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Outline
Laser parameter design

•  Laser energy / power / length characteristics
•  Radial spot - Gaussian Laser Rayleigh length
•  Self-guiding distance of laser - critical power

Plasma parameter design
•  Gas jet - super-sonic gas flow – Gas density profile
•  Plasma density - depletion length
•  Beam offset from acc. phase - de-phasing length

Laser-plasma interaction design
•  Plasma density choice – field / depletion length / de-phasing length 
•  Plasma field ✕ acceleration length – beam energy
•  Beam properties – divergence / bunch length – emittance / beta-func
 

Parameter Suggestions



Laser parameter design



Laser pulse design

Laser pulse parameters :

Pulse-length

Power / Energy

Focal-spot



Laser pulse design
Design e-beam energy à 1 GeV

•  choice of beam charge – depends upon laser-energy  

•  assume laser-energy on target – 10 J

•  assume laser coupling eff into plasma ~ 50% (FWHM)

•  plasma wavelength :   - pulse-length

•  plasma electric field :                      - energy-loss

•  nearly consistent acc. field / structure over acc. length : 
a0 (exit) ~ 0.5 a0 (input)  

•  charge à 3.75 J �0.3 (beam-loading) / (109 eV) à ~ 1 nC

•  realistic charge à 10 pC

3

*
p?
pk

+
- small (18)

*
p?
pk

+
- small (19)

*
p?
pk

+
- small

*
p?
pk

+
- large

Under-dense :
!0

!pe

� 1 (20)

Over-dense :
!0

!pe

 1 (21)

!0 = !pe (22)

vg (laser) = c

"
1 �

✓!pe

!0

◆2
#1/2

v� (laser) = c

"
1 �

✓!pe

!0

◆2
#�1/2

k =
!pe

c

s 
!0

!pe

!2

� 1

!pe = !0 ! ne =
me✏0

e2
!2

0

c

!pe

�0 = 800 nm! !0 = 2⇡
c

�0

= 2.35 ⇥ 10
15

rad/s

!pe =

r
nee

2

✏0me

= 2⇡ 8978.7
p

ne (cm�3) rad/s

ne = 10
18

cm
�3

ne = 2 ⇥ 10
21

cm
�3

!0

!pe

' 40

!0

!pe

' 0.9

Tpe =
1

fpe

= 2.5 f s

�pe = 0.75 µm

Rad pressure) PL = (1 + R)
IL

c

mi ni(At dt) �vi = (1 + R)
IL

c
At �⌧L

�vi =
(1 + R)/ni

mi dt

�⌧L
IL

c

�vi /
1

mi

�vi / R/ni

�vi / �⌧L IL

�pe ' 2⇡
c

!pe

a0

Non-linear & Relativistic E�ects in Plasma-based Particle Acceleration 1.11.3

plasma wave the laser pulse length is less than but of the order of a plasma wave-

length, c·p » ⁄pe{2. The peak laser field is related to its peak intensity by E0 “
mecÊ0

e
a0. The amplitude of the plasma wave field is Epe “ mecÊpe

e
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0 . Thus, the pump depletion length

in the linear sinusoidal plasma wave regime using energy considerations:
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It is interesting to note that keeping the laser pulse energy fixed, a higher intensity

laser excites a larger wakefield and loses energy faster, Lp 9 a´1
0 . A similar e�ect

occurs when the wakefield is driven by a beam as will be shown later.

In consideration of the limits on the acceleration length, it is a challenge to scale

the particle energies higher than permitted by the most acute of the limits.

1.11.3 Parasitic beam loading and ion motion

Generally, plasma ions are assumed to be stationary when considering plasma elec-

tron dynamics. However, as the intensity of the energy sources interacting with the

plasma increases resulting in an increase in the plasma fields, ions experience a larger

force. This results in ion motion within the electron wakefield. Similarly, when the

accelerating beam becomes considerably dense compared to the background plasma

its force can also lead to ion motion in the frame of reference of the beam. There are

two major e�ects due to ion motion:

(a) a dense accelerating beam coupling to the background plasma ions undergoes

emittance growth due to multiple scattering.

(b) the magnitude of the electric field reduces because the space charge force is
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Laser pulse – Radial focal spot
Radial dynamics of the laser  

•  Gaussian Laser Rayleigh length – Radial spot

w0 = 20 um zR = 1.5 mm  λ = 0.8 um

•  Self-focusing / guiding of laser – prolong high-a0 interaction > few mm
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Guiding the Laser pulse
Self-guiding of the laser by the plasma  

•  Self-guiding in a Gas (homogeneous) – self-focusing

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. PS-15, NO. 2, APRIL 1987

The problem of relativistic self-focusing alone, valid
for short times before the ion density responds to ponder-
omotive force, has been considered by Max et al. [18],
Sprangle and Tang [19], and Schmidt and Horton [20].
Numerical simulations have also been attempted for ar-
bitrary times including the combined effect of relativistic,
ponderomotive, and thermal self-focusing [21], [22]. This
problem of self-focusing in the transition period during
which the plasma profile begins to respond to pondero-
motive forces and thermal heating will be addressed in a
later paper.
The analysis presented here will be concerned only with

relativistic self-focusing on a time scale sufficiently short
so that the plasma density profile does not evolve signif-
icantly under the influence of the radiation beam. This
implies that the pulse length of the radiation beam TL must
be short compared to -rs and, of course, long compared to
a radiation period -rR.
The relativistic self-focusing effect is analyzed for a

helically polarized beam propagating in the z direction.
The beam is assumed to be axially symmetric with respect
to the z axis and has a profile which is only a function of
r, z, and t. An equation which describes the envelope of
the radiation beam is derived. The envelope equation in-
cludes diffraction effects as well as relativistic plasma ef-
fects and has a form similar to a particle beam envelope
equation [23], [24]. In the present radiation beam enve-
lope equation, diffraction effects are manifested through
a term which is equivalent to beam emittance in the par-
ticle beam envelope equation.

II. INDIVIDUAL RAY EQUATIONS
Consider a helically polarized radiation beam propa-

gating with a cold collisionless plasma. The vector poten-
tial of the field is taken to have the form

AL(r, z, t) = A(r, z) (cos (kz - wt) ex (1)
- sin (kz - wt) ey)

where the amplitude A (r, z) is a slowly varying function
of r and z, and the frequency X is assumed to be much
greater than the effective plasma frequency. The approx-
imate local dispersion relation associated with the field in
(1) is

Xc ck + (c2k2 + coP(r, z))/2ck (2)
where k1 =(k2 + k>2)12 is the transverse wavenumber,
k « k2, and cc2(r, z) is the effective background
plasma frequency. For purposes of this discussion the ef-
fective plasma frequency is written in the form

2 z(r,z) = nr y±(r z) (3)

where wpo = (47r I e12no/mo)' /2 is the ambient plasma
frequency, n (r, z) is the modified electron density of the
plasma due to the excited plasma wave, ey (r, z) = (1
+ a2 (r, z) ) 1/2 is the relativistic mass factor, and a (r, z)
= e JA (r, z) /mo c2 is the normalized laser field ampli-

tude. The relativistic factor y arises from the plasma
electrons' relativistic mass change due to their transverse
oscillations in the radiation field.

