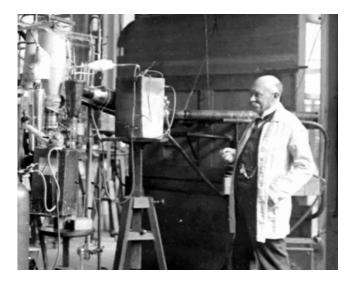
9

Introduction to superconducting magnets*

Mauricio Lopes – FNAL

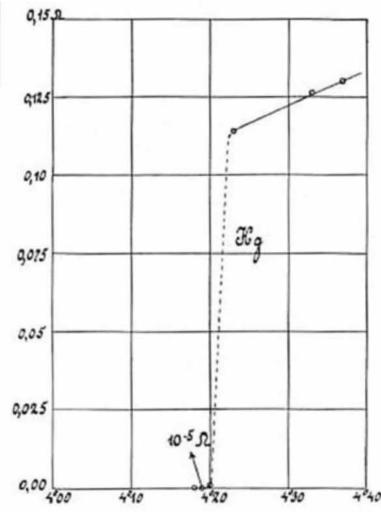
* From: "Superconducting Accelerator Magnets" by Paolo Ferracin, Ezio Todesco, Soren O. Prestemon and Helene Felice, January 2012

A Brief History of the Superconductivity



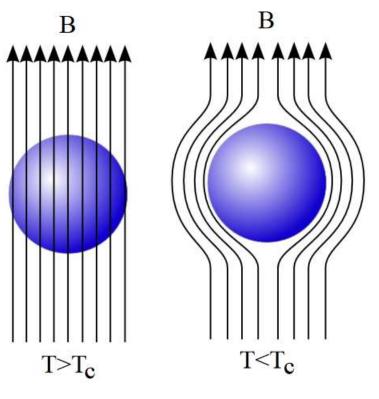
Heike Kamerlingh Onne

1908 – Successfully liquified helium (4.2 K)
1911 – Discovered the superconductivity
while measuring the conductivity of Mercury
as function of temperature
1913 – Nobel prize



A Brief History of the Superconductivity

1933 – Walther Meissner and Robert
Ochsenfeld discover perfect diamagnetic
property of supeconductors.
1935 – First theoretical works on SC by Heinz
and Fritz London
1950 – Ginzburg and Landau proposed a
macroscopic theory for SC.



Meissner effect

Why using SC magnets?

$$Br = \frac{P}{q} = \frac{\sqrt{K^2 + 2KE_o}}{qc}$$

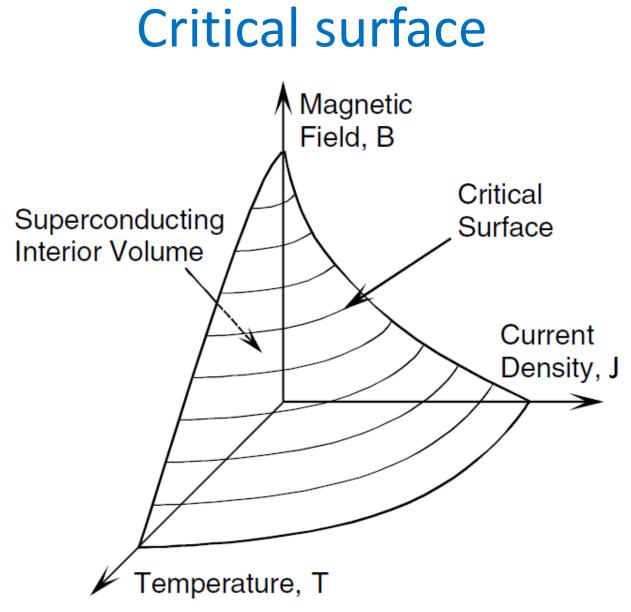
Example: Lets calculate the magnetic rigidity for a 1 TeV proton:

