Lecture 4:

Synchrotron Radiation

Yunhai Cai

SLAC National Accelerator Laboratory

June 13, 2017

USPAS June 2017, Lisle, IL, USA

Lienard-Wiechert Formula

$$
\begin{aligned}
& \text { Space Charge } \\
& \downarrow \\
& \vec{E}=e\left[\frac{\vec{n}-\vec{\beta}}{\gamma^{2}(1-\vec{n} \cdot \vec{\beta})^{3} R^{2}}\right]_{r e t}+\left(\frac{e}{c}\right)\left[\frac{\vec{n} \times(\vec{n}-\vec{\beta}) \times \dot{\vec{\beta}}}{(1-\vec{n} \cdot \vec{\beta})^{3} R}\right]_{r e t}, \\
& \vec{B}=\vec{n} \times \vec{E}
\end{aligned}
$$

* Space charge is suppressed by $1 / \gamma^{2}$
* Identify radiated field with synchrotron radiation
* Subject to retarded condition:

$$
t^{\prime}=t-\frac{R\left(t^{\prime}\right)}{c}
$$

Spectral Distribution

In the far-field approximation, the intensity distribution is given by,

$$
\frac{d^{2} I}{d \omega d \Omega}=\frac{r_{e} m c \omega^{2}}{4 \pi^{2}}\left|\int_{-\infty}^{\infty} \hat{n} \times\left[\hat{n} \times \vec{\beta}\left(t^{\prime}\right)\right] \exp \left[i \omega\left(t^{\prime}-\hat{n} \cdot \vec{r}\left(t^{\prime}\right) / c\right)\right] d t^{\prime}\right|^{2}
$$

Computing Radiation Spectrum

Radiation direction:

$$
\hat{n}=(0, \sin \theta, \cos \theta)
$$

Electron position:

$$
\left.\vec{r}(t)=\left(-\rho\left(1-\cos \left(\frac{\nu t}{\rho}\right)\right), 0, \rho \sin \left(\frac{\nu t}{\rho}\right)\right)\right)
$$

Its velocity:

$$
\vec{\beta}(t)=\left(-\beta \sin \left(\frac{\nu t}{\rho}\right), 0, \beta \cos \left(\frac{v t}{\rho}\right)\right)
$$

Phase approximation:

$$
\omega\left(t-\frac{\hat{n} \cdot \vec{r}(t)}{c}\right)=\omega\left[t-\frac{\rho}{c} \sin \left(\frac{\nu t}{\rho}\right) \cos \theta\right] \approx \frac{\omega}{2}\left[\left(\frac{1}{\gamma^{2}}+\theta^{2}\right) t+\frac{c^{2}}{3 \rho^{2}} t^{3}\right]
$$

Vector integrand:

$$
\hat{n} \times(\hat{n} \times \vec{\beta})=\beta\left[\sin \left(\frac{v t}{\rho}\right) \hat{\varepsilon}_{\sigma}+\cos \left(\frac{\nu t}{\rho}\right) \sin \theta \hat{\varepsilon}_{\pi}\right] \approx \frac{c t}{\rho} \hat{\varepsilon}_{\sigma}+\theta \hat{\varepsilon}_{\pi}
$$

Radiation Spectrum by Bending Magnet

Intensity distribution is given by, $\begin{array}{ll}\sigma \text { mode } & \pi \text { mode } \\ \downarrow & \downarrow\end{array}$

$$
\frac{d^{2} I}{d \omega d \Omega}=\frac{3 r_{e} m c}{4 \pi^{2}} \gamma^{2}\left(\frac{\omega}{\omega_{c}}\right)^{2}\left(1+\gamma^{2} \theta^{2}\right)^{2}\left[K_{2 / 3}^{2}(\xi)+\frac{\gamma^{2} \theta^{2}}{1+\gamma^{2} \theta^{2}} K_{1 / 3}^{2}(\xi)\right]
$$

where $\mathrm{K}_{1 / 3}$ and $\mathrm{K}_{2 / 3}$ are modified Bessel functions and their argument

$$
\xi=\frac{1}{2} \frac{\omega}{\omega_{c}}\left(1+\gamma^{2} \theta^{2}\right)^{3 / 2}
$$