Using the ray equations from geometric optics, the
transverse motion of the electromagnetic rays are given
by

d _ aw
dt F_ akj
d aco
dk = -
dt l ar-L

(4a)

(4b)

where i% = X(t) e + y(t) e is the transverse position of
a ray, kL = kx(t) e + ky(t) eA is the transverse wave-
number of a ray, and co is given by (2). Substituting (2)
into (4a) and (4b) yields the transverse ray equations

dt2

d2 +
d2 +

Q2 z)XfC= 0 (5a)

l(P, Z)y = 0 (5b)

where

1 aw2(r, z)
12(r, z) = 2k

a r (Sc)

and

arP = 2 a n(r, z)/no
a r p arL (I + a2(r, z))11 (5d)

Equations (5a) and (5b) describe the transverse motion of
the rays and assume that the rays travel nearly parallel to
the z axis, i.e., I dx/dtt, dy/dt « vg = c where vg
is the group velocity.

III. DERIVATION OF RADIATION BEAM ENVELOPE
EQUATION

In this section an envelope equation is derived which
describes the transverse dynamics of the radiation beam
envelope as it propagates through a plasma. The deriva-
tion is similar to that used to obtain a particle beam en-
velope equation [24] in the sense that the ray equations in
(Sa) and (Sb) have a form which is similar to particle or-
bits in the paraxial approximation.
To this end, various moments are taken of the ray equa-

tions given by (5). Multiplying (5a) by x and dx/dt, (5b)
by y and dy/dt, and combining, yields the following vi-
rial and energy equations:

I d2p2 _2+U p )p

12 d22

d_ + Q2(i, ) -2 = 0
dt2 dt

(6a)

(6b)
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•  Physical Optics equation :

•  Ray transverse equation :
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The problem of relativistic self-focusing alone, valid
for short times before the ion density responds to ponder-
omotive force, has been considered by Max et al. [18],
Sprangle and Tang [19], and Schmidt and Horton [20].
Numerical simulations have also been attempted for ar-
bitrary times including the combined effect of relativistic,
ponderomotive, and thermal self-focusing [21], [22]. This
problem of self-focusing in the transition period during
which the plasma profile begins to respond to pondero-
motive forces and thermal heating will be addressed in a
later paper.
The analysis presented here will be concerned only with

relativistic self-focusing on a time scale sufficiently short
so that the plasma density profile does not evolve signif-
icantly under the influence of the radiation beam. This
implies that the pulse length of the radiation beam TL must
be short compared to -rs and, of course, long compared to
a radiation period -rR.
The relativistic self-focusing effect is analyzed for a

helically polarized beam propagating in the z direction.
The beam is assumed to be axially symmetric with respect
to the z axis and has a profile which is only a function of
r, z, and t. An equation which describes the envelope of
the radiation beam is derived. The envelope equation in-
cludes diffraction effects as well as relativistic plasma ef-
fects and has a form similar to a particle beam envelope
equation [23], [24]. In the present radiation beam enve-
lope equation, diffraction effects are manifested through
a term which is equivalent to beam emittance in the par-
ticle beam envelope equation.

II. INDIVIDUAL RAY EQUATIONS
Consider a helically polarized radiation beam propa-

gating with a cold collisionless plasma. The vector poten-
tial of the field is taken to have the form

AL(r, z, t) = A(r, z) (cos (kz - wt) ex (1)
- sin (kz - wt) ey)

where the amplitude A (r, z) is a slowly varying function
of r and z, and the frequency X is assumed to be much
greater than the effective plasma frequency. The approx-
imate local dispersion relation associated with the field in
(1) is

Xc ck + (c2k2 + coP(r, z))/2ck (2)
where k1 =(k2 + k>2)12 is the transverse wavenumber,
k « k2, and cc2(r, z) is the effective background
plasma frequency. For purposes of this discussion the ef-
fective plasma frequency is written in the form

2 z(r,z) = nr y±(r z) (3)

where wpo = (47r I e12no/mo)' /2 is the ambient plasma
frequency, n (r, z) is the modified electron density of the
plasma due to the excited plasma wave, ey (r, z) = (1
+ a2 (r, z) ) 1/2 is the relativistic mass factor, and a (r, z)
= e JA (r, z) /mo c2 is the normalized laser field ampli-

tude. The relativistic factor y arises from the plasma
electrons' relativistic mass change due to their transverse
oscillations in the radiation field.

Using the ray equations from geometric optics, the
transverse motion of the electromagnetic rays are given
by

d _ aw
dt F_ akj
d aco
dk = -
dt l ar-L

(4a)

(4b)

where i% = X(t) e + y(t) e is the transverse position of
a ray, kL = kx(t) e + ky(t) eA is the transverse wave-
number of a ray, and co is given by (2). Substituting (2)
into (4a) and (4b) yields the transverse ray equations

dt2

d2 +
d2 +

Q2 z)XfC= 0 (5a)

l(P, Z)y = 0 (5b)

where

1 aw2(r, z)
12(r, z) = 2k

a r (Sc)

and

arP = 2 a n(r, z)/no
a r p arL (I + a2(r, z))11 (5d)

Equations (5a) and (5b) describe the transverse motion of
the rays and assume that the rays travel nearly parallel to
the z axis, i.e., I dx/dtt, dy/dt « vg = c where vg
is the group velocity.

III. DERIVATION OF RADIATION BEAM ENVELOPE
EQUATION

In this section an envelope equation is derived which
describes the transverse dynamics of the radiation beam
envelope as it propagates through a plasma. The deriva-
tion is similar to that used to obtain a particle beam en-
velope equation [24] in the sense that the ray equations in
(Sa) and (Sb) have a form which is similar to particle or-
bits in the paraxial approximation.
To this end, various moments are taken of the ray equa-

tions given by (5). Multiplying (5a) by x and dx/dt, (5b)
by y and dy/dt, and combining, yields the following vi-
rial and energy equations:

I d2p2 _2+U p )p

12 d22

d_ + Q2(i, ) -2 = 0
dt2 dt

(6a)

(6b)
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The problem of relativistic self-focusing alone, valid
for short times before the ion density responds to ponder-
omotive force, has been considered by Max et al. [18],
Sprangle and Tang [19], and Schmidt and Horton [20].
Numerical simulations have also been attempted for ar-
bitrary times including the combined effect of relativistic,
ponderomotive, and thermal self-focusing [21], [22]. This
problem of self-focusing in the transition period during
which the plasma profile begins to respond to pondero-
motive forces and thermal heating will be addressed in a
later paper.
The analysis presented here will be concerned only with

relativistic self-focusing on a time scale sufficiently short
so that the plasma density profile does not evolve signif-
icantly under the influence of the radiation beam. This
implies that the pulse length of the radiation beam TL must
be short compared to -rs and, of course, long compared to
a radiation period -rR.
The relativistic self-focusing effect is analyzed for a

helically polarized beam propagating in the z direction.
The beam is assumed to be axially symmetric with respect
to the z axis and has a profile which is only a function of
r, z, and t. An equation which describes the envelope of
the radiation beam is derived. The envelope equation in-
cludes diffraction effects as well as relativistic plasma ef-
fects and has a form similar to a particle beam envelope
equation [23], [24]. In the present radiation beam enve-
lope equation, diffraction effects are manifested through
a term which is equivalent to beam emittance in the par-
ticle beam envelope equation.