$$Br \approx \frac{1 TeV}{c} \approx 3333 T.m$$

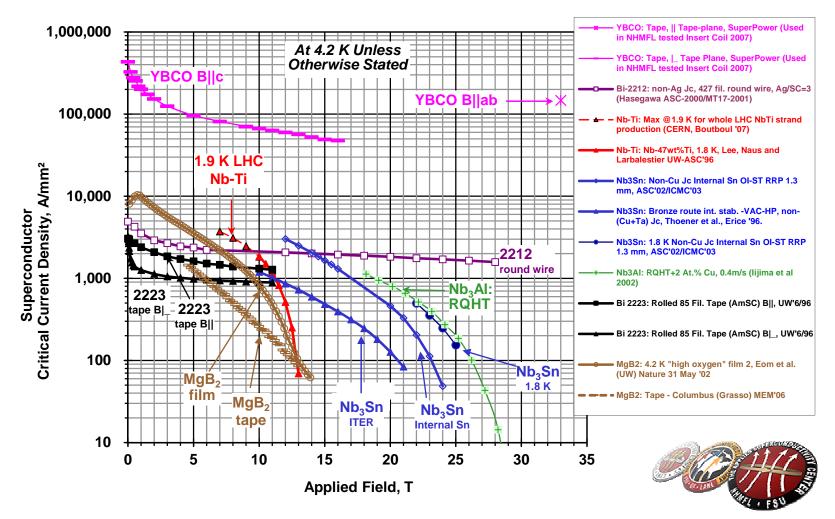
Let us assume a maximum field of 1.5 T; the circumference of such machine will be:

r = 2222 m $C = 2\pi r \approx 14 km$

The Tevatron was the first machine to use large scale superconductor magnets with a 4.2 T in a 6.3 km circumference!



Critical surface for different SC materials



US Particle Accelerator School – Austin, TX – Winter 2016

NbTi Parameterization

$$B_{C}(T) = B_{C0} \left[1 - \left(\frac{T}{T_{C0}} \right)^{1.7} \right]$$

(Lubell's formula)

where B_{co} is the critical field at zero temperature ($B_{co} \sim 14.5$ T)

$$\frac{J_c(B,T)}{J_{c_ref}} = \frac{C}{B} \left(\frac{B}{B_c}\right)^{\alpha} \left(1 - \frac{B}{B_c}\right)^{\beta} \left[1 - \left(\frac{T}{T_{c0}}\right)^{1.7}\right]^{\gamma} \quad \text{(Bottura's formula)}$$

where $J_{C_{ref}}$ is the critical current density at 4.2 K and 5 T ($J_{C_{ref}} \sim 3000 \text{ A/mm}^2$); *C*, α , β and γ are fitting parameters:

C ~ 31.4 T
$$\alpha$$
 ~ 0.63
 β ~ 1.0
 γ ~ 2.3

Nb₃Sn Parameterization

$$J_{c}(B,T,\varepsilon) = \frac{C(\varepsilon)}{\sqrt{B}} \left(1 - \frac{B}{B_{c}(T,\varepsilon)}\right)^{2} \left[1 - \left(\frac{T}{T_{c0}(\varepsilon)}\right)^{2}\right]^{2}$$

(Summer's formula)

$$\frac{B_c(T,\varepsilon)}{B_{c0}} = \left[1 - \left(\frac{T}{T_{c0}(\varepsilon)}\right)^2\right] \left\{1 - 0.31 \left(\frac{T}{T_{c0}(\varepsilon)}\right)^2 \left[1 - 1.77 Ln \left(\frac{T}{T_{c0}(\varepsilon)}\right)\right]\right\}$$

where:

$$C(\varepsilon) = C_{0_m} (1 - \alpha |\varepsilon|^{1.7})^{1/2}$$

$$B_c(T, \varepsilon) = B_{c0_m} (1 - \alpha |\varepsilon|^{1.7})$$

$$T_{c0}(\varepsilon) = T_{c0_m} (1 - \alpha |\varepsilon|^{1.7})^{1/3}$$
and:

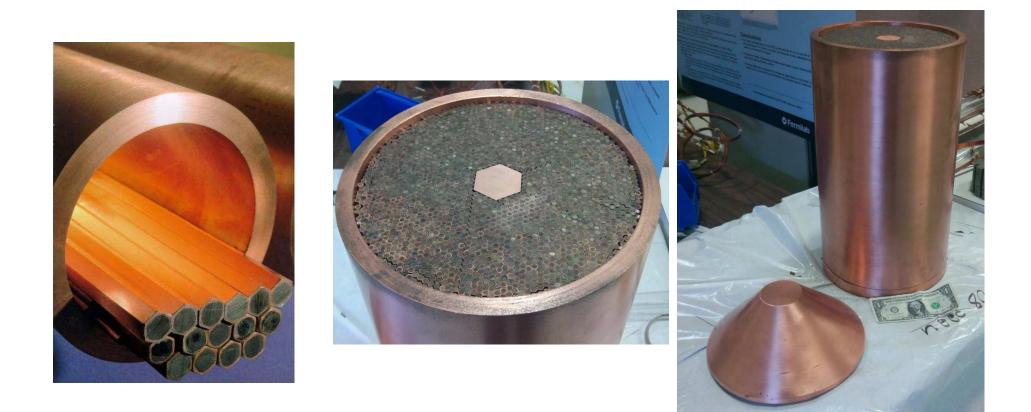
$$\alpha = 900$$

$$\varepsilon = -0.003$$

$$T_{c0_m} = 18K$$

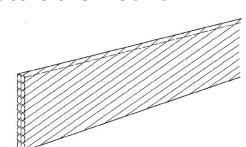
$$C_{0_m} = 48500 \text{ AT}^{1/2}/\text{mm}^2$$
(for $J_c = 3000 \text{ A/mm}^2$ @ 4.2 K and 12 T)

Strand Fabrication



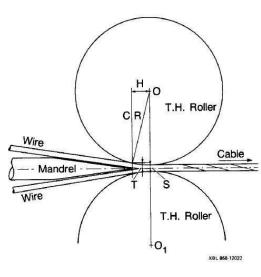
Superconducting cables

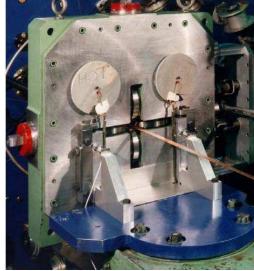
- Most of the superconducting coils for particle accelerators are wound from a multi-strand cable.
- The advantages of a multi-strand cable are:
 - reduction of the strand piece length;
 - reduction of number of turns
 - easy winding;
 - smaller coil inductance
 - less voltage required for power supply during ramp-up;
 - after a quench, faster current discharge and less coil voltage.
 - current redistribution in case of a defect or a quench in one strand.
- The strands are twisted to
 - reduce interstrand coupling currents (see interfilament coupling currents)
 - Losses and field distortions
 - provide more mechanical stability
- The most commonly used multi-strand cables are the Rutherford cable and the cable-in-conduit.



Superconducting cables

- Rutherford cables are fabricated by a cabling machine.
 - Strands are wound on spools mounted on a rotating drum.
 - Strands are twisted around a conical mandrel into an assembly of rolls (Turk's head). The rolls compact the cable and provide the final shape.