Angle integrated intensity distribution is

$$
\frac{d I}{d \omega}=\sqrt{3} r_{e} m c \gamma \frac{\omega}{\omega_{c}} \int_{\omega / \omega_{c}}^{\infty} K_{5 / 3}(x) d x
$$

where the critical frequency is

$$
\omega_{c}=\frac{3}{2} \gamma^{3}\left(\frac{c}{\rho}\right)
$$

Intensity Distribution

o mode

π mode

Radiation Spectrum

Beam Dynamics in Undulator

Electron velocity:
Its position:

$$
\begin{aligned}
& \frac{d x}{d t}=-\beta c \frac{K}{\gamma} \sin \left(k_{p} z\right) \\
& \frac{d z}{d t}=\beta c\left[1-\frac{K^{2}}{2 \gamma^{2}} \sin ^{2}\left(k_{p} z\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& x(t)=\frac{K}{\gamma k_{p}} \cos \left(k_{p} \bar{\beta} c t\right) \\
& z(t)=\bar{\beta} c t+\frac{K^{2}}{8 \gamma^{2} k_{p}} \sin \left(2 k_{p} \bar{\beta} c t\right)
\end{aligned}
$$

where the undulator parameter K and averaged velocity:

$$
\begin{aligned}
& K=\frac{e B_{0} \lambda_{p}}{2 \pi m c^{2}} \\
& \bar{\beta}=\beta\left(1-\frac{K^{2}}{4 \gamma^{2}}\right)
\end{aligned}
$$

Computing Spectrum of Undulator Radiation

Radiation direction:

$$
\hat{n}=(\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta)
$$

Electron position:

$$
\vec{r}(t)=\left(\frac{K}{k_{p} \gamma} \cos \left(\omega_{p} t\right), 0, \bar{\beta} c t+\frac{K^{2}}{8 \gamma^{2} k_{p}} \sin \left(2 \omega_{p} t\right)\right)
$$

Its velocity:
beam
Phase approximation:

$$
\vec{\beta}(t)=\left(-\frac{K}{\gamma} \sin \left(\omega_{p} t\right), 0, \bar{\beta}\left[1+\frac{K^{2}}{4 \gamma^{2}} \cos \left(2 \omega_{p} t\right)\right]\right)
$$

$$
\omega\left(t-\frac{\hat{n} \cdot \vec{r}(t)}{c}\right) \approx \frac{\omega}{\omega_{1}}\left[\omega_{p} t-\frac{K \bar{\beta} \theta}{\gamma} \frac{\omega_{1}}{\omega_{p}} \cos \phi \cos \left(\omega_{p} t\right)-\frac{K^{2} \bar{\beta}}{8 \gamma^{2}} \frac{\omega_{1}}{\omega_{p}} \sin \left(2 \omega_{p} t\right)\right]
$$

Vector integrand:

$$
\hat{n} \times(\hat{n} \times \vec{\beta}) \approx \bar{\beta}\left\{\left[\theta \cos \phi+\frac{K}{\gamma} \sin \left(\omega_{p} t\right)\right] \hat{x}+\theta \sin \phi \hat{y}\right\}
$$

Number of Photons within $\Delta \omega / \omega$

Total emitted photons after an electron passing through undulator is given by,

$$
\frac{d N_{p h}(\omega)}{d \Omega}=\alpha \gamma^{2} \bar{\beta}^{2} N_{p}^{2} \frac{\Delta \omega}{\omega} \sum_{k=1}^{\infty} k^{2}\left[\frac{\sin \left(\pi N_{p} \Delta \omega_{k} / \omega_{1}\right)}{\pi N_{p} \Delta \omega_{k} / \omega_{1}}\right]^{2}\left[I_{\sigma, k}+I_{\pi, k}\right]
$$