II. INDIVIDUAL RAY EQUATIONS
Consider a helically polarized radiation beam propa-

gating with a cold collisionless plasma. The vector poten-
tial of the field is taken to have the form

AL(r, z, t) = A(r, z) (cos (kz - wt) ex (1)
- sin (kz - wt) ey)

where the amplitude A (r, z) is a slowly varying function
of r and z, and the frequency X is assumed to be much
greater than the effective plasma frequency. The approx-
imate local dispersion relation associated with the field in
(1) is

Xc ck + (c2k2 + coP(r, z))/2ck (2)
where k1 =(k2 + k>2)12 is the transverse wavenumber,
k « k2, and cc2(r, z) is the effective background
plasma frequency. For purposes of this discussion the ef-
fective plasma frequency is written in the form

2 z(r,z) = nr y±(r z) (3)

where wpo = (47r I e12no/mo)' /2 is the ambient plasma
frequency, n (r, z) is the modified electron density of the
plasma due to the excited plasma wave, ey (r, z) = (1
+ a2 (r, z) ) 1/2 is the relativistic mass factor, and a (r, z)
= e JA (r, z) /mo c2 is the normalized laser field ampli-

tude. The relativistic factor y arises from the plasma
electrons' relativistic mass change due to their transverse
oscillations in the radiation field.

Using the ray equations from geometric optics, the
transverse motion of the electromagnetic rays are given
by

d _ aw
dt F_ akj
d aco
dk = -
dt l ar-L

(4a)

(4b)

where i% = X(t) e + y(t) e is the transverse position of
a ray, kL = kx(t) e + ky(t) eA is the transverse wave-
number of a ray, and co is given by (2). Substituting (2)
into (4a) and (4b) yields the transverse ray equations

dt2

d2 +
d2 +

Q2 z)XfC= 0 (5a)

l(P, Z)y = 0 (5b)

where

1 aw2(r, z)
12(r, z) = 2k

a r (Sc)

and

arP = 2 a n(r, z)/no
a r p arL (I + a2(r, z))11 (5d)

Equations (5a) and (5b) describe the transverse motion of
the rays and assume that the rays travel nearly parallel to
the z axis, i.e., I dx/dtt, dy/dt « vg = c where vg
is the group velocity.

III. DERIVATION OF RADIATION BEAM ENVELOPE
EQUATION

In this section an envelope equation is derived which
describes the transverse dynamics of the radiation beam
envelope as it propagates through a plasma. The deriva-
tion is similar to that used to obtain a particle beam en-
velope equation [24] in the sense that the ray equations in
(Sa) and (Sb) have a form which is similar to particle or-
bits in the paraxial approximation.
To this end, various moments are taken of the ray equa-

tions given by (5). Multiplying (5a) by x and dx/dt, (5b)
by y and dy/dt, and combining, yields the following vi-
rial and energy equations:

I d2p2 _2+U p )p

12 d22

d_ + Q2(i, ) -2 = 0
dt2 dt

(6a)

(6b)
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•  Radial variation of ωpe :
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The problem of relativistic self-focusing alone, valid
for short times before the ion density responds to ponder-
omotive force, has been considered by Max et al. [18],
Sprangle and Tang [19], and Schmidt and Horton [20].
Numerical simulations have also been attempted for ar-
bitrary times including the combined effect of relativistic,
ponderomotive, and thermal self-focusing [21], [22]. This
problem of self-focusing in the transition period during
which the plasma profile begins to respond to pondero-
motive forces and thermal heating will be addressed in a
later paper.
The analysis presented here will be concerned only with

relativistic self-focusing on a time scale sufficiently short
so that the plasma density profile does not evolve signif-
icantly under the influence of the radiation beam. This
implies that the pulse length of the radiation beam TL must
be short compared to -rs and, of course, long compared to
a radiation period -rR.
The relativistic self-focusing effect is analyzed for a

helically polarized beam propagating in the z direction.
The beam is assumed to be axially symmetric with respect
to the z axis and has a profile which is only a function of
r, z, and t. An equation which describes the envelope of
the radiation beam is derived. The envelope equation in-
cludes diffraction effects as well as relativistic plasma ef-
fects and has a form similar to a particle beam envelope
equation [23], [24]. In the present radiation beam enve-
lope equation, diffraction effects are manifested through
a term which is equivalent to beam emittance in the par-
ticle beam envelope equation.

II. INDIVIDUAL RAY EQUATIONS
Consider a helically polarized radiation beam propa-

gating with a cold collisionless plasma. The vector poten-
tial of the field is taken to have the form

AL(r, z, t) = A(r, z) (cos (kz - wt) ex (1)
- sin (kz - wt) ey)

where the amplitude A (r, z) is a slowly varying function
of r and z, and the frequency X is assumed to be much
greater than the effective plasma frequency. The approx-
imate local dispersion relation associated with the field in
(1) is

Xc ck + (c2k2 + coP(r, z))/2ck (2)
where k1 =(k2 + k>2)12 is the transverse wavenumber,
k « k2, and cc2(r, z) is the effective background
plasma frequency. For purposes of this discussion the ef-
fective plasma frequency is written in the form

2 z(r,z) = nr y±(r z) (3)

where wpo = (47r I e12no/mo)' /2 is the ambient plasma
frequency, n (r, z) is the modified electron density of the
plasma due to the excited plasma wave, ey (r, z) = (1
+ a2 (r, z) ) 1/2 is the relativistic mass factor, and a (r, z)
= e JA (r, z) /mo c2 is the normalized laser field ampli-

tude. The relativistic factor y arises from the plasma
electrons' relativistic mass change due to their transverse
oscillations in the radiation field.

Using the ray equations from geometric optics, the
transverse motion of the electromagnetic rays are given
by

d _ aw
dt F_ akj
d aco
dk = -
dt l ar-L

(4a)

(4b)

where i% = X(t) e + y(t) e is the transverse position of
a ray, kL = kx(t) e + ky(t) eA is the transverse wave-
number of a ray, and co is given by (2). Substituting (2)
into (4a) and (4b) yields the transverse ray equations

dt2

d2 +
d2 +

Q2 z)XfC= 0 (5a)

l(P, Z)y = 0 (5b)

where

1 aw2(r, z)
12(r, z) = 2k

a r (Sc)

and

arP = 2 a n(r, z)/no
a r p arL (I + a2(r, z))11 (5d)

Equations (5a) and (5b) describe the transverse motion of
the rays and assume that the rays travel nearly parallel to
the z axis, i.e., I dx/dtt, dy/dt « vg = c where vg
is the group velocity.

