# Imperial College London John Adams Institute for Accelerator Science Unifying physics of accelerators, lasers and plasma

**Prof. Andrei A. Seryi John Adams Institute** 

**Lecture 6: Plasma acceleration** 

ROYAL HOLLOWAY

**USPAS16** 

LHC sketches by Sergio Cittolin (CERN) – used with permission June 2016



## Lasers and particle acceleration



 $E_z < 100 \,{\rm MV/m}$ 

Accelerating structure, metal (normal-conductive or superconductive)



## $E_z = m_e c \omega_p / e \approx 100 \text{GV/m}$

"Accelerating structure" produced on-the-fly in plasma by laser pulse

London

OXFORD

• Let's discuss laser plasma acceleration in detail



## How to excite plasma

• We see that GeV/cm require plasma with n=10<sup>18</sup> cm<sup>-3</sup>

$$\lambda_p = \frac{c}{f_p} \rightarrow \lambda_p \approx 0.1 mm \sqrt{\frac{10^{17} cm^{-3}}{n}}$$

- Thus, short sub-ps pulses needed for plasma excitation
- In absence of short laser pulses other methods suggested:



# How to excite plasma

 Availability of short sub-ps pulses of laser or beams stimulated rapid progress of plasma acceleration



## **Beam and laser bunch/pulse compression**



#### Both in laser and beam use z-Energy correlation to compress/stretch the pulse – one more general principle of AS-TRIZ

Telescope is needed inside stretcher to create "negative distance"

## **CPA – Chirped Pulse Amplification**



- CPA: pulse stretching and compressing using time-energy correlation
  - Amplification of chirped pulses was used in radars the trend from microwave to optical can be taken as one of generic principles for TRIZ

## Laser pulse of high intensity

Laser intensity (in vacuum)

$$I = \frac{1}{2} \varepsilon_0 E_{max}^2 c \qquad (SI) \qquad I = \frac{1}{8\pi} E_{max}^2 c \qquad (Gaussian)$$

Fields in practical units:

$$E_{\max}\left[\left(\frac{V}{cm}\right)\right] \cong 2.75 \times 10^{9} \left(\frac{I}{10^{16} W/cm^{2}}\right)^{1/2} \qquad B_{\max}\left[Gauss\right] \cong 9.2 \times 10^{6} \left(\frac{I}{10^{16} W/cm^{2}}\right)^{1/2}$$

(useful to remember that 300 V/cm is ~ same as 1 Gauss)

Compare with field in a hydrogen atom. Bohr radius and field:

$$a_{\rm B} = \frac{\hbar^2}{{\rm me}^2} = 5.3 \times 10^{-9} \, {\rm cm} \qquad E_{\rm a} = \frac{{\rm e}}{a_{\rm B}^2} \qquad = \frac{{\rm e}}{4\pi\epsilon_0 a_{\rm B}^2} \approx 5.1 \times 10^{11} \frac{{\rm V}}{{\rm m}}$$
(Gaussian) (SI)
(Recall  $\epsilon_0 \approx 8.8 \cdot 10^{-12} \frac{{\rm A}^2 \cdot {\rm s}^4}{{\rm kg} \cdot {\rm m}^3}$ )
(Atomic intensity  $I_{\rm a} = \frac{\epsilon_0 c E_{\rm a}^2}{2} \cong 3.51 \times 10^{16} \frac{{\rm W}}{{\rm cm}^2}$ 

A laser with intensity higher than that will ionize gas immediately

OXFORD

London

## Laser intensity



## **Types of ionization**



London

## Laser intensity for barrier suppression ionization



OXFORD

## Laser intensity



## **Normalized vector potential**

The laser field can be written in terms of the vector potential of the laser field A as

$$\mathbf{E} = -\frac{\partial \mathbf{A}}{c\partial t}, \quad \mathbf{B} = \nabla \times \mathbf{A}$$

London

For linearly polarized field

$$\mathbf{A} = \mathbf{A}_0 \cos(\mathbf{k} \mathbf{z} - \omega \mathbf{t}) \mathbf{e}_{\perp}$$

We see that 
$$E_0 = \frac{A_0 \omega}{c}$$

Compare momentum gained  $e E \Delta t \cong \frac{eE}{\omega}$  with  $m_e^c$ 

We see that it is useful to define the normalized vector potential as  $a = \frac{eA}{m_ec^2}$  with amplitude  $a_0 = \frac{eE_0}{m_e\omega c}$ 

