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Introduction to superconducting 

magnets*

* From: “Superconducting Accelerator Magnets” by Paolo Ferracin, Ezio Todesco, Soren O. Prestemon and Helene Felice, January 2012



A Brief History of the 

Superconductivity

US Particle Accelerator School – Austin, TX – Winter 2016 2

Heike Kamerlingh Onne

1908 – Successfully liquified helium (4.2 K)

1911 – Discovered the superconductivity 

while measuring the conductivity of Mercury 

as function of temperature

1913 – Nobel prize
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1933 – Walther Meissner and Robert 

Ochsenfeld discover perfect diamagnetic 

property of supeconductors.

1935 – First theoretical works on SC by Heinz 

and Fritz London

1950 – Ginzburg and Landau proposed a 

macroscopic theory for SC.

Meissner effect

A Brief History of the 

Superconductivity



Why using SC magnets?
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Example: Lets calculate the magnetic rigidity for a 1 TeV proton:

�� ≈
1	
��

�
≈ 3333	
.

Let us assume a maximum field of 1.5 T; the circumference of such machine will be:

� = 2222	

� = 2�� ≈ 14	�

The Tevatron was the first machine to use large scale superconductor magnets 

with a 4.2 T in a 6.3 km circumference!



Critical surface
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Critical surface for different SC 

materials
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YBCO: Tape, || Tape-plane, SuperPower (Used
in NHMFL tested Insert Coil 2007)

YBCO: Tape, |_ Tape Plane, SuperPower (Used
in NHMFL tested Insert Coil 2007)

Bi-2212: non-Ag Jc, 427 fil. round wire, Ag/SC=3
(Hasegawa ASC-2000/MT17-2001)

Nb-Ti: Max @1.9 K for whole LHC NbTi strand
production (CERN, Boutboul '07)

Nb-Ti: Nb-47wt%Ti, 1.8 K, Lee, Naus and
Larbalestier UW-ASC'96

Nb3Sn: Non-Cu Jc Internal Sn OI-ST RRP 1.3
mm, ASC'02/ICMC'03

Nb3Sn: Bronze route int. stab. -VAC-HP, non-
(Cu+Ta) Jc, Thoener et al., Erice '96.

Nb3Sn: 1.8 K Non-Cu Jc Internal Sn OI-ST RRP
1.3 mm, ASC'02/ICMC'03

Nb3Al: RQHT+2 At.% Cu, 0.4m/s (Iijima et al
2002)

Bi 2223: Rolled 85 Fil. Tape (AmSC) B||, UW'6/96

Bi 2223: Rolled 85 Fil. Tape (AmSC) B|_, UW'6/96

MgB2: 4.2 K "high oxygen" film 2, Eom et al.
(UW) Nature 31 May '02

MgB2: Tape - Columbus (Grasso) MEM'06

2212
round wire

2223
tape B|_

At 4.2 K Unless
Otherwise Stated

Nb3Sn
Internal Sn

Nb3Sn
1.8 K

2223
tape B||

Nb3Sn
ITER

MgB2
film MgB2

tape

Nb3Al:
RQHT

1.9 K LHC
Nb-Ti

YBCO B||c

YBCO B||ab



NbTi Parameterization
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where JC_ref is the critical current density at 4.2 K and 5 T (JC_ref ~ 3000 A/mm2);

C, α, β and γ are fitting parameters:

C ~ 31.4 T

α ~ 0.63

β ~ 1.0

γ ~ 2.3

(Lubell’s formula)

(Bottura’s formula)



Nb
3
Sn Parameterization
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_0 1)( εαε −= mCC

( )7.1

_0 1),( εαε −= mcc BTB

( ) 3/17.1

_00 1)( εαε −= mcc TT

and:

α = 900

ε = -0.003

Tc0_m = 18K

C0_m = 48500 AT1/2/mm2

(for Jc = 3000 A/mm2 @ 4.2 K and 12 T)

(Summer’s formula)



Strand Fabrication
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Superconducting cables

• Most of the superconducting coils for particle accelerators are wound 
from a multi-strand cable.

• The advantages of a multi-strand cable are: 

– reduction of the strand piece length;

– reduction of number of turns
• easy winding;

• smaller coil inductance
– less voltage required for power supply during ramp-up;

– after a quench, faster current discharge and less coil voltage.

– current redistribution in case of a defect or a quench in one strand.

• The strands are twisted to

– reduce interstrand coupling currents (see interfilament coupling currents)
• Losses and field distortions

– provide more mechanical stability

• The most commonly used multi-strand cables are the Rutherford cable 
and the cable-in-conduit.
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Superconducting cables

• Rutherford cables are fabricated by a cabling machine.

– Strands are wound on spools mounted on a rotating 

drum.

– Strands are twisted around a conical mandrel into an 

assembly of rolls (Turk’s head). The rolls compact the 

cable and provide the final shape.
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Superconducting cables

• The final shape of a Rutherford cable can be rectangular or trapezoidal.

• The cable design parameters are:

– Number of wires Nwire

– Wire diameter dwire

– Cable mid-thickness tcable

– Cable width wcable

– Pitch length pcable

– Pitch angle ψcable (tanψ cable = 2 wcable / pcable)

– Cable compaction (or packing factor) kcable

– i.e the ratio of the sum of the cross-sectional area of the strands (in the 
direction parallel to the cable axis) to the cross-sectional area of the cable.

