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Pillbox Cavity – All the Details
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Lecture Plan

• Last time, we got to the basic field description of a pillbox 

cavity. 

• This is the workhorse geometry, for reasons that will rapidly 

become evident. 

• We’re going to fully characterize this geometry, all the 

parameters that we’ll need for later, and then move on to 

more complicated cavity geometries.
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Standing Waveguide Modes

• 𝐸𝑧 = 𝐸0𝐽𝑚 𝑗𝑚,𝑛
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• Note the change in the dispersion curve! No longer 

continuous with all frequencies allowed. 

• 𝜔𝑚,𝑛,𝑙 =
𝑐𝑙𝜋

𝐿

2
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Pillbox Cavity

• You can repeat all this for TE modes, but we want longitudinal 

electric fields for acceleration!

• Pick the lowest frequency, simplest mode: TM010 

• 𝐵𝜌 = 𝐸𝜌 = 𝐸𝜙 = 0 and 𝑗𝑚,𝑛 = 2.405

• 𝐸𝑧 = 𝐸0𝐽0
2.405𝜌

𝑅
𝑒−𝑖𝜔𝑡

• 𝐻𝜙 =
𝐸0

𝜂
𝐽1

2.405𝜌

𝑅
𝑒−𝑖𝜔𝑡𝑒

𝑖3𝜋

2 with 𝜂 =
𝜇0

𝜖0
≅ 376.7 Ω is the 

impedance of free space. 

• 𝜔010 =
2.405𝑐

𝑅
Note: only depends on radius, not length!
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Now we…. Wellll…… First thing’s first. RF Losses!

• Now it’s unavoidable, how is power dissipated in a metallic 

surface?

• We proved that the skin depth was related to the conductivity 

and frequency: 𝛿−1 = 𝜋𝑓𝜇0𝜎

• This came from solving for the fields in a metallic layer as it 

screened the imposed fields, and we did it with the Electric 

Field: 𝐸𝑧 = 𝐸0𝑒
−𝜏𝑛𝑥 where 𝜏𝑛 = 𝑖𝜔𝜎𝜇0 (the real part of this 

gives the skin depth)

• We want the surface resistance, which is the real part of the 

surface impedance.
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Surface Resistance – Normal Conducting Materials

• First, need the total current: 𝐼 =  0
∞
𝑗𝑧 𝑥 𝑑𝑥 =

 0
∞
𝑗0 𝑒

−𝜏𝑛𝑥𝑑𝑥 = 𝑗0/𝜏𝑛

• So, Impedance 𝑍𝑠 =
𝐸0

𝐼
=

𝜏𝑛

𝜎
=

𝑖𝜔𝜇0𝜎

𝜎
= 𝑅𝑠 + 𝑖Χ𝑠

• Turn the crank: 𝑅𝑠 =
𝜋𝜇0𝑓

𝜎
=

1

𝜎𝛿

• Two things to note:

– Highly conducting materials, low 𝑅𝑠 (~𝑚Ω), good!

– 𝑅𝑠 ∝ 𝑓
1

2 Increases with frequency, but not quickly. 
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Surface Resistance – Superconducting Materials!

• Some materials, when cooled below a certain ‘transition’ 

temperature lose their DC resistance. 

• Technically they are even better than a ‘perfect conductor’ 

because upon transition, they expel magnetic field instead of 

trap it.

• Most common superconducting material for cavities (but not 

only!) is niobium (9.2 K)

• However, no free lunch. While DC resistance is zero, RF 

resistance is merely very, very small (electrons still have 

mass, after all)
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Surface Resistance – Superconductivity!

• The physics of this is very different than normal metals:

– Surface resistance is now determined by a far more complex 

physical process, modeled by BCS theory:

– 𝑅𝐵𝐶𝑆 =
2−4𝐶𝑅𝑅𝑅

𝑇

𝑓

1.5

2
𝑒−

17.67

𝑇

• 𝑓 is in GHz

• 𝑇 is in Kelvin

• 𝐶𝑅𝑅𝑅 varies from 1 to 1.5 depending on material purity

– Even worse! High magnetic fields (the thing we’ll be applying to 

the cavity) break the superconducting state. 

