Project 3

Compact
 Laser-plasma light source

Aakash Sahai, Imperial College London
Andrei Seryi, John Adams Inst. \& Oxford

Outline

Laser parameter design

- Laser energy / power / length characteristics
- Radial spot - Gaussian Laser Rayleigh length
- Self-guiding distance of laser - critical power

Plasma parameter design

- Gas jet - super-sonic gas flow - Gas density profile
- Plasma density - depletion length
- Beam offset from acc. phase - de-phasing length

Laser-plasma interaction design

- Plasma density choice - field / depletion length / de-phasing length
- Plasma field \times acceleration length - beam energy
- Beam properties - divergence / bunch length - emittance / beta-func

Parameter Suggestions

Laser parameter design

Laser pulse design

Laser pulse parameters :

Pulse-length
Power / Energy
Focal-spot

Laser pulse design

Design e-beam energy $\rightarrow 1 \mathrm{GeV}$

- choice of beam charge - depends upon laser-energy
- assume laser-energy on target - 10 J
- assume laser coupling eff into plasma ~ 50\% (FWHM)
- plasma wavelength : $\lambda_{p e} \simeq 2 \pi \frac{c}{\omega_{p e}} a_{0}$ - pulse-length
- plasma electric field : $E_{p e}=\frac{m_{e} c \omega_{p e}}{e} a_{0}^{3 / 2}$ - energy-loss
- nearly consistent acc. field / structure over acc. length :

$$
a_{0} \text { (exit) } \sim 0.5 a_{0} \text { (input) }
$$

- charge $\rightarrow 3.75 \mathrm{~J} \times 0.3$ (beam-loading) $/\left(10^{9} \mathrm{eV}\right) \rightarrow \sim 1 \mathrm{nC}$
- realistic charge $\boldsymbol{\rightarrow} \mathbf{1 0} \mathrm{pC}$

Laser pulse - Radial focal spot

Radial dynamics of the laser

- Gaussian Laser Rayleigh length - Radial spot

$$
\begin{gathered}
\mathbf{E}(r, z)=E_{0} \hat{x} \frac{w_{0}}{w(z)} \exp \left(\frac{-r^{2}}{w(z)^{2}}\right) \exp \left(-i\left(k z+k \frac{r^{2}}{2 R(z)}-\psi(z)\right)\right) \\
I(r, z)=\frac{|\Re(\mathbf{E} \times \mathbf{H})|}{2}=\frac{|E(r, z)|^{2}}{2 \eta}=I_{0}\left(\frac{w_{0}}{w(z)}\right)^{2} \exp \left(\frac{-2 r^{2}}{w^{2}(z)}\right) \\
w(z)=w_{0} \sqrt{1+\left(\frac{z}{z_{\mathrm{R}}}\right)^{2}} \quad z_{\mathrm{R}}=\frac{\pi w_{0}^{2}}{\lambda} \\
\mathbf{w}_{\mathbf{0}}=\mathbf{2 0} \mathbf{u m} \quad \mathbf{z}_{\mathbf{R}}=\mathbf{1 . 5} \mathbf{~ m m} \quad \boldsymbol{\lambda}=\mathbf{0 . 8} \mathbf{u m}
\end{gathered}
$$

- Self-focusing / guiding of laser - prolong high- a_{0} interaction $>$ few mm

Guiding the Laser pulse

Self-guiding of the laser by the plasma

- Self-guiding in a Gas (homogeneous) - self-focusing
- Physical Optics equation: $\frac{d}{d t} \tilde{r}_{\perp}=\frac{\partial \omega}{\partial \boldsymbol{k}_{\perp}}$

$$
\frac{d}{d t} k_{\perp}=-\frac{\partial \omega}{\partial \tilde{r}_{\perp}}
$$

- Ray transverse equation : $\frac{d^{2} \tilde{x}}{d t^{2}}+\Omega^{2}(\tilde{r}, \tilde{z}) \tilde{x}=0$

$$
\Omega^{2}(r, z)=\frac{1}{2 k^{2} r} \frac{\partial \omega_{p}^{2}(r, z)}{\partial r}
$$

$$
\frac{d^{2} \tilde{y}}{d t^{2}}+\Omega^{2}(\tilde{r}, \tilde{z}) \tilde{y}=0
$$

$$
\omega_{p}^{2}(r, z)=\frac{n(r, z)}{n_{0}} \frac{\omega_{p 0}^{2}}{\gamma_{1}(r, z)}
$$

channel-based

Laser power required

Relativistic self-guiding critical laser power

- Self-guiding - Critical laser power :

$$
\begin{gathered}
P_{\mathrm{crit}}=2 c\left(\frac{m_{e} c^{2}}{e}\right)^{2} \frac{\omega^{2}}{\omega_{p 0}^{2}} \simeq 17.4 \times 10^{9} \frac{\omega^{2}}{\omega_{p 0}^{2}} \mathrm{~W} \\
\text { DOI: } 10.1109 / \mathrm{TPS.1987.4316677}
\end{gathered}
$$