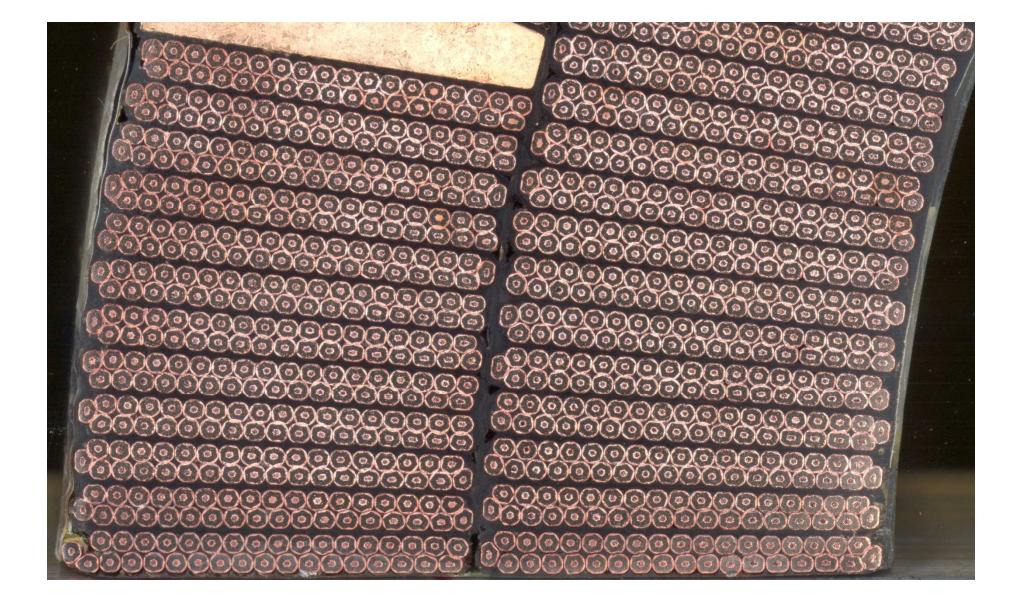
US Particle Accelerator School – Austin, TX – Winter 2016

Superconducting cables

- The final shape of a Rutherford cable can be rectangular or trapezoidal.
- The cable design parameters are:
 - Number of wires N_{wire}
 - Wire diameter *d*_{wire}
 - Cable mid-thickness t_{cable}
 - Cable width *w*_{cable}
 - Pitch length p_{cable}
 - Pitch angle ψ_{cable} (tan ψ_{cable} = 2 w_{cable} / p_{cable})
 - Cable compaction (or packing factor) k_{cable}

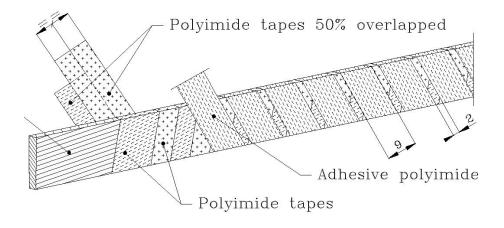
$$k_{cable} = \frac{N_{wire} \pi d_{wire}^2}{4w_{cable} t_{cable} \cos \psi_{cable}}$$

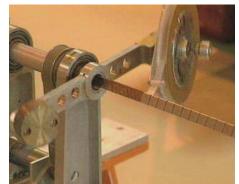
- i.e the ratio of the sum of the cross-sectional area of the strands (in the direction parallel to the cable axis) to the cross-sectional area of the cable.
- Typical cable compaction: from 88% (Tevatron) to 92.3% (HERA).



Cable insulation

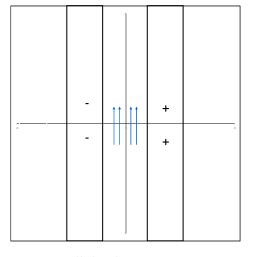
- The cable insulation must feature
 - Good electrical properties to withstand high turn-to-turn voltage after a quench.
 - Good mechanical properties to withstand high pressure conditions
 - Porosity to allow penetration of helium (or epoxy)
 - Radiation hardness
- In NbTi magnets the most common insulation is a series of overlapped layers of polyimide (kapton).
- In the LHC case:
 - two polyimide layers 50.8 μm thick wrapped around the cable with a 50% overlap, with another adhesive polyimide tape 68.6 μm thick wrapped with a spacing of 2 mm.