– If the superconductivity is broken in one place, it reverts to a 

normal conducting metal, and the dissipated power there will 

almost certainly rapidly heat the rest of the cavity above the 

transition temperature.

3/10/2016J.P. Holzbauer | Applied EM - Lecture 39



Superconducting Practicalities

• Runaway is called a quench, and it’s a bad thing.

• Peak surface magnetic field matters quite a bit for 

superconducting applications, often totally dominating design

• The real surface resistance, what’s achievable, is actually a 

combination of effects:

• 𝑅𝑆 = 𝑅𝐵𝐶𝑆 + 𝑅𝑟𝑒𝑠 where 𝑅𝑟𝑒𝑠 is a combination of many factors

– Impurities on the cavity surface

– Adsorbed gasses

– Ambient magnetic field trapped during cooldown

– Many more

• Modern processing techniques can achieve 𝑅𝑠 = 10𝑛Ω
reliably in most applications, and sometimes < 1𝑛Ω in certain 

circumstances (real cavities, though!).
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Moar superconducting…

• Last take away points:

– 𝑅𝑠,𝑆𝑅𝐹 ∝ 𝑓2 Pushes applications to lower frequency

– Complex dependence on temperature, but lower is almost 

universally better (from a performance point of view, not cost!)

– Achieving the best performance is very labor/infrastructure/cost 

intensive. Just ask LCLS-II! Or ILC! Or XFEL! Or CEBAF!

• I’ll spare you the math, but the equivalent skin depth for this 

application is about 350Å.

• Also, remember your Carnot: 𝜂𝑐 =
𝑇𝑐

𝑇𝐻−𝑇𝐶
, and operating at 

4𝐾, we get 𝜂𝑐 = 0.013. We save six orders of magnitude on 

𝑅𝑠 but lose three because of the temperature. We gain 

efficiency, but pay for it in complexity. 

• Full comparison of the materials later.
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Pillbox, for real this time.

• What quantities do we care about?

– Accelerating Voltage

– Stored Energy

– Peak Surface Fields

– Efficiency of storing energy

– Efficiency of transferring energy to the beam

• Peak Fields are obviously defined. 

• Let’s tackle the others in detail.
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Accelerating Voltage

• Got a good taste of this in 

the homework

• Generalizing to two gaps, 

180 degrees out of phase:

• 𝑇 =
sin

𝜋𝑔

𝛽𝜆
𝜋𝑔

𝛽𝜆

sin
𝜋𝛽𝑠

2𝛽

• Similar, but with an extra 

factor of synchronization 

between the gaps

• Model as 𝑇 = 𝑇𝑔𝑆 𝑁,
𝛽𝑠

𝛽
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Plotted is the synchronism 

factor for 20% error in 𝛽
for gaps ranging from 4 to 

20. 

Larger number of gaps 

have smaller velocity 

acceptance.

Machine parameters drive 

design here, heavy ion v 

electrons, for instance.

For wide range of 𝛽, 

multiple cavity types may 

be needed. 

Gap Synchronism
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One Last Comment:

An often quoted figure of 

merit is the Accelerating 

Electric Field: 𝐸𝑎𝑐𝑐 =
𝑉𝑎𝑐𝑐

𝐿

While pillbox-style cavities 

are relative easy to 

determine the length, 

more complex geometries 

are more open to 

interpretation.

𝑉𝑎𝑐𝑐 is unambiguous. 

Pillbox: 𝐸𝑎𝑐𝑐 =
𝑉𝑎𝑐𝑐

𝐿
=

2𝐸0

𝜋

Effective Length – A Warning
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Stored Energy

• We stated earlier: 𝑢 =
1

2
𝜖0𝐸

2 +
1

𝜇0
𝐵2

• So it follows that U =  𝑉
1

2
𝜖0𝐸

2 +
1

𝜇0
𝐵2 𝑑𝑉

• While this is generally true, we can chose a time where this 

calculation is easier. Choose time such that the electric fields 

are zero and magnetic fields are maximized. 

• So, U =  𝑉
1

2

1

𝜇0
𝐵2 𝑑𝑉

• Generally, this is done for you in simulation. For a pillbox, this 

can be done analytically. 

