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• Plan of the lecture 

 

– Basics of beam dynamics (transverse) 

 

Basics of accelerators 
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Equations and units 

 

 

 

 

 

 

 

 

 

The SI units are the standard, but Gaussian units are more natural for electromagnetism. 

Advice: deriving the formula, instead of writing for example e or h, express the end result 

via more natural quantities (mec
2, re, le, a, etc.) 

Microscopic Maxwell equations and Lorentz force in SI and Gaussian-cgs units 
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Accelerator starts from … - thermionic gun 

Electrons are generated by thermionic emission from the cathode and 

accelerated across a high voltage gap to the anode. A grid between 

anode and cathode can be pulsed to generate a train of  pulses 

suitable for RF acceleration 

Cathode assembly 

BaO/CeO-

impregnated 

tungsten disc is 

heated and electrons 

are emitted 
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Thermionic gun – space charge and electrode shape 

Electrons generated by thermionic emission tend to repel therefore an 

advance e.m. design is envisaged to control the beam dynamics and 

reduce the emittance of  the beam.  

This requires solving Laplace equation 

∆=0 for the potential of  the e.m. field 

in the given geometry 
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Polarized e- sources 

• Sometime we need large number of  bunches of  

polarized electrons 

• electron sources: 

– laser-driven photo injector 

– circularly polarized photons 

on GaAs cathode 

– εn ~ 50 μm rad 

factor ~10   in x plane 

factor ~500 in y plane 

         too large in case we plan to use it for colliders 

– dominated by space charge 

– RF bunching system needed to generate bunch 

structure for the linac, and DR to reduce emittance 

120 kV

electrons

lase
r p

hotons

GaAs
cathode

l = 840 nm

20 mm
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Linear accelerators 
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Circular accelerators 
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Main components of a storage ring 

Dipole magnets to bend the electrons Quadrupole magnets to focus the electrons 

Sextupole magnets to focus off-energy 

electrons (mainly) 

RF cavities to accelerate or replace  

E losses due to synchrotron radiation 
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Diamond storage ring 
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Motion of charged particles in e.m. fields (I) 
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While we on this topic – drift in ExB fields 

It is easy to find that equations 

predict drift with constant velocity 

Consider uniform E and B that are perpendicular –often met in plasma & beams 

Qualitative 

picture: 
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Motion of charged particles in e.m. fields (II) 

Motion in  quadrupole magnet 
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Linear betatron equations of motion 

In the magnetic fields of  dipoles magnets and quadrupole magnets the 

coordinates of  the charged particle w.r.t. the reference orbit and using 
the curvilinear abscissa s are given by the Hill’s equations 
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No periodicity is assumed but for a circular machine Kx, Kz and  are 

periodic 

These are linear equations (in y = x, z). They can be integrated. 

 weak 

focussing of  a 

dipole 
quadrupole 

focussing 
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Origin of weak focusing in a dipole 

Consider  

shifted  

circles 

They cross 

B  

This is “focusing” with 

wavelength of  motion 2pr  

 

This correspond to  

x=x0 sin(s/r) 

Or to equation 
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Pseudo-harmonic oscillations 

The solution can be found in the form 

 φ(s)cos(s)βεy(s) yyy   

s

s y

y

0
)(s'β

ds'
(s)

which are pseudo-harmonic oscillations 

The beta functions (in x and z) 

are proportional to the square 

of  the envelope of  the 

oscillations 

The functions  (in x and z) 

describe the phase of  the 

oscillations 
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Differential equation for the beta functions 

Use this form  φ(s)cos(s)βεy(s) yyy  

Prepare to substitute to Hill’s equation: 
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Principal trajectories 

The solutions of  the Hill’s equation can be cast equivalently in the form 

of  principal trajectories. These are two particular solutions of  the 

homogeneous Hill’s equation 

0)(''  ysky

which satisfy the initial conditions 

C(s0) = 1;C’(s0) = 0; cosine-like solution 

S(s0) = 0;S’(s0) = 1; sine-like solution 

The general solution can be written  

as a linear combination  

of  the principal trajectories 
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Principal trajectories  

vs pseudo harmonic oscillations 
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As a consequence of  the linearity of  Hill’s equations, we can 

describe the evolution of  the trajectories in a transfer line or in a 

circular ring by means of  linear transformations 
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This allows the possibility of  using the matrix formalism to describe the 
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Matrices of most common elements 

Transfer lines or circular accelerators are made of  a series of  drifts and 

quadrupoles for the transverse focusing and accelerating section for 

acceleration.  

Each of  these element can be associated to a particular transfer matrix 
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Matrix formalism for transfer lines 
For each element of  the transfer line we can compute, once and for 

all, the corresponding matrix. The propagation along the line will be 

the piece-wise composition of  the propagation through all the various 

elements 
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Matrix formalism and analogy with geometric optics 

Particle trajectories can be described with a matrix formalism 

analogous to that describing the propagation of  rays in an optical 

system 

The magnetic quadrupoles 

play the role of  focusing and 

defocussing lenses, however 

notice that, unlike an optical 

lens, a magnetic quadrupole is 

focusing in one plane and 

defocussing in the other plane 

Magnetic field of  a quadrupole 

and Lorentz force 
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An example: the FODO lattice (I) 

Consider an alternating sequence of  focusing (F) and defocusing (D) 

quadrupoles separated by a drift (O) 

The transfer matrix of  the basic FODO cell reads 



























































































2

2

2 f4

L

f2

L
1

f2

L

f4

L
1L

f2

L
1

10
2

L
1

1
f

1
01

10
2

L
1

1
f

1
01

M

L 

F F O O D 

s 

envelope 



          USPAS Course 2016, A. Seryi, JAI                           25 

In terms of  the amplitude and phase function the transfer matrix will read 

where 0 , a0 and the phase 0 are computed at the beginning of  the 

segment of  transfer line 
 

We still have not assumed any periodicity in the transfer line.  
 