where,

$$
\begin{aligned}
& I_{\sigma, k}=\frac{\left(2 \gamma \theta \Sigma_{1} \cos \phi-K \Sigma_{2}\right)^{2}}{\left(1+\frac{K^{2}}{2}+\gamma^{2} \theta^{2}\right)^{2}} \\
& I_{\pi, k}=\frac{\left(2 \gamma \theta \Sigma_{1} \sin \phi\right)^{2}}{\left(1+\frac{K^{2}}{2}+\gamma^{2} \theta^{2}\right)^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \Sigma_{1}=\sum_{m=-\infty}^{\infty} J_{-m}(\mu) J_{k-2 m}(v) \\
& \Sigma_{2}=\sum_{m=-\infty}^{\infty} J_{-m}(\mu)\left[J_{k-2 m-1}(v)+J_{k-2 m+1}(v)\right] \\
& \text { and } J_{n} \text { are Bessel functions. }
\end{aligned}
$$

Interference Spectrum

$$
\frac{\Delta \omega_{k}}{\omega_{k}}= \pm \frac{1}{k N_{p}} \quad \text { first zeros near the origin define the width of the peak. }
$$

Radiation Distribution of σ and π Modes $(K=1)$

Forward Radiation

Total emitted photons after an electron passing through undulator is given by,

$$
\frac{d N_{p h}(\omega)}{d \Omega}=\alpha \gamma^{2} N_{p}^{2} \frac{\Delta \omega}{\omega} \sum_{k=1}^{\infty} A_{k}(K)\left[\frac{\sin \left(\pi N_{p} \Delta \omega_{k} / \omega_{1}\right)}{\pi N_{p} \Delta \omega_{k} / \omega_{1}}\right]^{2}
$$

where

$$
\begin{aligned}
& A_{k}(K)=\frac{k^{2} K^{2}}{\left(1+\frac{K^{2}}{2}\right)^{2}} J J^{2} \\
& J J=\left[J_{(k+1) 2}\left(\frac{k K^{2}}{4+2 K^{2}}\right)-J_{(k-1) 2}\left(\frac{k K^{2}}{4+2 K^{2}}\right)\right]
\end{aligned}
$$

Only odd σ modes contribute

Undulator parameter K should be between 1 to 4

Photon Flux

Flux at $\mathrm{k}^{\text {th }}$ harmonics:

$$
\left.\frac{d N_{p h}\left(\omega_{k}\right)}{d t}\right|_{\theta=0}=\frac{\pi}{2} \alpha N_{p} \frac{I}{e} \frac{\Delta \omega}{\omega_{k}} Q_{k}(K)
$$

where

$$
Q_{k}(K)=\frac{1+\frac{K^{2}}{2}}{k} A_{k}(K)
$$

The rms opening angle:

$$
\sigma_{r^{\prime}} \approx \frac{1}{2 \gamma} \sqrt{\frac{1+\frac{K^{2}}{2}}{k N_{p}}}=\sqrt{\frac{\lambda_{k}}{2 L}}
$$

Undulator parameter: K has to be large enough

The forward cone: $\quad d \Omega=2 \pi \sigma_{r^{\prime}}^{2}$

Photon Flux of PEP-X

$\mathrm{n}^{\text {th }}$ harmonic wavelength:

$$
\lambda_{n}=\frac{\lambda_{u}}{2 n \gamma^{2}}\left(1+\frac{K^{2}}{2}\right) \quad F_{n}=\frac{\pi}{2} \alpha N_{u} Q_{n}\left(\frac{n K^{2}}{4+2 K^{2}}\right) \frac{\Delta \omega}{\omega} \frac{I}{e}
$$

Gaussian Mode

The fundamental Gaussian mode can be written as

$$
E(x, y, z)=E_{0} \frac{w_{0}}{w(z)} \exp \left[-\frac{r^{2}}{w(z)}\right] \exp \left[-i\left(k z+k \frac{r^{2}}{2 R(z)}-\phi(z)\right)\right]
$$

where
spot size: $\quad w(z)=w_{0} \sqrt{1+\left(z / z_{R}\right)^{2}}$
radius of curvature: $R(z)=z\left[1+\left(z / z_{R}\right)^{2}\right]$
Guoy phase:

$$
\phi(z)=\tan ^{-1}\left(z / z_{R}\right)
$$

Rayleigh length: $\quad z_{R}=\frac{\pi w_{0}^{2}}{\lambda}$
It is a solution of the paraxial wave equation:

$$
\left(\nabla_{\perp}^{2}-2 i k \frac{\partial}{\partial z}\right) \psi(x, y, z)=0
$$