The amplitude  $a_0$  will indicate if the electron motion in laser field relativistic  $a_0 >> 1 -$  relativistic,  $a_0 << 1 -$  non relativistic

In practical units 
$$a_0 \approx \left(\frac{I[W/cm^2]}{1.37 \cdot 10^{18}}\right)^{\frac{1}{2}} \cdot \lambda[\mu m]$$
 where  $\lambda = \frac{2\pi c}{\omega}$ 

## Laser intensity



## **CPA-compressed pulse**



• Qualitative temporal profile of CPA-compressed laser pulse

- Pre- and post-pulses typically cased by nonlinear properties of the elements of CPA system and non-ideal properties of the initial laser pulse

## **Laser acceleration - conceptually**



#### • Note in particular

- Ionization front starting at the front tail of laser
- Laser pulse length similar of shorter than plasma wavelength
- Electrons trapped in the first bubble

## Formation of bubble – ponderomotive force

First, assume laser field homogeneous:  $E = E_0 \cos(\omega t)$ 

Motion of electron: 
$$\ddot{y} = \frac{F}{m} = \frac{eE}{m} \implies y = -\frac{eE_0}{m\omega^2}\cos(\omega t)$$
  
Now, assume E has  
gradient in y:  $E = E_0(y)\cos(\omega t) \approx E_0\cos(\omega t) + y\frac{\partial E_0}{\partial y}\cos(\omega t)$   
Find time average of  
force acting on e-:  $\langle F \rangle_t = \left\langle -\frac{eE_0}{m\omega^2}\cos(\omega t) \cdot \frac{\partial E_0}{\partial y}\cos(\omega t) \right\rangle_t$ 



London

## **Laser-Driven Plasma Acceleration**



- Ponderomotive force of short (50fs), intense (10<sup>18</sup> W cm<sup>-2</sup>) laser pulse expels plasma electrons while heavier ions stay at rest
- Electrons attracted back to ions, forming a bubble (blow-out regime) and setting up plasma wave which trails laser pulse
- Electric fields within plasma wave of order 100 GV/m formed



#### Simulation courtesy Prof Simon Hooker

London

## How e- gets into the bubble – wave breaking

- Wave breaking
  - Self-injection of background plasma electrons to the wake when some particles outrun the wake



- Other methods
  - External injection (difficult for so short bunches)
  - Methods which involve two laser pulses and mix of two gases with different ionization potential

# Importance of laser guidance

- As laser propagates through the gas/plasma, several competing effects are important
  - Dephasing
  - Depletion
  - Longitudinal compression by plasma waves
  - Self focusing
    - Including relativistic effect electrons of plasma at centre become relativistic and have higher mass
  - Diffraction
    - Small laser beam (~30µm) will diffract very fast
    - Includes ionization caused diffraction (centre where intensity is higher ionized first)
- A possible solution create a channel with plasma density profile n(r) to guide laser
  - A particular solution capillary discharge channel developed in Oxford

## Importance of laser guidance



Capillary channel designed by Prof Simon Hooker

• Capillary channel allowed exceeding 1GeV laser plasma acceleration for the first time

## First ever 1 GeV from laser plasma accelerator

- 1 GeV acceleration & monoenergetic beam
  - Use of guiding capillary was essential



#### 1GeV acceleration in just 3cm of plasma

W. Leemans, B. Nagler, A. Gonsalves, C. Toth, K. Nakamura, C. Geddes, E. Esarey, C. B.Schroeder, & S. Hooker, *Nature Physics* 2006

#### Plasma density 2.7x10<sup>18</sup> cm<sup>-3</sup>, 40 TW laser with 1018 W/cm<sup>2</sup>

## **Recent energy record**



# **Transverse fields in the bubble**



The ions are heavy and are inside of the bubble. They produce focusing force.

$$\oint \mathbf{E} \cdot d\mathbf{S} = 4\pi \int \rho dV$$
 (Gaussian)

Assume cylindrical symmetry

Focusing force e

$$eE = 2\pi ne^2 r$$

Assume electron is relativistic with  $\gamma$ It will oscillate in this field as

$$\frac{d^2r}{ds^2} = \frac{2\pi ne^2r}{\gamma mc^2} = \frac{\omega_p^2}{2\gamma c^2}r$$