If  we consider a periodic machine the transfer matrix over a whole 

turn reduces to (put  =  the phase advance in one turn) 
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Consider a circular accelerator with transfer matrix over one turn 

equal to M (one turn map). Using the Twiss parameterization for M 
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Example: the FODO lattice (II) 

Using the Twiss parameterization of  the matrix or the FODO cell we have 
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In a similar way we can compute the optics functions  

at the beginning of  the FODO cell. 
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Optics functions in a transfer line  
While in a circular machine the optics functions are uniquely 

determined by the periodicity conditions, in a transfer line the optics 

functions are not uniquely given, but depend on their initial value at the 

entrance of  the system. 
 

We can express the optics function in terms of  the principal 
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Examples  
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In a drift space 

The  function evolves like a parabola as a function of  the drift length. 

In a thin focusing quadrupole of  focal length f  = 1/KL 

The  function evolve like a parabola in terms of  the inverse of  focal 

length  
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Diamond LINAC to booster transfer line 

Optics 

functions from 

the LINAC 

(Twiss 

parameters of  

the beam) 

Booster 

optics 

functions at 

the injection 

point 
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Transfer line example: Diamond LTB 
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Betatron motion in phase space (recap) 

The solution of  the Hill’s equations 

0y)s(K
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Courant-Snyder invariant (I) 

Hill’s equations have an 

invariant 

0)(
2

2

 ysK
ds

yd
y

.consty'yy2'y)s(A 222  a

This invariant is the area of  the ellipse in phase space (y, y’) 

multiplied by . 

This can be easily proven by substituting the solutions   y, y’  

into A(s). You will get the constant     

A(s) is called Courant-Snyder invariant 
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Courant-Snyder invariant (II) 

Whatever the magnetic lattice, the area of  the ellipse stays constant  

(if  the Hill’s equations hold) 

At each different sections s, the ellipse of  the trajectories may change 
orientation shape and size but the area is an invariant. 

This is true for the motion of  a single particle ! 

  

center of  F quad 

center of  D quad 
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Dispersion 

Another basic function used in the characterization of  charge particle 

motion Iinear accelerator is the so called dispersion function.  
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obtained remembering that the radius of  curvature of  the trajectory for an 

off  energy particle is  

The dispersion function describes the 

orbit of  an off  energy particle. 

 

The Hill’s equation for an off  energy 

particle reads 


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The solution for the closed orbit can be searched as  

 

 x = x0 + dp/p * D 

 

Where D is the dispersion function and x0 describes betatron oscillation 

around the dispersive orbit 

 

D can be expressed in terms of  the principal trajectories as 
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The length of  the dispersive orbit can be computed as a function of  the 

dispersion function. We also can define the so called momentum compaction 

factor as 

Dispersion 
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Chromaticity 
Chromaticity describes the dependence of  the betatron tune with the 

energy deviation of  the particle. This is due to the different focussing 

strength of  the magnetic elements as a function of  the energy 

Expanding the quadrupole strength as in 
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The betatron tunes change according to 

The chromaticity is the derivative of  the betatron tunes wrt to the relative 

energy change 
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δ=0 
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Resonances 

Must be carefully avoided 

 

They can be potentially dangerous  

for the stability of  the particle motion 

 

The analysis of  the stability beyond  

the linear motion is a field where  

accelerator physics meets  

astronomy and galactic dynamics  

|m| + |n|  

is called the order of  the resonance 

Resonance conditions between the betatron tunes such as  

 

 m Qx + n Qz = p 
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Betatron tune measurements 
A example of  betatron oscillations recorded after a kick in the 

vertical plane at diamond.  

256 turns are recorded: the time signals of  many kicks is 

superimposed to check the reproducibility of  the kick and of  the 

oscillations, small variation in the betatron tunes are detected (2e-4).  

The frequency corresponding 

to the peak of  the amplitude of  

the FFT is the betatron tune 

It can be measured form Beam 

Position Monitors (BPMs) 

Example from Diamond: notice 

the ripple in the tune 

measurement due change in 

quadrupole terms in Hills’ 

equations (vibrations – power 

supplies- …) 



          USPAS Course 2016, A. Seryi, JAI                           40 

Frequency Map Analysis 

The Frequency Map Analysis is a technique introduced in Accelerator 

Physics form Celestial Mechanics (Laskar). 

It allows the identification of  dangerous non linear resonances during 

design and operation. Strongly excited resonances can destroy the 

Dynamic Aperture. 
To each point in the (x, y) aperture 

there corresponds a point in the 

(Qx, Qy) plane 

The colour code gives a measure 

of  the stability of  the particle  

(blue = stable; red = unstable) 

The indicator for the stability is 

given by the variation of  the 

betatron tune during the 

evolution: i.e. tracking N turns we 

compute the tune from the first 

N/2 and the second N/2 

Engineering aperture. 
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Chaotic motion beyond the linear approximation 

Two examples of  irregular and chaotic motion from simulations and 

from real measurement at the Diamond accelerator, showing a 

highly nonlinear motion with resonant islands and chaotic layers. 
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Coupling 

N N 

S 

S 

Skew quadrupole field Skew quadrupole forces 

S 

S 

N N 
+ 

A standard way to create (or correct) coupling between x and y 

planes is to use skew quadrupoles 

Other sources of  coupling – solenoid (especially when solenoid 

overlaps with quadrupole field), offset of  sextupoles, etc 
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• In this lecture we discussed 

 

– Basics of beam dynamics (transverse) 

 

Summary of the lecture 