Visualization of a Gaussian Mode

Brightness of Gaussian Mode

For a Gaussian mode, its brightness distribution function is given by,

$$
\begin{aligned}
B(\vec{r}, \vec{\varphi} ; 0) & =B_{0} \exp \left[-\frac{\vec{r}^{2}}{2 \sigma_{r}^{2}}-\frac{\vec{\varphi}^{2}}{2 \sigma_{r^{\prime}}^{2}}\right] \\
\sigma_{r} & =w_{0} / 2 \\
\sigma_{r^{\prime}} & =\sigma_{r} / z_{R}
\end{aligned}
$$

Then, we have

$$
\begin{gathered}
\sigma_{r} \sigma_{r^{\prime}}=\lambda / 4 \pi \quad \text { emittance } \\
\sigma_{r} / \sigma_{r^{\prime}}=z_{R} \quad \text { beta function } \\
B_{0}=\frac{F}{\left(2 \pi \sigma_{r} \sigma_{r^{\prime}}\right)^{2}}=\frac{F}{(\lambda / 2)^{2}} \longleftarrow \text { coherence volume }
\end{gathered}
$$

Single Electron Brightness

Using the Gaussian mode as an approximation for the undulator source, we choice $z_{R}=L / 2 \pi$, so that,

$$
\begin{aligned}
& \sigma_{r^{\prime}}=\sqrt{\frac{\lambda_{k}}{2 L}} \\
& \sigma_{r}=\frac{\sqrt{2 \lambda_{k} L}}{4 \pi}
\end{aligned}
$$

Its brightness function is given by,

$$
B(\vec{r}, \vec{\varphi} ; 0)=B_{0} \exp \left[-\frac{\vec{r}^{2}}{2 \sigma_{r}^{2}}-\frac{\vec{\varphi}^{2}}{2 \sigma_{r^{\prime}}^{2}}\right]
$$

and the photon flux is

$$
F=\frac{\pi}{2} \alpha N_{p} \frac{I}{e} \frac{\Delta \omega}{\omega_{k}} Q_{k}(K)
$$

Spectral Brightness of Electron Beam

Brightness of electron beam radiating at $\mathrm{n}^{\text {th }}$ (odd) harmonics in a undulator is given by

$$
B_{k}=F_{k} /\left(4 \pi^{2} \Sigma_{x} \Sigma_{x}^{\prime} \Sigma_{y} \Sigma_{y}^{\prime}\right)
$$

If the electron beam phase the brightness becomes optimized

$$
B_{k}=\frac{F_{k}}{4 \pi^{2}\left(\varepsilon_{x}+\lambda_{k} / 4 \pi\right)\left(\varepsilon_{y}+\lambda_{k} / 4 \pi\right)}
$$

space is matched to those of photon's,

Finally, even for zero emittances, there is an ultimate limit for the brightness

Spectral brightness of PEP-X

$$
B_{k}=\frac{4 F_{k}}{\lambda_{k}^{2}}
$$

A diffraction limited ring at 1 angstrom or 8 pm-rad emittance

Coherent X-Ray Diffraction Imaging with nanofocused Illumination C.G. Schroer et al. PRL 101, 090801 (2008)

- Phone energy: 15.25 keV
- Coherent flux: $10^{8} \mathrm{ph} / \mathrm{s}$
- Exposure time: $60 x 10$ s
- Resolution: 5 nm
- $\Delta E / E: 1.4 \times 10^{-4}$

The total number of photons D_{c} in the coherence volume available at a given source, however, is bounded from above by

$$
D_{c}=F_{c} T=\operatorname{Br} \lambda^{2} \frac{\Delta E}{E} T
$$

where F_{c} is the coherent flux, Br is the brilliance of the x-ray source, λ is the wavelength of the x rays, $\Delta E / E$ the degree of monochromaticity, and T the exposure time. For

Improvement of resolution scaled as $D_{c}{ }^{1 / 4}$.