• 𝑈 = 𝐸0
2𝜋𝐿𝜖0  0

𝑅
𝜌𝐽1

2 2.405𝜌

𝑅
𝑑𝜌 =

𝜋𝜖0𝐸0
2

2
𝐽1
2 2.405 𝐿𝑅2
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Peak Surface Fields

• We want to calculate the peak surface fields.

• 𝐸𝑝𝑘 = 𝐸0 is easy. 

• Maximizing magnetic field on the end wall:

• 𝐵𝑝𝑘 =
𝐸0

𝑐
𝐽1 1.84 =

𝐸0

𝑐
0.583 or where 𝜌 = 0.77𝑅

• But what we also want are normalized quantities. 

•
𝐵𝑝𝑘

𝑈
,
𝐸𝑝𝑘

𝑈
and, by extension, 

𝑉𝑎𝑐𝑐

𝑈

• These quantities can be scaled nicely, and are less prone to 

change during optimization of unrelated features. 

• Speaking of, that last one seems quite useful…
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Shunt Impedance

• Remember, we want a quantity that can be used to judge the 

efficiency of transferring the stored energy to the beam.

• The (effective) shunt impedance is defined as:

•
𝑅

𝑄
≝

𝑉𝑎𝑐𝑐
2

𝜔𝑈
which is the ratio of the accelerating voltage squared 

and the reactive power in the cavity (in the equivalent circuit).

• This is a purely geometric factor that is very useful in 

describing the accelerating efficiency of a cavity geometry. 

• Other definitions of this may not include the TTF, or may have 

a factor of two for historical reasons, so watch out. 

• Note that this does not scale with frequency. You can directly 

scale a geometry to a different frequency, and this will stay 

the same. Very useful.  

3/10/2016J.P. Holzbauer | Applied EM - Lecture 318



Shunt Impedance 2

•
𝑅

𝑄
= 150 Ω

𝐿

𝑅
= 196𝛽 Ω

• Linear with optimum particle velocity! Higher frequencies are 

better.

• Makes sense,  𝑈 scales like 𝐿, but so does 𝑉𝑎𝑐𝑐.
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Quality Factor

• A standard metric for how efficiently a resonator stores 

energy is the quality factor. 

• This is a quantity related to the number of cycles it would take 

to dissipate a given amount of stored energy. 

• 𝑄0 =
𝜔𝑈

𝑃𝑑
But this means that we need a definition of 𝑃𝑑

• Fortunately, we’ve done the ground work:

• 𝑃𝑑 =
1

2
𝑅𝑠  𝑆 𝐻

2
𝑑𝐴 Integrated over the cavity walls

• Note the implicit assumption, that surface resistance is 

uniform over the entire cavity! Probably not the greatest 

assumption for superconductors, but not much else you can 

do without significant effort. 
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Temperature Mapping
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Geometry Factor

• 𝑅𝑠 is quite variable, especially for superconducting cavities. 

• The quality factor that doesn’t depend on 𝑅𝑠 would be of 

great usefulness.

• The 𝑅𝑠 dependence comes from the dissipated power.

• 𝑄0 =
𝜔𝑈

𝑃𝑑
=

𝜔𝑈
𝑃𝑑
𝑅𝑠
𝑅𝑠
, 𝐺 = 𝑅𝑠𝑄0 =

𝜔𝑈
𝑃𝑑
𝑅𝑠

• This, while adding dimensions to the quality, depends strictly 

on geometry and not material. 

• Again, doesn’t scale with frequency (make sure to gather all 

the scaling of 𝑈 and 𝑃𝑑)
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Pillbox Quality Factor

• 𝑃𝑑 =
𝑅𝑠𝐸0

2

𝜂2
2𝜋  0

𝑅
𝜌𝐽1

2 2.405𝜌

𝑅
𝑑𝜌 + 𝜋𝑅𝐿𝐽1

2 2.405

• Outer wall + end wall

• 𝑃𝑑 =
𝜋𝑅𝑠𝐸0

2

𝜂2
𝐽1
2 2.405 𝑅 𝑅 + 𝐿

• Giving:

