Imperial College London John Adams Institute for Accelerator Science Unifying physics of accelerators, lasers and plasma

Prof. Andrei A. Seryi John Adams Institute

Lecture 4: Synergies between accelerators, lasers and plasma

ROYAL HOLLOWAY

OXFORE

USPAS16

June 2016 LHC sketches by Sergio Cittolin (CERN) - used with permission

Create – Energize – Manipulate – Interact

- Let's discuss beams, laser and plasma following the natural sequence
 - creating them
 - preparing for use
 - Energizing (accelerating, amplifying, exciting waves in plasma)
 - Manipulating (focusing, compressing, stretching, etc.)
 - and using them

Create – Energize – Manipulate – Interact

- Create
 - Beams of particles
 - e- (photo cathode laser driven)
 - Ion (plasma, laser driven)
 - Laser beams
 - Types, examples
 - Plasma
 - Discharge
- Energize
- Manipulate
- Interact

Photocathode guns

Electrons are generated with a laser field by photoelectric effect

High voltage at the cathode is delivered by the RF structure

50-60 MV/m in L-band 100-140 MV/m in S-band

Higher gradients are useful to accelerate the particle fast and reduce the effect of space charge (scales as 1/E²)

Electron pulses can be made short (as the laser pulse - few ps)

Beam sources – more details

RAL Penning H- ion source with the anode cover plate and extract electrode removed

ELBE SRF Gun II – aiming to high average current (1 mA) and low emittance (1 mm mrad @ 77 pC) for the ELBE LINAC (Germany)

Laser ion source

Laser ion source (CERN)

London

Laser ion source

Richard Scrivens, CERN, http://scrivens.web.cern.ch/scrivens/lis/home.html

Royal Holloway

London

Lasers – scheme & transitions in 3 level laser

Laser components

- Gain Medium (amplifies the light)
- Resonator (gives optical feedback)
- Pump Source (makes population inversion)

- a. The pump gets population from ground state L1 to the higher energy level L3
- b. The excited population gets from L3 to L2 through non radiative decay
 - The lifetime of L3 is very short and all the population in state L3 decays to state L2
- c. Stimulated emission from L2 to state L1
 - Lifetime of energy state L2 is long => population inversion occurs with respect to state L1
 - Once the population inversion is obtained, stimulated emission will give optical gain

Examples of laser types

London

Diode laser – ideal for pumping

Nd:YAG neodymium-doped yttrium aluminium garnet; Nd:Y3Al5O12 Yb:YAG ytterbium-doped ...

I ondor

UNIVERSITY OF

Plasma generation

Imperial/JAI: (a) Metre long plasma flash ionised by microsecond 30 kV pulsed discharge at pressure ~0.01 mbar; (b) dc plasma discharge produced by 3 kV supply at ~ 0.3 mbar showing strong striations, as well as dark spaces.

Discharge

Plasma generation

Paschen discharge curve for air

Create – Energize – Manipulate – Interact

- Create
- Energize
 - Beam
 - Electrostatic acceleration
 - Betatron acceleration
 - RF cavities and structures
 - Plasma acceleration
 - Laser
 - Amplifiers
 - Fiber and Dipole technology
 - CPA
 - OPCPA
 - Plasma
 - Waves in plasma
 - Laser penetration to plasma, critical density and critical surface
- Manipulate
- Interact

Beam acceleration

Laser amplifiers

- Ultra-short and ultra high power challenges:
 - Ultra short nonlinear effect in the medium
 - High power heating the amplifier medium
- These challenges limit rep rate, power and efficiency
 - Some of the most powerful lasers fire just once per few hours!
- A lot of inventions in the field of light amplification

Is there a general inventive principle that connects cats and fiber lasers?

Royal Holloway

Fiber lasers and slab lasers

- Fiber lasers and DiPOLE laser technology use the principle of larger surface to volume ratio
 - Possibility of high power, high rep rate, high efficiency

Fiber laser and DiPOLE lasers

Bragg Gratings create reflections, acting as mirror High efficiency, CW or sub-ps pulses In CW mode – tens of kW In pulsed mode – mJ in tens of kHz DiPOLE = \underline{D} iode \underline{P} umped \underline{O} ptical \underline{L} aser \underline{E} xperiment – developed by CLF/RAL, UK

CPA – Chirped Pulse Amplification

• CPA: pulse stretching and compressing using time-energy correlation

OPCPA – Optical Parametric CPA

Nonlinear crystal – optical parametric generation – input is ω_s , and output is ω_1 and ω_2 , where $\omega_s = \omega_1 + \omega_2$

Optical parametric amplification – input is two beams, pump at ω_s and signal at ω_1 . Output is amplified ω_1 beam and weakened ω_s beam, and additional idler beam at ω_2 Nonlinear crystal