• Typical cable compaction: from 88% (Tevatron) to 92.3% (HERA).

cablecablecable

wirewire
cable tw

dN
k

ψ
π

cos4

2

=
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Cable insulation

• The cable insulation must feature
– Good electrical properties to withstand 

high turn-to-turn voltage after a 
quench.

– Good mechanical properties to 
withstand high pressure conditions

– Porosity to allow penetration of helium 
(or epoxy)

– Radiation hardness

• In NbTi magnets the most common 
insulation is a series of overlapped 
layers of polyimide (kapton).

• In the LHC case:
– two polyimide layers 50.8 µm thick 

wrapped around the cable with a 50% 
overlap, with another adhesive 
polyimide tape 68.6 µm thick wrapped 
with a spacing of 2 mm.
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Superconducting Magnets Design

Perfect dipole
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A wall-dipole, cross-section A practical winding with flat cables

1 - Wall dipole (similar to the window frame magnet)
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Superconducting Magnets Design

Perfect dipole

2 - Intersecting ellipsis
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Intersecting ellipses A practical (?) winding with flat cables
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Intersecting Cylinders
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within a cylinder carrying uniform current j0, the field is perpendicular to the radial 

direction and proportional to the distance to the center r:

Combining the effect of the two cylinders

Similar proof for intersecting ellipses
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Superconducting Magnets Design

Perfect dipole

3 – Cos(θ) current distribution
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Superconducting Magnets Design

Perfect quadrupole
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Dipole design using sector coils
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Multipoles of a dipole sector coil
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Multi-sector dipole coil
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(48°,60°,72°) or (36°,44°,64°) are some of the possible solutions 

[0°-43.2°, 52.2°-67.3°] sets also B7 = 0 !



Multi-sector dipole coil

US Particle Accelerator School – Austin, TX – Winter 2016 23

 0)3sin()3sin()3sin()3sin()3sin( 12345 =+−+− ααααα

0)5sin()5sin()5sin()5sin()5sin( 12345 =+−+− ααααα

0)7sin()7sin()7sin()7sin()7sin( 12345 =+−+− ααααα

0)9sin()9sin()9sin()9sin()9sin( 12345 =+−+− ααααα

0)11sin()11sin()11sin()11sin()11sin( 12345 =+−+− ααααα(B3, B5 and B7) = 0

[0°-33.3°, 37.1°- 53.1°, 63.4°- 71.8°]  sets (B3, B5, B7 , B9 and B11) = 0!



Examples
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Two layer design
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Quadrupole design using sector coils
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Multipoles of a quadrupole sector coil
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for α=π/6 (30°) one has B6 = 0

for α=π/10 (18°) or α=π/5 (36°) one sets B10 = 0

It follows the same philosophy of the Dipole design!



Examples
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Tevatron main quadrupole
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LHC main quadrupole

~[0°-24°, 30°-36°]



Peak field and bore field ratio (λ)
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Peak field and bore field ratio (λ)

US Particle Accelerator School – Austin, TX – Winter 2016 30

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 20 40 60 80
width (mm)

λ
 (

ad
im

)

1 layer 60

1 layer 48-60-72

1 layer 42.8-51.6-67

1 layer three blocks

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 20 40 60 80
width (mm)

λ
 (

ad
im

)

1 layer 60
1 layer 48-60-72
1 layer 42.8-51.6-67
1 layer three blocks
Fit

w

ar
rw +1~),(λ a ~ 0.045



Examples
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Operational Margin
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24 %



Lorentz Forces
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• A superconducting accelerator magnet has a large magnetic stored 

energy

• A quench produces a resistive zone

• Current is flowing through the magnet 

• The challenge of the protection is to provide a safe conversion of the 

magnetic energy to heat in order to minimize

– Peak temperature (“hot spot”) and temperature gradients in the magnet

– Peak voltages

• The final goal being to avoid any magnet degradation

– High temperature => damage to the insulation or stabilizer

– Large temperature gradient => damage to the conductor due to differential thermal 

expansion of materials

Joule Heating

Voltages (R and L)

Quench protection
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Quench

Normal zone 
growth

Detection

Power 
supply 

switched off
Protection 

heaters
Extraction Quenchback

Trigger protection options

Current decay in the magnet

I

t

Magnetic energy

Converted to heat 
by Joule heating

General quench protection diagram

The faster this chain happens the safer is the magnet



Training
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Magnetization
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Magnetization
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Magnetization
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Summary
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• Design and Fabrication of Superconducting Magnets belong to a different

Universe

• Although the mathematical formulation for the field generation is shared, the

design of superconducting magnets involves many other aspects:

o Thermal considerations

o Mechanical Analysis

o Fabrication techniques

o Quench Protection

o Material Science

• If one is interested to learn more about superconducting magnet, one should

attend to the Superconducting Accelerator Magnets USPAS course. The material

for that course can be found at:

http://etodesco.web.cern.ch/etodesco/uspas/uspas.html



Next…
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Unusual design examples