III. DERIVATION OF RADIATION BEAM ENVELOPE
EQUATION

In this section an envelope equation is derived which
describes the transverse dynamics of the radiation beam
envelope as it propagates through a plasma. The deriva-
tion is similar to that used to obtain a particle beam en-
velope equation [24] in the sense that the ray equations in
(Sa) and (Sb) have a form which is similar to particle or-
bits in the paraxial approximation.
To this end, various moments are taken of the ray equa-

tions given by (5). Multiplying (5a) by x and dx/dt, (5b)
by y and dy/dt, and combining, yields the following vi-
rial and energy equations:

I d2p2 _2+U p )p

12 d22

d_ + Q2(i, ) -2 = 0
dt2 dt

(6a)

(6b)
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where
2

_ a V= X-3 - 16ax[((1 + x-2)l/2 1) + 2ln 2
ax

- 2 In ((1 + x-2)l/2 + 1)] (32)

with V0= (2c/(kR'oa2))2 and a = (wpoaoR,o/(4c))2.
The above equation describes the position of a particle

x(t) moving in the effective potential V(x, a). In the
expression for a V/a x, the first term on the right of (32)
represents vacuum diffraction, whereas the term propor-
tional to ax represents the relativistic self-focusing of the
plasma.

It is interesting to note that the shape of the potential
V(x) depends only on the parameter a. As will be shown
below, a can be written as the laser power over the critical
power. For a > 1, the potential V(x) has a minimum and
bounded oscillatory solutions for x (t) are possible.
Expanding V(x) for large x (small ao) gives

av
0 -a3-x-3 (33)

For a = 1, there are no net diffraction or focusing forces
(to leading order) and a matched radiation beam is pos-
sible. In this limit (x >> 1 ), the envelope diffracts for a
< 1 and focuses for a > 1. Since the total radiation power
is given by P = (me c2 waORo )2 / (8 ce2 ), the parameter
a can be written as ai = P/PCt, where the critical power
is given by

/2\2 2 2

Pcrit = 2c (Mec) = 17.4 x l0 - W.
e XpO 6oPo

0

v

-1 _

-2-

-3

, ..
0 1 2 3 4 5 6

x

Fig. 1. The effective potential V(x) as a function x = RI/(R.oao) for a
= 5.0. The well minimum occurs at Xf = 0.4.

(34)

For example, /cpO 20 gives Pcit = 6 x 1012 W.
Equation (33) indicates that for x » 1 and a > 1, the

radiation will focus until x - 1 and (33) is no longer valid.
Expanding (32) for small x << 1 gives

a _ _X - 16 a.
ax

V 0.01

(35)

Equation (35) states that for a fixed a > 1, focusing will
continue until the diffraction term dominates when x3 <
1 /( 16 a). Hence, at a sufficiently small x, the envelope
will be reflected back out towards its original width. When
this occurs, the envelope radius x will either oscillate be-
tween its minimum value at reflection and its original
value, or it will continue to diffract indefinitely, depend-
ing on the envelope's initial "velocity" (the initial slope
in x ( t) ). For a given a > 1 and an initial x >> 1, if the
initial slope dx /dt is sufficiently small, then x (t) will os-
cillate between its initial value and its value at reflection.
If dx /dt is initially large, x(t) will initially decrease to
its minimum value at reflection and then increase indefi-
nitely.
The exact shape of V(x) for a given oa must be deter-

mined numerically. In general, if at > 1 then there will
exist a finite well whose minimum occurs at xf. As oa in-
creases, the depth of this well increases, the well becomes

-0.02L . I -A "
0.5 1 2 3 4 5

x
Fig. 2. The effective potential V(x) as a function of x = Rs / (ROao) for

a = 1.2. The well minimum occurs at xf = 1.8.

narrower and the location of the minimum xf decreases.
The potential V(x) is plotted in Fig. 1 for o = 5.0 and
Fig. 2 for a = 1.2. Notice that xf = 0.4 for o = 5.0 and
xf= 1.8 for a = 1.2.

Recall from the vacuum solution that the minimum of
R,/R,o in vacuum is unity. Hence, the minimum for x in
vacuum is x-1=/ao. Ideally, it is possible to have a non-
oscillating envelope of constant radius if the radiation en-
ters the plasma at t = to with x(to) = xf and dx/dt = 0.
This corresponds to the radiation entering the plasma pre-
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Numerical solution – Laser guiding

resulting acceleration physics observed in the simulations
(Fig. 4). At the entrance of the plasma channel the laser-
plasma interaction was in a quasilinear regime
a0ðz ¼ 0Þ≃ 1.66. Self-focusing of the laser results in an
increasing laser intensity, and the interaction enters the
nonlinear bubble regime. After a propagation distance of
z≃ 1 cm, the normalized vector potential (the red curve in
Fig. 4) reaches a0 ≃ 4.1 and particle injection is observed
in several wave periods behind the laser due to the large
amplitude wake and a sufficiently low wake phase velocity
[23]. Subsequently, the laser intensity decreases to a local
minimum a0 ≃ 2.5 for z≃ 2.2 cm. Because of the intensity
dependence of the nonlinear plasma wavelength [1], the
period of the wake decreases, as shown in Fig. 4(ii).

However, for this density, the plasma wavelength change
is not enough to dephase the electrons, which continue to
accelerate. For z≳ 2.5 cm [Fig. 4(iii)] bunches are accel-
erated in the wakefield generated by the laser. The increase
in peak normalized laser field strength observed for 2.5 <
z < 6 cm is due to laser self-steepening. For z≳ 6 cm, the
pulse length begins to increase due to laser redshifting, and
the pulse starts losing resonance with the plasma. In this
simulation, during the exit density ramp [Fig. 4(iv)] the
self-injected bunches behind the first plasma period are lost
due to the defocusing wakefield generated by the bunch in
the first plasma period and the residual laser wakefield,
yielding a single electron beam emerging from the plasma.
The value of the minimum of a0 in region (ii) of Fig. 4,

and therefore the electron bunch phasing, depends sensi-
tively on the details of the laser-plasma parameters. For
instance, in a simulation with a lower on-axis density,
namely, ne ¼ 6.2 × 1017 cm−3, where the normalized laser
field strength reaches the minimum value a0 ≃ 2, the
reduction of the plasma wavelength moves the self-injected
bunches out of the focusing and accelerating phase of the
wake, leading to complete electron beam loss. This
indicates that, due to different laser propagation, modest
changes to the laser intensity or plasma density can cause
large modifications of the final electron beam properties.
One of the lowest energy spread high-energy beams

(shown in Fig. 5) was obtained for a plasma density of
7 × 1017 cm−3 and 16 J laser energy. The electron beam
energy was 4.2þ0.6

−0.4 GeV with 6% spread (rms), a measured
charge of 6% 1 pC, and a divergence of 0.3 mrad (rms).
The uncertainty in the electron beam energy was due to the
angular acceptance of the spectrometer.
In conclusion, the experiments demonstrate that laser

pulses with peak power at the few hundred terawatt level
propagating in preformed channels can generate multi-GeV
electron beams. Preformed plasma channels used with high
Strehl ratio laser pulses allowed high-energy (4.2 GeV)
beams to be produced with laser energy (16 J) signifi-
cantly less than that used to produce 2 GeV beams [8].
Through experiments and simulations, it is found that the