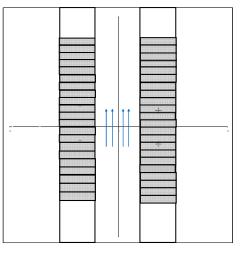


Superconducting Magnets Design Perfect dipole

1 - Wall dipole (similar to the window frame magnet)



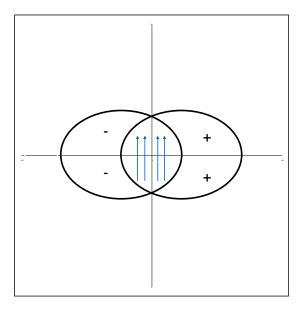
A wall-dipole, cross-section



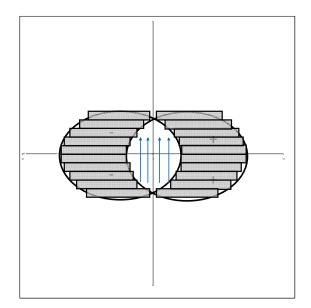
A practical winding with flat cables

Superconducting Magnets Design Perfect dipole

2 - Intersecting ellipsis



Intersecting ellipses



A practical (?) winding with flat cables

Intersecting Cylinders

within a cylinder carrying uniform current j0, the field is perpendicular to the radial direction and proportional to the distance to the center r:

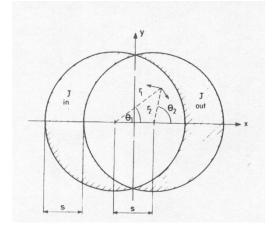
$$B = -\frac{\mu_0 j_0 r}{2}$$

Combining the effect of the two cylinders

$$B_{x} = \frac{\mu_{0} j_{0} r}{2} \{ -r_{1} \sin \theta_{1} + r_{2} \sin \theta_{2} \} = 0$$

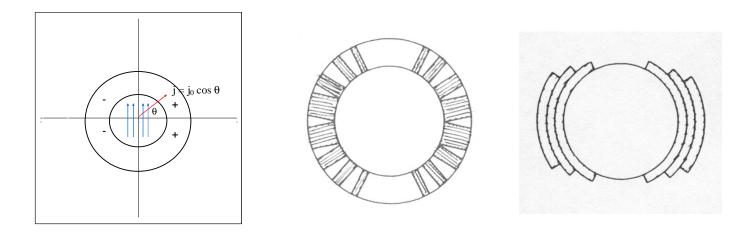
$$B_{y} = \frac{\mu_{0} j_{0} r}{2} \{ -r_{1} \cos \theta_{1} + r_{2} \cos \theta_{2} \} = -\frac{\mu_{0} j_{0}}{2} s$$