• 𝐺 =
𝜔0𝜇0𝐿𝑅

2

2 𝑅2+𝑅𝐿
= 𝜂

2.405𝐿

2 𝑅+𝐿
=

453
𝐿

𝑅

1+
𝐿

𝑅

Ω With an optimum 𝐿…

•
𝐿

𝑅
=

𝛽𝜋

2.405
, 𝐺 = 257𝛽 Ω

• A highly useful result, indicating that pillbox cavities are more 

efficient at higher optimum particle velocities. 
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Cryogenic Efficiency

• A quantity that is often used to compare efficiency of 

superconducting cavities is 
𝑅

𝑄
∗ 𝐺 =

𝑉𝑎𝑐𝑐
2

𝑃𝑑
𝑅𝑠

• Calculates directly cost of voltage to dissipated power. 

• Cryogenic refrigeration is at a premium, so this can be an 

excellent comparison between very different cavity 

geometries. 
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Clearly better at high beta, 

best at 𝛽 = 1.

Mechanical concerns also 

come into play:

Aspect ratio:
𝐿

𝑅
=

𝛽𝜋

2.405
This gets pretty sub-

optimal at low beta, thin 

pancake cavities have 

poor mechanical 

properties. 

• 𝐺 = 257𝛽 Ω

•
𝑅

𝑄
= 196𝛽 Ω

• 𝐸𝑝𝑘 = 𝐸0

• 𝑐𝐵𝑝𝑘 = 0.583𝐸0

• 𝑈 =
𝜋𝜖0𝐸0

2

2
𝐽1
2 2.405 𝐿𝑅2

• 𝑃𝑑 =
𝜋𝑅𝑠𝐸0

2

𝜂2
𝐽1
2 2.405 𝑅 𝑅 + 𝐿

• 𝑇𝑇𝐹 =
2

𝜋

Pillbox Scaling
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• Superconducting Cavity

– Peak Surface Fields 

dominate design

– ~220 mT is theoretical max, 

120 mT is doing very well in 

practice

– Pushes for high Q

– Technologically Challenging

– Processing requirements 

put significant constraints 

on complex cavity 

geometries

– 𝑅𝑠 ∝ 𝑓2, 𝑃𝑑 ∝ 𝑓, 𝑄 ∝ 𝑓−2

• Normal Conducting Cavity

– Limited by dissipated power

– Limits duty cycle or gradient

– Pushes for highest 
𝑅

𝑄

– Local power density also a 

concern (local heating), 

maxes at ~20 W/cm2

– Electrical breakdown limited 

peak electric fields

– Cheaper material (copper!)

– Cooling design can be quite 

complex (non-uniform)

– 𝑅𝑠 ∝ 𝑓
1

2, 𝑃𝑑 ∝ 𝑓−
1

2, 𝑄 ∝ 𝑓−
1

2

Material Comparison
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Coaxial Resonators
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Coaxial Waveguide

• A fundamentally different transmission line is coaxial 

geometry

• In contrast to circular/rectangular waveguide, there is a 

second conducting surface that’s disconnected (in a 

waveguide) from the outer conductor. 

• Assume that we have a cylindrical outer conductor, radius 𝑏
and co-radial inner conductor, radius 𝑎. Both are aligned on 

the  𝑧 axis. 

• Solving the Helmholtz Equation and putting shorting plates at 

±
𝐿

2
we get similar solutions:

• 𝐸𝜌 =
𝐸0𝑎

𝜌
cos

𝑝𝜋𝑧

2𝐿
𝑒𝑖𝜔𝑡, 𝐵𝜙 = −𝑖

𝐸0𝑎

𝜌𝑐
sin

𝑝𝜋𝑧

2𝐿
𝑒𝑖𝜔𝑡

• 𝜔 = 𝑝𝑐𝜋/2𝐿
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Half Wave Resonator
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Quarter-Wave Resonator
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Coaxial Cavity Discussion

• Decouples beam line/accelerating gap size/geometry from 

the transverse dimension. 

• Allows very low frequency resonators with small gaps in a 

mechanically robust geometry, very low beta resonators.

• Complicated fabrication and processing

• Quarter Wave Resonators are significantly different from ideal 

because the ‘open’ boundary condition isn’t physical. 

• Lack of rotational symmetry can lead to transverse 

accelerating fields, especially with QWRs. 
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