FIG. 4 (color). Evolution (a) of the peak normalized laser field
strength, a0ðzÞ (red plot), in a PIC simulation for a top-hat laser
pulse with an energy of 16 J focused at the entrance of a 9-cm-
long plasma channel. The on-axis density (black dashed line) has
a plateau density of ne ¼ 7 × 1017 cm−3, and the matched radius
is rm ¼ 81 μm. The wakefield (electron density) at various
longitudinal locations is shown in (i)–(iv).
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FIG. 5 (color). Energy spectrum of a 4.2 GeV electron beam
measured using the broadbandmagnetic spectrometer. The plasma
conditions closely match those in Fig. 2(c). The white lines show
the angular acceptance of the spectrometer. The two black vertical
stripes are areas not covered by the phosphor screen.
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Introduction 
Gaseous targets are applied in a large number of laser plasma 
interaction experiments such as high harmonic generation, 
particle acceleration, incoherent x-ray generation and optical 
field ionizing x-ray laser schemes.  While the density can easily 
be adjusted by varying the backing pressures of the gas, specific 
nozzles such as have been suggested by Semushin and Malka 
offer the possibility to shape the spatial profile of the gas flow1).  
Hereby steep density gradients of a few hundred microns 
followed by a plateau of several millimeters can be achieved 
using supersonic expansions.  This long interaction region is 
important for the success of a multitude of plasma-based 
acceleration experiments such as the Laser Wakefield 
Accelerator (LWFA) scheme.   

In this report we focused on both the optimization of the time 
response of such a nozzle-valve combination and its mass flow 
rate.  This was motivated by the fact that though the flow can be 
treated as stationary during the interaction period, a slow build-
up of the density can result in a degradation of the surrounding 
vacuum region prior to the interaction.  This can result in  
re-absorption of VUV-radiation emitted by the plasma or affect 
laser-induced proton or electron beam.  This is in particular 
important in the context of the proton-imaging technique.  

Optimization of mass flow rate 
As in many laser plasma interaction experiments steep density 
profiles are required, nozzles with high expansion rates and thus 
high Mach numbers are used.  On the other hand, beside 
specific profiles also high densities are often needed to create 
overcritical plasmas.  Here the backing pressure has to be 
increased to compensate the rarefaction of the gas.  

Any gas flow system is characterized by the fact that a Mach 
number of M = 1 is obtained at the location of minimal cross 
section A* (in m2) of the duct.  For an optimum performance of 
nozzle-valve combinations for production of supersonic-flows, 
the minimal cross section should be located at the nozzle throat, 
since the mass flow rate is fundamentally limited by A*.  If a 
one-dimensional isentropic flow (i.e. adiabatic and frictionless) 
of a perfect gas is assumed, it is given by 

> @
( 1) 2( 1)

*0

0

2
1

k kpkm A Kg s
R kT

� �x § · ¨ ¸�© ¹
 

with k as adiabatic coefficient of the gas, R its specific gas 
constant, p0 the stagnation pressure of the gas at rest (in Pa) and 
T0 the stagnation temperature (in K), respectively2).  

Thus, if a smaller cross section will be present anywhere else in 
the duct, the mass flow and with it the maximum achievable 
density at a given backing pressure p0 will be limited.  Hence an 
important design criterion for a laser gas target is to ensure an 
optimum mass flow rate for a given valve-nozzle system.  

The valve used was a commercial solenoid pulse valve of 
Parker Hannifin series 9.  This valve meets the requirements of 
both a fast response time of a few hundreds of microseconds 
and a high mass flow, besides a high-level vacuum sealing.  In 
addition, it is used in a number of laboratories3).  Figure 1 (left) 
shows a cross section of the series 9 valve.  

 

 
Figure 1.  Left: schematic of series 9 valve.  Right: modified 
body head with supersonic Mach 5.5 nozzle (shims are not 
drawn).  The vertical lines indicate the position of fixing 
screws. 

In a first step we measured the flow performance of the valve in 
order to clarify that it is not choked internally.  Therefore the 
flow through the open valve was measured in steady state with 
and without poppet.  This was done by measuring the pressure 
increase in a target chamber.  As the orifice had a diameter of 
0.78 mm, a flow of about 93 mbar l/s is expected using Argon 
(k = 1.667, RS = 208 J/(Kg K), RS = 39.94 mg/mol, p0 = 1 bar).  
However, the measured value was 17 mbar l/s that shows that 
the valve was significantly underperforming.  We measured the 
stroke of the armature and found that it is in the order of 
200 Pm what seems to be the reason for an effective A* smaller 
than that of the orifice used.   

An improvement of the outflow could be obtained by modifying 
the vacuum sealing poppet as shown in Figure 2.  As the poppet 
tip was cut under a microscope a significant higher flow of  
~ 67 mbar l/s was measured that corresponds to an effective 
orifice diameter of about 0.66 mm.  As also shown in Figure 2 
the vacuum sealing, i.e. the leak rate, was not affected.  

Optimization of time characteristics 
In order to minimize the time response of the laser gas target, 
i.e. minimize the delay between firing the valve and the build-
up of a dense gas jet above the nozzle exit, we used a modified 
flange head where the nozzles could directly be attached to the 
valve.  Hereby the nozzles are fixed with screws and thus can 
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2. THEORY OF SUPERSONIC JET FLOW

defined as choked. Mass flow rate can of course be changed, if upstream pressure is

increased, so that pressure and density increases, even if M is staying unity.

The reason for the occurrence of choked flow and the position of the sonic surface

can be qualitatively understood from the analysis of eqn. (2.9). Indeed, should the

sonic surface form upstream the nozzle throat, the supersonic flow beyond the sonic

surface would see a decreasing flow area A and thus decelerate back to the sonic M = 1.

Conversely, for it to form downstream the nozzle area, the subsonic flow preceding it

should have already gone through the nozzle throat, and there hit the largest velocity

in the flow, due to the dimension of the nozzle throat being the minimum dimensions

anywhere in the nozzle. Therefore, a stable equilibrium solution for the sonic area can

only be formed at the point of minimum aperture in the nozzle, i.e. the nozzle throat.

The transition from subsonic to supersonic flow occurs when R exceeds a gas-species

dependent critical value G which is given by:

G =

✓
� + 1

2

◆ �
��1

(2.10)

and, since � never exceeds 2, is smaller than 2.25 for all gases.

Once the flow becomes choked, the sonic surface will stay at the nozzle throat no

matter what the ratio R becomes; however, the flow pattern downstream the throat

can still change depending on R. As R is increased above the value needed to just

choke the flow, supersonic flow occurs beyond the throat, where the flow area increases,

Fig. 2.2(c). As the flow accelerates, its pressure decreases, to the point that, further

downstream, mass flow and pressure are such that the jet can no more displace the rest

gas in the ambient whilst keeping its own velocity, density and pressure. The flow must

thus adjust to the boundary conditions: a shock wave occurs in the diverging nozzle

section. Across the shock wave the thermodynamic properties of pressure, temperature

and density, as well as the flow velocity, change abruptly and conform to those of the

ambient, with the flow becoming subsonic.