Numerical solution - Laser guiding

Plasma parameter design

Gas jet - design

Plasma - de-phasing length

Laser group velocity $\quad v_{g}($ laser $)=c\left[1-\left(\frac{\omega_{p e}}{\omega_{0}}\right)^{2}\right]^{1 / 2}$
Bubble velocity

$$
\beta_{\phi}^{p e} \simeq \beta_{g}^{\text {laser }}(x)=\left(1-\frac{n_{e}(x)}{n_{\text {crit }}}\right)^{1 / 2}
$$

$\begin{aligned} & \text { time for e-beam @ c } \\ & \text { to slip from "good" } \\ & \text { Phase of bubble field }\end{aligned}$$\quad \frac{\lambda_{p e}}{4\left(c-v_{\phi}^{p e}\right)}$
$\mathrm{ct}_{\text {slip }}$: de-phasing length $L_{d}=\frac{\lambda_{p e}}{4} \frac{1}{1-\beta_{\phi}^{p e}}=\left.\frac{\lambda_{p e}}{2} \gamma_{\phi}^{p e} 2\right|_{\beta_{\phi} \rightarrow 1}$

$$
\begin{gathered}
\gamma_{\phi}^{p e 2}=\frac{\omega_{0}^{2}}{\omega_{p e}^{2}}=\frac{\lambda_{p e}^{2}}{\lambda_{0}^{2}} \\
L_{d}=\frac{1}{2} \frac{\lambda_{p e}^{3}}{\lambda_{0}^{2}}=\frac{1}{2 \lambda_{0}^{2}}\left(\frac{c^{2} m_{e}}{2 e^{2}}\right)^{3 / 2} n_{e}^{-3 / 2}(x)
\end{gathered}
$$

Plasma - depletion length

Laser energy : $\quad \mathcal{E}_{L}=\frac{E_{0}^{2}}{8 \pi} c \tau_{p} \pi r_{0}^{2}$
Plasma wave energy : $\quad \mathcal{E}_{w a k e}=\frac{E_{p e}^{2}}{8 \pi} L_{p} \pi r_{0}^{2}$

Total energy exchange : $E_{0}^{2} c \tau_{p}=E_{p e}^{2} L_{p}$

$$
L_{p}=\frac{1}{2 a_{0}} \frac{\lambda_{p e}^{3}}{\lambda_{0}^{2}}=\frac{1}{2 \lambda_{0}^{2}}\left(\frac{c^{2} m_{e}}{2 e^{2}}\right)^{3 / 2} n_{e}^{-3 / 2}(x) a_{0}^{-1}
$$

Driven electron density waves

Linear electron density waves
FWHM radius $4 \frac{c}{\omega_{p e}} \quad \delta n \propto a_{0}^{2}=0.01$ FWHM pulse length $2 \frac{c}{\omega_{p e}} \quad \frac{\omega_{0}}{\omega_{p e}}=10$

Non-linear electron density waves

Laser-driven linear electron density wave:

$$
\begin{aligned}
&\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}+k_{p e}^{2}\right) \frac{n^{(2)}}{n_{0}}=\nabla^{2} \frac{a_{\perp}^{2}}{2} \\
& \beta_{\phi}^{\text {pe } \simeq v_{g}^{\text {laser }} / c}\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}+k_{p e}^{2}\right) \phi=k_{p e}^{2} \frac{a_{\perp}^{2}}{2} \\
&\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}+k_{p e}^{2}\right)\left[\gamma \beta_{\|}\right]=-\frac{1}{c} \frac{\partial}{\partial t} \nabla \frac{a_{\perp}^{2}}{2}
\end{aligned}
$$

Non-linearity \& Relativistic effects:

- density compression $\gg n_{0}$
- Wave steepening
- Phase-mixing / trajectory crossing
- Lorentz factor >> 1

$$
\text { FWHM radius }=2 \frac{c}{\omega_{p e}} \quad a_{0}=1.0 \quad \frac{\omega_{0}}{\omega_{p e}}=10
$$