FIG. 1 (color online). (a) Schematic sketch of the coherent diffraction imaging setup with nanofocused illumination. (b) Scanning electron micrograph of gold particles (diameter $\approx 100 \mathrm{~nm}$) deposited on a $\mathrm{Si}_{3} \mathrm{~N}_{4}$ membrane. (c) Diffraction pattern (logarithmic scale) recorded of the single gold particle pointed to by the arrow in (b) and illuminated by a hard x-ray beam with lateral dimensions of about $100 \times 100 \mathrm{~nm}^{2}$. The maximal momentum transfer, both in horizontal and vertical direction, is $q=1.65 \mathrm{~nm}^{-1}$.

THE DEGREE OF TEMPORAL COHERENCE IS DETERMINED BY THE LENGTH OF THE WAVE TRAIN (MONOCHROMATICITY)

- The main point is to make sure that the coherence length is long compared to all path differences between interfering rays in the experiment
- If this is done then the illumination is called quasimonochromatic and temporal coherence effects are removed from consideration

THE DEGREE OF SPATIAL COHERENCE IS DETERMINED BY THE DEGREE OF COLLIMATION

YOUNG'S SLITS EXPERIMENT IN COHERENT ILLUMINATION

The fringe visibility \mathbf{V} is given by

$$
\mathbf{V}=\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}=\frac{4 \sqrt{I_{1} I_{2}}}{2\left(I_{1}+I_{2}\right)}=1 \text { when } I_{1}=I_{2}
$$

INTRODUCE A TILTED WAVE TO REPRESENT IMPERFECT COLLIMATION

FRINGE CONTRAST WHEN THE ILLUMINATING BEAM HAS ANGULAR SPREAD

- The graphs show the loss of fringe contrast when the fringe patterns with all δ values in the given δ range were averaged from $-\delta / 2$ to $+\delta / 2$
- δ range equals zero is the coherent case
- Note that there is no change in the phase of the fringes because the angular spread was symmetrical
- The zero and maximum of the intensity for each plotted fringe pattern are the axes immediately above and below the plot
- When δ equals one wavelength for example the total beam angular spread is $1 \lambda / \mathrm{P}_{1} \mathrm{P}_{2}$

THE UNDULATOR ONE-ELECTRON PATTERN

- The on-axis monochromatic one-electron pattern emitted by an undulator is a spatially-coherent beam - also known as a diffraction-limited beam or a wave mode
- We will model it as a Gaussian laser mode with RMS intensity width and angular width equal to σ_{r} and $\sigma_{r^{\prime}}$ - so that the width-angle product or emittance is given by

$$
\sigma_{r} \sigma_{r^{\prime}}=\frac{\lambda}{4 \pi}
$$

- We will rearrange this using the fact that a rectangle of width $\sqrt{2 \pi} \sigma$ and height 1 has equal area to a Gaussian of RMS width σ and height 1 - thus we get

$$
\begin{aligned}
\left(\sqrt{2 \pi} \sigma_{r}\right)\left(\sqrt{2 \pi} \sigma_{r^{\prime}}\right)=\frac{\lambda}{2} & \text { Worth } \\
& \Delta_{c} \Delta_{c}^{\prime}=\frac{\lambda}{2},
\end{aligned}
$$

- Where $\Delta_{c}=\sqrt{2 \pi} \sigma_{r}$ and $\Delta_{c}^{\prime}=\sqrt{2 \pi} \sigma_{r^{\prime}}$, this is the relation you use to choose beam-line slit widths to get a coherent beam
- This is now the same as our earlier representation of a spatially coherent beam

$$
a A=\frac{\lambda}{2}
$$

References

1) J.D. Jackson, Classical Electrodynamics, Third Edition, John Wiley \& Son, Inc. 1999
2) H. Wiedemann, Synchrotron Radiation, Springer-Verlag Berlin Heidelberg 2003
3) Kwang-Je Kim, "Characteristics of Synchrotron Radiation," AIP Proc. No. 184 (AIP, New York, 1989), pp. 565-632
4) Malcolm Howells, ESRF lecture series of coherent X-ray and their applications