As R is still increased, either the amount of rest gas to displace in the expansion

in decreased (lowering Pa) or the amount of gas flowing through the nozzle throat is

increased (increasing Pc): as a result the position of the shock wave moves further

downstream. Eventually, the shock wave position will reach the exit of the nozzle,

Fig. 2.2(d). Further increase of the ratio R will see the shock wave bend outwards

into the jet Fig. 2.2(e). This situation results in the jet exiting the nozzle, and the
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Figure 2.1: (a) Convergent-divergent, or de Laval, nozzle commonly used for propulsion

in supersonic jet aircrafts. Actual proportions vary depending on the speed and altitude to

be attained. (b) convergent nozzle, typically used in subsonic aircrafts. (c) capillary tube,

and (d) sharp orifice nozzle, commonly used in laboratory experiments.

suming P0 > Pa
1. The point of least aperture of the nozzle will be referred to as

nozzle throat.

Depending on the pressure di↵erence between chamber and ambient, di↵erent flow

regimes are identified. Fig. 2.2(a-g) shows seven possible regimes obtainable by tuning

the pressure di↵erence between chamber and ambient, indicating also the flow velocities.

The relevant quantity for the study of this system is the pressure ratio R = P0/Pa.

For low values of R, when Pa is only slightly lower than P0, subsonic flow occurs, Fig.

2.2(a). As expected from eqn. (2.9), the flow accelerates as A decreases until the nozzle

throat, then it decelerates again as A increases. Flow velocity, and total mass flow rate

with it, increase as R increases.

If R is su�ciently increased, eventually the flow velocity increases enough that the

Mach Number becomes 1 at the nozzle throat Fig. 2.2(b). At this point, no matter

what the value of R becomes, the flow will still stay subsonic until the nozzle throat

and just become sonic at the throat itself. As it was described in the previous section,

nozzle flow can be approximated as 1-dimensional and mass flow is the same everywhere

along the flow: the mass flow rate at any point can hence be estimated at the nozzle

throat alone. When the Mach Number at the throat is fixed to M = 1, unless a change

in density occurs, the mass flow rate is fixed for the whole flow: the flow is therefore

1
The notation P0 is preferred to Pc because it will be consistently used in the following text as the

initial pressure of the expanding gas, as opposed to the local pressure, indicated with P .
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Figure 2.1: (a) Convergent-divergent, or de Laval, nozzle commonly used for propulsion

in supersonic jet aircrafts. Actual proportions vary depending on the speed and altitude to

be attained. (b) convergent nozzle, typically used in subsonic aircrafts. (c) capillary tube,

and (d) sharp orifice nozzle, commonly used in laboratory experiments.

suming P0 > Pa
1. The point of least aperture of the nozzle will be referred to as

nozzle throat.

Depending on the pressure di↵erence between chamber and ambient, di↵erent flow

regimes are identified. Fig. 2.2(a-g) shows seven possible regimes obtainable by tuning

the pressure di↵erence between chamber and ambient, indicating also the flow velocities.

The relevant quantity for the study of this system is the pressure ratio R = P0/Pa.

For low values of R, when Pa is only slightly lower than P0, subsonic flow occurs, Fig.

2.2(a). As expected from eqn. (2.9), the flow accelerates as A decreases until the nozzle

throat, then it decelerates again as A increases. Flow velocity, and total mass flow rate

with it, increase as R increases.

If R is su�ciently increased, eventually the flow velocity increases enough that the

Mach Number becomes 1 at the nozzle throat Fig. 2.2(b). At this point, no matter

what the value of R becomes, the flow will still stay subsonic until the nozzle throat

and just become sonic at the throat itself. As it was described in the previous section,

nozzle flow can be approximated as 1-dimensional and mass flow is the same everywhere

along the flow: the mass flow rate at any point can hence be estimated at the nozzle

throat alone. When the Mach Number at the throat is fixed to M = 1, unless a change

in density occurs, the mass flow rate is fixed for the whole flow: the flow is therefore

1
The notation P0 is preferred to Pc because it will be consistently used in the following text as the

initial pressure of the expanding gas, as opposed to the local pressure, indicated with P .
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Figure 2.4: Typical shock wave pattern of a free jet [44].

waves are regions of high pressure and density gradients, and therefore easily imaged

by such light scattering techniques. These investigations show that the location of the

Mach disk only depends on the pressure ratio and is given by [44]:

xM

d
= 0.67

r
P0

Pa
(2.11)

The diameter of the Mach disk dM and the maximum diameter of the barrel shock

dBs are more di�cult to characterize and also depend more strongly on the particular

configuration, they can be approximated by dM = 0.5 xM and dBs = 0.75 xM ±25%.

Beside the Mach disk and the barrel shock, a more complex pattern of shock waves

forms during the jet expansion. These include for example the so-called expansion fans

at the exit of the nozzle, due to the abrupt ending of the nozzle and resulting abrupt

increase in available flow area; the compression waves that are formed between the

barrel shock and the outer jet boundary, which provide an extended region for slowing

down the jet to the ambient rest gas; the slip lines, which are a series of more complex

reiterating phenomena which occur past the Mach disk. These are all region of viscous,

non isentropic flow. The region enclosed in the innermost shock waves pattern (barrel

shock and Mach disk) is termed the zone of silence, referring to the fact that flow in

this region is supersonic and therefore not a↵ected by ambient pressure background

conditions. The spatial extension of the zone of silence plays a central role in the

generation of the supersonic gas jet studied in this work: as the first skimmer needs
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Plasma – de-phasing length
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. A very basic scaling of the phase-

slippage distance can be obtained from rudimentary arguments assuming linear wake-

fields with sinusoidal spatial profiles. In a linear sinusoidal wave the accelerating and

focusing phase are collocated over ⁄pe{4. If the accelerated electron hypothetically

reaches the speed of light then its velocity o�set from the phase-velocity of the wave

is c ´ vpe
„

. The time duration over which the dephasing of the particle from the

“right” phase occurs is thus, ⁄pe

4pc´v
pe
„ q . In this time duration the particle at velocity

c, traverses over a length that can be defined as the “dephasing” length, Ld
c

. Thus,

equating the two we obtain, Ld “ ⁄pe
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length in high phase-velocity waves where the particle is locked to the wave is:
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However, as shown in Fig.1.3 when wakefield structure is non-linear with plasma-

wavelength becoming longer the field phases becoming time asymmetric, the de-

phasing length calculation is more complicated.

In laser-plasma ion accelerators of the current generation, the ions do not remain

in synchronization with the acceleration structure for as long as the electrons ride

the electron plasma waves. The reason behind this is that the ion acceleration

structure velocities are required to be a small fraction of the speed of light. This is

necessary because for the snowplow ion acceleration structure to trap and accelerate

ions its potential has to be high enough with the ions at a low velocity, to satisfy

the condition: e„sp • p“i
beam

´ 1qmionc2 where “i
beam

“ p1 ´ —2
beam

q´1{2. But the

acceleration structure velocities do not change rapidly enough to catch up with the

ions that are accelerated. Thus, ion accelerators at the current stage of development
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phase-mixing which decoheres the collective response, making the fields weaker. Thus

to maintain the stability of the non-linear acceleration structure, uniformity of the

plasma has to be maintained under stringent limits. So, accelerating over a large

distance is a major challenge because the plasma sources have to maintain a uniform

plasma over a correspondingly larger distance.