Similar proof for intersecting ellipses

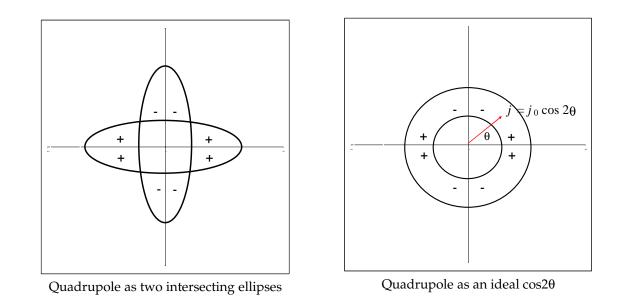


Superconducting Magnets Design Perfect dipole

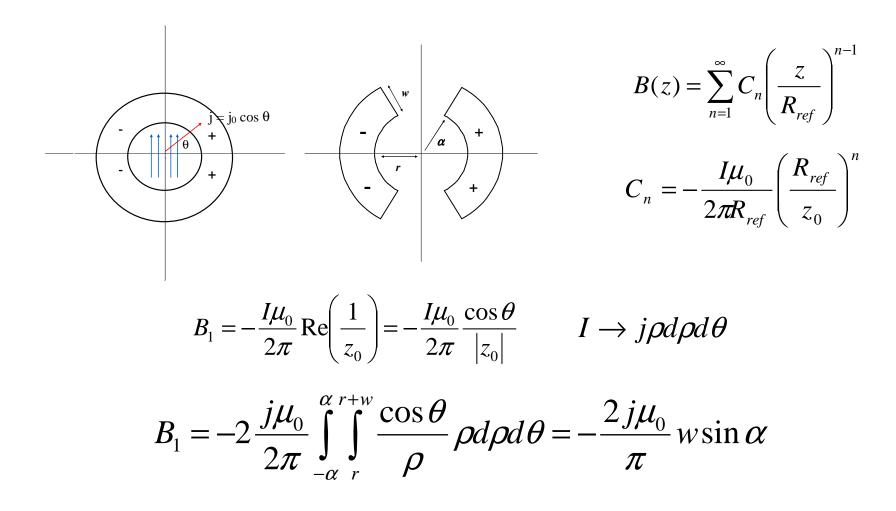
 $3 - Cos(\theta)$ current distribution



Superconducting Magnets Design Perfect quadrupole



Dipole design using sector coils



Multipoles of a dipole sector coil

$$C_{n} = -2\frac{j\mu_{0}R_{ref}^{n-1}}{2\pi}\int_{-\alpha}^{\alpha}\int_{r}^{r+w}\frac{\exp(-in\theta)}{\rho^{n}}\rho d\rho d\theta = -\frac{j\mu_{0}R_{ref}^{n-1}}{\pi}\int_{-\alpha}^{\alpha}\exp(-in\theta)d\theta\int_{r}^{r+w}\rho^{1-n}d\rho$$

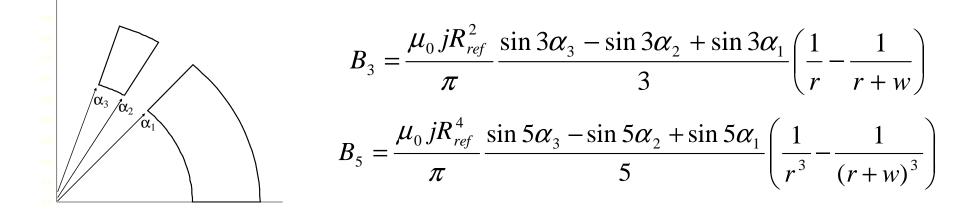
for n = 2
$$B_2 = -\frac{j\mu_0 R_{ref}}{\pi} \sin(2\alpha) \log\left(1 + \frac{w}{r}\right)$$

for n > 2
$$B_n = -\frac{j\mu_0 R_{ref}^{n-1}}{\pi} \frac{2\sin(\alpha n)}{n} \frac{(r+w)^{2-n} - r^{2-n}}{2-n}$$

$$B_{3} = \frac{\mu_{0} j R_{ref}^{2}}{\pi} \frac{\sin(3\alpha)}{3} \left(\frac{1}{r} - \frac{1}{r+w} \right) \qquad B_{5} = \frac{\mu_{0} j R_{ref}^{4}}{\pi} \frac{\sin(5\alpha)}{5} \left(\frac{1}{r^{3}} - \frac{1}{(r+w)^{3}} \right)$$

for $\alpha = \pi/3$ (60°) $B_{3} = 0$ for $\alpha = \pi/5$ (36°) or for $\alpha = 2\pi/5$ (72°) $B_{5} = 0$

Multi-sector dipole coil



$$\begin{cases} \sin(3\alpha_3) - \sin(3\alpha_2) + \sin(3\alpha_1) = 0\\ \sin(5\alpha_3) - \sin(5\alpha_2) + \sin(5\alpha_1) = 0 \end{cases}$$

(48°,60°,72°) or (36°,44°,64°) are some of the possible solutions

 $[0^{\circ}-43.2^{\circ}, 52.2^{\circ}-67.3^{\circ}]$ sets also $B_7 = 0$!

