary 
•  Synchrotron radiation modifies the harmonic oscillators 

to the damped ones. Their damping rates are 
determined by the relativistic Lamor formula, which does 
not depend on the Planck constant: h or quantum 
physics. 

•  The quantization of the emitted photons generate 
heating in the electron motion. Balancing with the 
radiation damping, the beam reaches its equilibrium with 
finite energy spread and emittance. The relevant 
physical constant is the reduced Compton length. 

•  The art is how to reduce the emittance while retaining a 
large region of stability. 
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