The period of oscillation is therefore  $\lambda = \sqrt{2\gamma} \lambda_p$ 

## **Betatron radiation**



- Strong radial electric field within plasma wave cause transverse oscillation of electron bunch
- Generates bright betatron radiation in 1- 100 keV range
- Let's estimate parameters of this radiation

## **Betatron radiation**



• Strong radial electric field within plasma wave cause transverse oscillation of electron bunch

28

- Generates bright betatron radiation in 1- 100 keV range
- Let's estimate parameters of this radiation

## Synchrotron radiation on-the-back-of-the envelope – power loss (recall)

Energy in the field left behind (radiated !):



29

Gaussian units on this page!

#### Synchrotron radiation on-the-back-of-the envelope – photon energy (recall)



Therefore, observer will see photons during

$$\Delta t \approx \frac{\mathrm{dS}}{\mathrm{c}} \approx \frac{2\mathrm{R}}{\mathrm{c}\,\gamma} (1 - \beta) \approx \frac{\mathrm{R}}{\mathrm{c}\,\gamma^3}$$

**Estimation of characteristic frequency** 

$$\omega_{\rm c} \approx \frac{1}{\Delta t} \approx \frac{c \gamma^3}{R}$$

Compare with exact formula:

$$\omega_{\rm c} = \frac{3}{2} \frac{\rm c\,\gamma^3}{\rm R}$$

#### **Synchrotron radiation**

#### on-the-back-of-the envelope – number of photons (recall)



#### Gaussian units on this page!



## Estimations of betatron radiation



We found that relativistic electron with  $\gamma$ will oscillate in the field of ions as  $\frac{\mathrm{d}^2 \mathrm{r}}{\mathrm{ds}^2} = \frac{2\pi \mathrm{ne}^2 \mathrm{r}}{\gamma \mathrm{mc}^2} = \frac{\omega_\mathrm{p}^2}{2\gamma \mathrm{c}^2} \mathrm{r}$ Period of oscillation is  $\lambda = \sqrt{2\gamma} \lambda_{\rm p}$ If amplitude of oscillation is r<sub>b</sub> If amplitude of oscillation is  $r_b = \frac{\lambda^2}{4\pi^2 r_b}$ of the trajectory is of the trajectory is

ubstitute into 
$$\omega_{\rm c} = \frac{3}{2}$$

$$\lambda_{\rm c} = \frac{\lambda_{\rm p}^2}{3\pi\gamma^2 r_b}$$

London

ubstitute into 
$$\omega_{\rm c} = \frac{3}{2} \frac{1}{2}$$

$$\lambda_{\rm c} = \frac{\lambda_{\rm p}^2}{3\pi\gamma^2 r_b}$$

ostitute into 
$$\omega_{\rm c} = \frac{3}{2}$$

emitted per  $\lambda$ 

$$\left| \mathbf{N}_{\gamma} \approx \sqrt{2\gamma} \ 2\pi^2 \alpha \frac{\mathbf{r}_{\mathrm{b}}}{\lambda_{\mathrm{p}}} \right|$$

Use  $\frac{dN}{dS} \approx \frac{\alpha \gamma}{R}$  to estimate N<sub>y</sub> photons emitted per  $\lambda$ 

Assume 1GeV (γ=2E3),  $\lambda_p$ =0.03mm,  $r_b$ =0.001mm =>  $\lambda_c$ =0.25 A or ~50 keV and N  $_{\!\nu}$  per  $\lambda$  is ~0.3

#### Many hard photons!

## **Betatron radiation sources**



- Strong radial electric field within plasma wave cause transverse oscillation of electron bunch
- Generates very bright betatron radiation in 1- 100 keV range



S. Kneip et al., Appl. Phys. Lett. 99, 093701 (2011)

London

OXFORD

# LP acceleration for medicine



Z.Najmudin, et al

OXFORD

London

## **Phase contrast imaging**



• Absorption (left) and phase contrast (right) X-ray imaging

and comparison of reconstructed image (middle)

## LP acceleration for medicine

Imaging with Gemini laser-plasma acceleration and betatron radiation

Small size of emitting area => use of phase contrast technique => many applications in medical imaging



Lopes N. et al. "X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator." In Preparation (2016).