Pump depletion of the energy source

A matched energy source that resonantly excites the plasma acceleration structure

has a limited amount of energy which it couples to the plasma. Initially, the energy

source is confined to certain spatial dimensions leading to a well-defined intensity.

The intensity defines the characteristics of the acceleration structure. As the energy

source couples to the plasma and loses energy to excite the acceleration structure its

intensity changes considerably. Upon coupling to the plasma over some distance the

energy source is not intense enough to maintain the properties of the acceleration

structure. This is referred to as pump depletion of the energy source.

When the acceleration structure significantly deviates from the initially well-

defined properties, the field-wave interaction is not optimal. This can lead to signif-

icant loss of beam quality. Thus, it is important to estimate the length over which

the pump depletion occurs.

We can work out the “pump depletion length”, Lp by using rudimentary argu-

ments in the case of laser plasma accelerators. The electric energy density is E
2

8fi . The

energy in a laser pulse of length, c·p and spot-size fir2
0 is, EL “ E

2
0

8fi c·p fir2
0, where E0

is the peak laser electric field. The energy transferred to the plasma wake train over

the length Nbuckets⁄pe “ Lp and cross-sectional area fir2
0 can be calculated using the

wakefield amplitude, Ewake “ E
2
pe

8fi Lp fir2
0.

Using the energy equivalence, E2
0 c·p “ E2

pe
Lp. For resonantly exciting the
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plasma wave the laser pulse length is less than but of the order of a plasma wave-

length, c·p » ⁄pe{2. The peak laser field is related to its peak intensity by E0 “
mecÊ0

e
a0. The amplitude of the plasma wave field is Epe “ mecÊpe

e

“
e
pm—

e
pm?

“K
where

“e
pm
—e
pm

„ a2
0 and “e „ ?

a0 , so, Epe “ mecÊpe

e
a3{2

0 . Thus, the pump depletion length

in the linear sinusoidal plasma wave regime using energy considerations:

Lp “ 1
2a0

⁄3
pe

⁄2
0

“ 1
2⁄2

0

ˆ
c2me

2e2

˙3{2
n´3{2
e

pxqa´1
0 (1.58)

It is interesting to note that keeping the laser pulse energy fixed, a higher intensity

laser excites a larger wakefield and loses energy faster, Lp 9 a´1
0 . A similar e�ect

occurs when the wakefield is driven by a beam as will be shown later.

In consideration of the limits on the acceleration length, it is a challenge to scale

the particle energies higher than permitted by the most acute of the limits.

1.11.3 Parasitic beam loading and ion motion

Generally, plasma ions are assumed to be stationary when considering plasma elec-

tron dynamics. However, as the intensity of the energy sources interacting with the

plasma increases resulting in an increase in the plasma fields, ions experience a larger

force. This results in ion motion within the electron wakefield. Similarly, when the

accelerating beam becomes considerably dense compared to the background plasma

its force can also lead to ion motion in the frame of reference of the beam. There are

two major e�ects due to ion motion:

(a) a dense accelerating beam coupling to the background plasma ions undergoes

emittance growth due to multiple scattering.

(b) the magnitude of the electric field reduces because the space charge force is
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Linear electron density waves

Phase-mixing self-injection in a rising plasma density gradient 1.6.1

tracking simulation later in the thesis, but extensive literature is available on this subject,

most significantly the textbook titled “Plasma Physics via Computer Simulation” by CK

Birdsall and AB Langdon [21]. Linear wake with small density perturbation are shown in

Fig.1.3 for a laser driver and Fig.1.4 for an electron beam driven wake.
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Figure 1.1: The spatial profile and on-axis line-out of normalized plasma electron density
in 2D cartesian space for a linear laser wake from Particle-in-Cell (PIC) simulations. The
laser pulse has Gaussian radial profile of full-width at half maximum, FWHM radius of
4 c

Êpe
launched at the transverse dimension of 15 c

Êpe
. The peak normalized laser vector

potential is a0 “ 0.1 and the FWHM pulse length is about 2 c
Êpe

. The laser frequency to
plasma frequency ratio of Ê0

Êpe
“ 10. The density perturbation in this case is ”n “ 0.01.

Importantly note that ”n 9 a
2
0 “ 0.01.

Upon expanding the perturbed density in terms of ” or the wave potential �,

n “ n
p0q ` n

p1q ` n
p2q ` Opnp3qq
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potential is a0 “ 0.1 and the FWHM pulse length is about 2 c
Êpe

. The laser frequency to
plasma frequency ratio of Ê0

Êpe
“ 10. The density perturbation in this case is ”n “ 0.01.

Importantly note that ”n 9 a
2
0 “ 0.01.

Upon expanding the perturbed density in terms of ” or the wave potential �,

n “ n
p0q ` n

p1q ` n
p2q ` Opnp3qq
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Figure 1.3: Non-linear laser wake spatial profile of plasma electron density in 2D carte-
sian space from Particle-in-Cell (PIC) simulations. The laser-pulse has Gaussian radial
profile of full-width at half maximum, FWHM radius of 2 c

Êpe
launched at the transverse

dimension of 20 c
Êpe

. The peak normalized laser vector potential is a0 “ 1.0 and the FWHM
pulse length is about 14 c

Êpe
. The laser frequency to plasma frequency ratio of Ê0

Êpe
“ 10.

Using this coordinate transform the fluid equations can be transformed as,
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Non-linear electron density waves
Non-linearity & Relativistic effects:
-  density compression >> n0

-  Wave steepening
-  Phase-mixing / trajectory crossing
-  Lorentz factor >> 1
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Wakefields of a particle beam in plasma using simplified models

Aakash A. Sahai
⇤

DEFINITIONS AND THE PANOFSKY-WENZEL
THEOREM

A beam of charged particles is an energy source be-

cause it interacts with the surrounding material through

its electromagnetic fields, resulting in the exchange of

energy. From conventional accelerator physics the elec-

tromagnetic fields of the beam interacting with the sur-

rounding materials and components are referred to as

Wakefields.

For a beam with finite size in the longitudinal dimen-

sion, the electromagnetic energy in its fields has a spec-

trum with wavelengths as low as the beam longitudinal

dimensions, as predicted by the Fourier transform. Even

long beams can be modulated longitudinally to contain

energy at wavelengths that are much smaller than the

total length of the beam.

The wakefields can be classified depending upon their

direction relative to the direction of the propagation of

the beam. The longitudinal wakefields are induced by the

beam in the same direction as the direction of propaga-

tion of the beam. Whereas, the transverse wakefields are

induced in directions transverse to the direction of prop-

agation of the beam. The longitudinal wakefields result

in energy loss of the beam. The transverse wakefields

can act on particles making them execute transverse dy-

namics.