E₂

 ω_2

 ω_1

ω_s

OXFORD

Equations and units

$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$	$\oint_{\partial\Omega} \mathbf{E} \cdot d\mathbf{S} = \frac{1}{\varepsilon_0} \iiint_{\Omega} \rho dV \qquad \qquad \mathbf{SI}$	$\nabla \cdot \mathbf{E} = 4\pi\rho$ Gauss-
$\nabla \cdot \mathbf{B} = 0$	$\oint_{\partial\Omega} \mathbf{B} \cdot \mathbf{dS} = 0$	$\nabla \cdot \mathbf{B} = 0$
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\oint_{\partial \Sigma} \mathbf{E} \cdot d\boldsymbol{\ell} = -\frac{d}{dt} \iint_{\Sigma} \mathbf{B} \cdot d\mathbf{S}$	$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$
$\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$	$\oint_{\partial \Sigma} \mathbf{B} \cdot d\boldsymbol{\ell} = \mu_0 \iint_{\Sigma} \mathbf{J} \cdot d\mathbf{S} + \mu_0 \boldsymbol{\varepsilon}_0 \frac{d}{dt} \iint_{\Sigma} \mathbf{E} \cdot d\mathbf{S}$	$\nabla \times \mathbf{B} = \frac{1}{c} \left(4\pi \mathbf{J} + \frac{\partial \mathbf{E}}{\partial t} \right)$
$\mathbf{F} = q \big(\mathbf{E} + \mathbf{v} \times \mathbf{B} \big)$		$\mathbf{F} = \mathbf{q} \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right)$

Microscopic Maxwell equations and Lorentz force in SI and Gaussian-cgs units

The SI units are the standard, but Gaussian units are more natural for electromagnetism. Advice: deriving the formula, instead of writing for example *e* or *h*, express the end result via more natural quantities (m_ec^2 , r_e , λ_e , α , etc.)

$$r_{e} = \frac{1}{4\pi\varepsilon_{0}} \frac{e^{2}}{m_{e}c^{2}}$$

$$r_{e} \approx 2.82 \cdot 10^{-15} m$$

$$\alpha \approx 1/137$$

$$\alpha = \frac{e^{2}}{(4\pi\varepsilon_{0})\hbar c}$$

$$r_{e} \approx 2.82 \cdot 10^{-15} m$$

$$\alpha \approx 1/137$$

$$\alpha = \frac{e^{2}}{\hbar c}$$

$$\alpha = r_{e} / \alpha \approx 3.86 \cdot 10^{-13} m$$
Gauss

OXFORD

London

Lasers and plasma - critical density and surface

If ω_p is larger than laser frequency ω , then the plasma electrons can move fast enough to screen the laser

Therefore, laser penetrates only to the point where $\omega_{p} < \omega$

The critical density is thus $n_c = \omega^2 / (4\pi c^2 r_e)$

Create – Energize – Manipulate – Interact

- Create
- Energize
- Manipulate
 - Beam
 - Focusing (weak, strong, chromaticity, aberrations)
 - Compressing
 - Cooling (e-, stochastic, optical stochastic, laser)
 - Phase plane exchange
 - Transverse stability
 - Laser
 - Focusing
 - Compression
 - Phase locking
 - Harmonic generation
 - Plasma
 - Plasma focusing lens
 - Landau damping
 - Self focusing of laser in plasma channel
- Interact

Beam and laser focusing

29

Weak or strong focusing => chromatizm

Aberrations for light and beam

For light, one uses lenses made from different materials to compensate chromatic aberrations

The use of a strong positive lens made from a low dispersion glass like crown glass coupled with a weaker high dispersion glass like flint glass can correct the chromatic aberration For particle beams, chromatic aberrations compensated by nonlinear magnets placed in a dispersive region δ_F<0 Dipole Magnets Beam Direction δ_E>0 Sextupole kick: $x' = x' + S(x^2 - y^2)$ v' = v' - S 2xvIn dispersive region sextupole kick will contain energy dependent focusing: $x' \Rightarrow 5(x+\delta)^2 \Rightarrow 25 \times \delta + ..$ $y' \Rightarrow -52(x+\delta)y \Rightarrow -25y\delta + ...$ this can be used to arrange chromatic correction

Beam and laser bunch/pulse compression

Both in laser and beam use z-Energy correlation to compress/stretch the pulse – general principle connecting two areas

Royal Holloway

London

Beam cooling

First e-cooler at BINP

Antiproton accumulator at CERN

Faster stochastic cooling

"Standard" stochastic cooling – sampling of the beam and thus the cooling rate is limited by system bandwidth (pick-up length, etc)

London

Optical stochastic cooling – use optical pick-ups and optical amplifiers – increase bandwidth and cooling rate 1E4 times

Create – Energize – Manipulate – Interact

- Create
- Energize
- Manipulate
- Interact
 - Beam
 - Radiation (synchrotron, betatron)
 - Free Electron Laser
 - Colliders
 - Spallation neutron sources
 - Particle therapy
 - Industry
 - Security
 - Energy (ADS)
 - Laser
 - Compton x-ray source
 - Photon collider

Synchrotron sources, FEL, Compton source

Compton x-ray source Laser λ_{L} Relativistic γ β γ β Scattered Photon $\lambda_{2} = \lambda_{1} (1+\theta^{2}\gamma^{2})/(4\gamma^{2})$

Synchrotron sources, FEL, Compton source

Synchrotron x-ray source (3rd Generation)

Free Electron Laser x-ray source (4rd Generation)

There are a lot of synergies between acceleratorlaser-plasma in x-ray sources in particular

Laser imprints on beams to improve FEL coherence

Beam-laser collision in Compton sources

nth generation of X-ray source based on plasma acceleration

etc.

And there is room for your contribution!

 $\lambda_2 = \lambda_1 (1 + \theta^2 \gamma^2) / (4\gamma^2)$

stora