Cole J. et al., Sci. Reports (2015) "X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator.".

London

#### Z.Najmudin, et al

Laser-

**Plasma X-ray Src** 

& FEL



# Challenge of stability pulse-to-pulse



 Point
 Energy [MeV]
 Pointing Angle [rad]

 1
 1336
 -0.003

 2
 1275
 -0.002

 3
 1156
 -0.002

 4
 1086
 -0.001

Gemini 10J, 50 fs, 20 μm (FWHM)

Energies observed > 1.3 GeV Typical charge > 100 pC @ > 0.5 GeV

Density Scan of electron beam behaviour, 1.5 cm plasma

Density  $\rightarrow$ 

Bloom, M. et al. Hard X-rays Produced by Betatron Motion of Self Injected Electrons in a Laser Wake Field Accelerator. In preparation (2014).

## **Challenge of efficiency & repetition rate**

- Use a train of pulses separated by plasma period to resonantly excite wakefield – MP-LWFA
- Energy stored efficiently in plasma wave
- Can tune pulse separation to avoid saturation (unlike beat-wave scheme)



S.Hooker, R.Bartolini, S.Mangles, A.Tünnermann, L.Corner, J.Limpert, A.Seryi, R.Walczak. Jan 30, 2014, J.Phys. B47 (2014) 234003



growing plasma wave due to resonant train of pulses

- Fibre lasers: ~kW <u>average</u> power at wall-plug efficiencies > 20%
- Fibre lasers can generate trains of short pulses

London

OXFORD

# **MP-LWFA: outline concept**



- 1D and 3D fluid simulations show:
  - Single pulse E<sub>acc</sub> = 0.160 GV/m
  - Gradient increases linearly up to ~ 60 pulses
  - Max E<sub>acc</sub> = 9.6 GV/m (~70 pulses)
  - $\Delta W = 2.5 \text{ GeV}$  in L<sub>d</sub> = 265 mm
  - E<sub>acc</sub> rolls over due to loss of resonance (relativistic mass increase)...
  - ... but this can be overcome by re-tuning pulse train

## JAI team, in collaboration with Jena (Germany)

London

OXFORD

## Laser Plasma accelerator



Similar electron energies (3-6 GeV) as in synchrotrons, can be reached in a much more compact plasma accelerator using the "wake" created by a laser in a gas jet.



Modern synchrotrons-based light sources are big machines (several 100s meters)

Provided that we solve the challenges of stability, efficiency and repetition rate, we can create, based on plasma acceleration, compact (~10m) light sources – betatron X-ray and eventually an FEL





A Microcomputer

The MicroAcel

for everyone at Micro Price

a new generation of miniature computers COMPLETE COMPUTER

"IBM bringing out a personal

computer would be like teaching an

elephant to tap dance" cca. 1981

**Evolution of computers** and light sources





Compact university Scale light Source

Future national scale light source

Roval Holloway

commercialisation, work

# Motivation



# Can the next collider be based on plasma acceleration?





## The need for multi-stage acceleration

- In beam driven acceleration, the driver has v=c and de-phasing of witness from driver is not an issue
- For laser acceleration, laser propagating in media (plasma) has v<c and accelerating electrons will soon de-phase from plasma wave

For laser drive the group velocity 
$$v_g = \sqrt{1 - \frac{\omega_p^2}{\omega^2}}$$

Dephasing happen when electron outrun wave by half a period

For relativistic electron the dephasing time  $t_d$  thus given by  $(c - v_g) t_d = \frac{\lambda_p}{2}$ 

Substitute the above and get dephasing length

$$L_{d} \approx \lambda_{p} \frac{\omega^{2}}{\omega_{p}^{2}}$$

## Accelerators

## Lasers

## Plasma

# HEP discovery machines

-20 yrs or more Imperial College London

HEP applications in



OXFORD

London

#### Accelerators

Plasma

# Compact light sources

Impact on society within ~5 years

a) Compton light sources
b) SRF based Compt. src.
c) Laser-Plasma light src.

49

Lasers

JAI USPAS Course 2016, A. Seryi, JAI

20 yrs or more

**HEP discovery** 

machines

HEP applications in





- Beam-driven plasma acceleration
- Max energy achieved 80 GeV (doubling SLAC linac energy)
- Next gen experiments at FACET (SLAC)