Wakefield definition - conventional accelerator physics

The longitudinal wakefield function,Wk(⇠) is defined

in the frame behind the beam ⇠ = c�beamt � z; where the

beam is located at z0 = c�beamt. For a relativistic beam,

due to causality, there is no electromagnetic field ahead

of the bunch. In conventional accelerator physics, it is

convenient to integrate the e↵ect of the wakefield over

the entire length of the accelerator, to obtain the average

e↵ect at distances behind the beam, ⇠ = c�beamt � z. So,

a wakefield function is defined for a certain acceleration

structure; such that the e↵ect of each isolated compo-

nent is not critical and only the average e↵ect of all the

di↵erent components over the entire length of the accel-

erator needs to be obtained. As a result the e↵ect at a

specific location in the accelerator z is averaged out and

only the average e↵ect at a distance, ⇠ just behind the

beam is important.

When considering only the on-axis component of the

longitudinal wakefield we use of the line-charge density

⇤(⇠) of the beam exciting the wakefield:

Wk(⇠) =
1

q

Z

acc

dz Ek(z, ⇠) / �
V

q
; ⇠ = c�beamt � z

�Ewake = qV = �

Z
d⇠⇤(⇠)

Z

acc

d⇠ ⇤(⇠)Wk(⇠) (1)

The transverse wakefield in conventional accelerator

physics for a transverse o↵set from the axis of the beam,

�r? is defined as:

W?(⇠) �r? =
1

q

Z

acc

dz

n
~E(⇠, r, t) +

h
~�beam ⇥

~B(⇠, r, t)
io
?

(2)

Plasma Wakefield [1]

In plasma, similar to conventional accelerator physics,

it is desirable to consider the wakefields at specific lon-

gitudinal location ⇠ = c�beamt � z, behind the beam but

without averaging over the accelerator length. This is

because it is well known that the wakefield is a particle

density structure in the form of a plasma electron wave.

In addition to this, due to the transverse variation of

the beam properties it is easy to surmise that longitudinal

wakefields in the plasma have a significant transverse

variation. Thus the wakefield function in the plasma which

is not averaged over the entire length of the accelerators

and is defined as:

~Wk,?(⇠, r, t) = q
�1
n
~E(⇠, r, t) +

h
~�beam ⇥

~r ⇥ ~A(⇠, r, t)
io
k,?

(3)

We chose the direction of beam propagation as z such

that, ~�beam = �beam ẑ. So, for longitudinal wake function,

Wk(⇠, r, t) = q
�1 ~E(⇠, r, t)·ẑ+q

�1 �beam

h
ẑ ⇥ ~r ⇥ ~A(⇠, r, t)

i
ẑ
=

q
�1 ~Ez(⇠, r, t).

Wk(⇠, r, t) = q
�1

Ez(⇠, r, t).

The longitudinal component of the plasma wakefield

of a beam can thus be estimated using the longitudinal

component of eq.3 in the terms of the scalar potential,

�(⇠, r, t) and vector potential, A(⇠, r, t) as ~E · ẑ = ~Ees · ẑ +
~Eind · ẑ = �ẑ · ~r� � 1

c

@
@t
~A · ẑ = �rz� �

1

c

@
@t Az. In the

coordinates behind the beam ⇠ = c�beamt � z, we obtain,

1

c

@
@t = �beam

@
@⇠ and

@
@z = �

@
@⇠ . Transforming the expression

Laser-driven linear electron density wave :

Non-linear & Relativistic E�ects in Plasma-based Particle Acceleration 1.6.1

under the fact that np0q “ n0.

The second-order continuity equation is 1
c

B
Bt

n
p2q
n0

` Ǫ̀r —̨ p2q “ 0.

Upon taking the divergence of the longitudinal momentum eq.1.22, Ǫ̀ ¨ Ǫ̀„ “
1
c

B
Bt

´
Ǫ̀ ¨ Î̂

¯
“—Î ` Ǫ̀ ¨ Ǫ̀“.

For linear density perturbation and linear plasma-waves we make some important

approximations. The first approximation is the intensity is small, xay2 ! 1 then

“ “
a

1 ` r“—Ks2 ` r“—Îs2 “
c

1 ` a2
K `

´
1
2“Òa2

K
¯2

» 1. Using this we can write

Ǫ̀“—ÎÎ̂ “ “Ò—Î ` —ÎÒ“ “ “Ò—Î.

The second approximation we make is the 1-D approximation assuming that the

linear plasma waves have no transverse gradient and are perfectly planar. Under

this approximation ÒKp„ ´ “q “ 0 and —̨ p2q “ —ÎÎ̂. Also, the ponderomotive force

Ò“ “ 1
2“Òa2

K » 1
2Òa2

K.

Under these approximations we obtain the linear plasma-wave equations as fol-

lows,

ˆ
1
c2

B2

Bt2 ` k2
pe

˙
np2q

n0
“ Ò2a

2
K
2

ˆ
1
c2

B2

Bt2 ` k2
pe

˙
„ “ k2

pe

a2
K
2

ˆ
1
c2

B2

Bt2 ` k2
pe

˙
r“—Îs “ ´1

c

B
BtÒ

a2
K
2 (1.40)

In the case of linear plasma-waves driven by an electron beam of density nb the

equations are as follows,
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Non-linear & Relativistic E�ects in Plasma-based Particle Acceleration 1.4.1

The phase velocity of the electron plasma wave is equal to the group velocity of the

laser pulse [113](p.267, eq.1),

—pe

„
» vlaser

g
{c.

In the beam-driven plasma wave, the phase-velocity of the plasma-waves is nearly

the beam velocity [14](p. 694),

—pe

„
» vbeam{c.

High plasma wave phase velocity implies that the plasma wave is relativistic with

“pe “ Ê0{Êpe.

Note that there is a small correction to the phase velocity of the plasma waves,

—„
pe

because the head of the driver is in general depleted or unguided in the plasma.

Because of the energy loss at the head or because the head is not transversely con-

fined, the driver may appear to slowly drift behind the initial head position in the

frame phase velocity front, —„
pe

´ —driverpheadq ‰ 0. This reduces the phase-velocity

of the waves with increasing loss of the energy at the head. If the head erosion is

rapid then the phase-velocity is not nearly constant.

Thus relativistically propagating energy sources such as an electron, proton or a

positron beam apart from the laser pulse, excite plasma waves with fields of relativis-

tic phase-velocities in their trail which are equal to the velocity of the energy source.

This is shown in Fig.1.1 which also shows the accelerating and focussing phases for an

electron beam. From the 1-D dispersion analysis of the longitudinal mode of plasma

oscillations - the electron density wave, it is known that these waves have negligible

group velocity [120], App.A. It is essential to control the phase velocity of the plasma

waves because the distance over which the accelerating phase of wave electric fields

interacts with the accelerated bunch decides the extent of acceleration length. If the

accelerated bunch quickly outruns the accelerating phase of the plasma wave then

the net average electric field over the interaction length may be negligible.
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