

<u>Compact</u> Laser-plasma light source

Aakash Sahai, Imperial College London Andrei Seryi, John Adams Inst. & Oxford

Outline

Laser parameter design

- Laser energy / power / length characteristics
- Radial spot Gaussian Laser Rayleigh length
- Self-guiding distance of laser critical power

Plasma parameter design

- Gas jet super-sonic gas flow Gas density profile
- Plasma density depletion length
- Beam offset from acc. phase de-phasing length

Laser-plasma interaction design

- Plasma density choice field / depletion length / de-phasing length
- Plasma field \times acceleration length beam energy
- Beam properties divergence / bunch length emittance / beta-func

Parameter Suggestions

Laser parameter design

Laser pulse design

Laser pulse parameters :

Pulse-length

Power / Energy

Focal-spot

Laser pulse design

Design e-beam energy \rightarrow 1 GeV

- choice of **beam charge** depends upon **laser-energy**
- assume laser-energy on target 10 J
- assume laser coupling eff into plasma ~ 50% (FWHM)
- plasma wavelength : $\lambda_{pe} \simeq 2\pi \frac{c}{\omega_{pe}} a_0$ pulse-length

• plasma electric field : $E_{pe} = \frac{m_e c \omega_{pe}}{e} a_0^{3/2}$ - energy-loss

- nearly consistent acc. field / structure over acc. length :
 a₀ (exit) ~ 0.5 a₀ (input)
- charge \rightarrow 3.75 J × 0.3 (beam-loading) / (10⁹ eV) \rightarrow ~ 1 nC
- realistic charge \rightarrow 10 pC

Laser pulse – Radial focal spot

Radial dynamics of the laser

• Gaussian Laser Rayleigh length – Radial spot

$$\mathbf{E}(r,z) = E_0 \,\hat{x} \, \frac{w_0}{w(z)} \exp\left(\frac{-r^2}{w(z)^2}\right) \exp\left(-i\left(kz + k\frac{r^2}{2R(z)} - \psi(z)\right)\right)$$

$$I(r,z) = \frac{|\Re(\mathbf{E} \times \mathbf{H})|}{2} = \frac{|E(r,z)|^2}{2\eta} = I_0 \left(\frac{w_0}{w(z)}\right)^2 \exp\left(\frac{-2r^2}{w^2(z)}\right)$$
$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_R}\right)^2} \qquad z_R = \frac{\pi w_0^2}{\lambda}$$

 $w_0 = 20 \text{ um}$ $z_B = 1.5 \text{ mm}$ $\lambda = 0.8 \text{ um}$

Self-focusing / guiding of laser – prolong high-a₀ interaction > few mm

Guiding the Laser pulse

Self-guiding of the laser by the plasma

- Self-guiding in a Gas (homogeneous) self-focusing
- Physical Optics equation : $\frac{d}{dt}\tilde{r}_{\perp} = \frac{\partial \omega}{\partial k}$ $\frac{d}{dt}k_{\perp} = -\frac{\partial\omega}{\partial\tilde{r}}$ • Ray transverse equation : $\frac{d^2 \tilde{x}}{dt^2} + \Omega^2(\tilde{r}, \tilde{z}) \tilde{x} = 0$ $\Omega^2(r, z) = \frac{1}{2k^2r} \frac{\partial \omega_p^2(r, z)}{\partial r}$ $\frac{d^2 \tilde{y}}{dt^2} + \Omega^2(\tilde{r}, \tilde{z}) \tilde{y} = 0$ • Radial variation of ω_{pe} : $\omega_p^2(r, z) = \frac{n(r, z)}{n_0} \frac{\omega_{p0}^2}{\gamma_{\perp}(r, z)}$ relativistic channel-based

Laser power required

Relativistic self-guiding critical laser power

• Self-guiding – Critical laser power :

$$P_{\rm crit} = 2c \left(\frac{m_e c^2}{e}\right)^2 \frac{\omega^2}{\omega_{p0}^2} \simeq 17.4 \times 10^9 \frac{\omega^2}{\omega_{p0}^2} \,\mathrm{W}$$

DOI: 10.1109/TPS.1987.4316677

Numerical solution – Laser guiding

Plasma parameter design

Gas jet – design

Plasma – de-phasing length

Laser group velocity Bubble velocity

$$v_g (laser) = c \left[1 - \left(\frac{\omega_{pe}}{\omega_0}\right)^2 \right]^{1/2}$$
$$\beta_{\phi}^{pe} \simeq \beta_g^{laser}(x) = \left(1 - \frac{n_e(x)}{n_{crit}} \right)^{1/2}$$

time for e-beam @ c to slip from "good" Phase of bubble field

$$\frac{\lambda_{pe}}{4(c-v_{\phi}^{pe})}$$

c t_{slip}: de-phasing length $L_d = \frac{\lambda_{pe}}{4} \left. \frac{1}{1 - \beta_{\phi}^{pe}} = \frac{\lambda_{pe}}{2} \left. \gamma_{\phi}^{pe} \right.^2 \right|_{\beta_{\phi} \to 1}$ $\gamma_{\phi}^{pe} \left. 2 = \frac{\omega_0^2}{\omega_{pe}^2} = \frac{\lambda_{pe}^2}{\lambda_0^2}$ $L_d = \frac{1}{2} \left. \frac{\lambda_{pe}^3}{\lambda_0^2} = \frac{1}{2\lambda_0^2} \left(\frac{c^2 m_e}{2e^2} \right)^{3/2} n_e^{-3/2}(x)$

Plasma – depletion length

Laser energy :
$$\mathcal{E}_L = rac{E_0^2}{8\pi} \; c au_p \; \pi r_0^2$$

Plasma wave energy :
$$\mathcal{E}_{wake} = \frac{E_{pe}^2}{8\pi} L_p \pi r_0^2$$

Total energy exchange : $E_0^2 \ c \tau_p = E_{pe}^2 \ L_p$

$$L_p = \frac{1}{2a_0} \frac{\lambda_{pe}^3}{\lambda_0^2} = \frac{1}{2\lambda_0^2} \left(\frac{c^2 m_e}{2e^2}\right)^{3/2} n_e^{-3/2}(x) a_0^{-1}$$