Multi-sector dipole coil

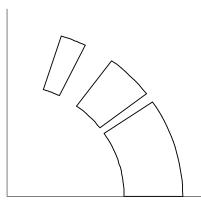
$$\sin(3\alpha_{5}) - \sin(3\alpha_{4}) + \sin(3\alpha_{3}) - \sin(3\alpha_{2}) + \sin(3\alpha_{1}) = 0$$

$$\sin(5\alpha_{5}) - \sin(5\alpha_{4}) + \sin(5\alpha_{3}) - \sin(5\alpha_{2}) + \sin(5\alpha_{1}) = 0$$

$$\sin(7\alpha_{5}) - \sin(7\alpha_{4}) + \sin(7\alpha_{3}) - \sin(7\alpha_{2}) + \sin(7\alpha_{1}) = 0$$

$$\sin(9\alpha_{5}) - \sin(9\alpha_{4}) + \sin(9\alpha_{3}) - \sin(9\alpha_{2}) + \sin(9\alpha_{1}) = 0$$

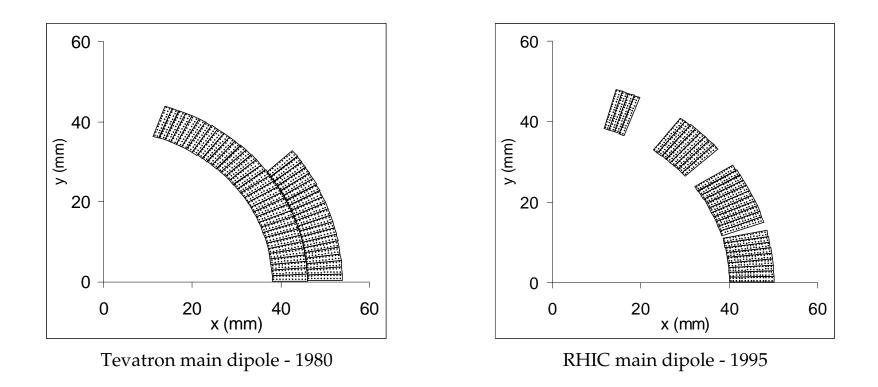
$$\sin(11\alpha_{5}) - \sin(11\alpha_{4}) + \sin(11\alpha_{3}) - \sin(11\alpha_{2}) + \sin(11\alpha_{1}) = 0$$



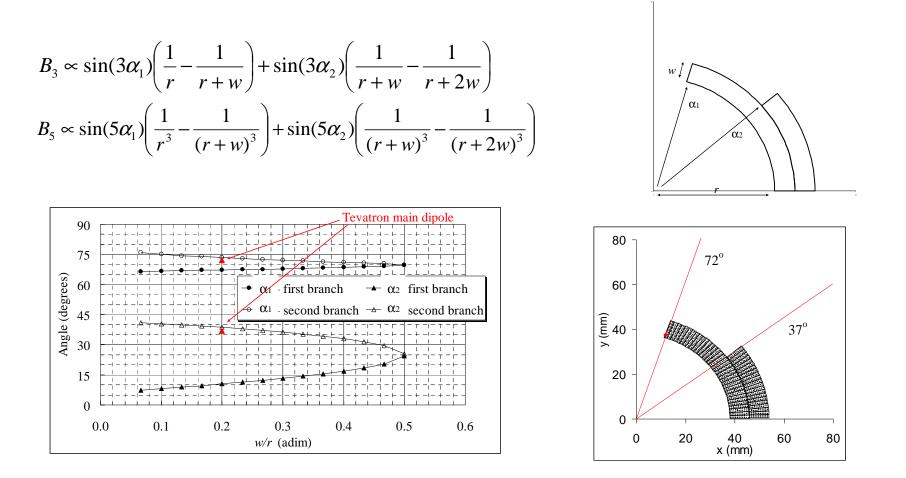
 $(B_3, B_5 \text{ and } B_7) = 0$

[0°-33.3°, 37.1°-53.1°, 63.4°-71.8°] sets (B3, B5, B7, B9 and B11) = 0!

Examples

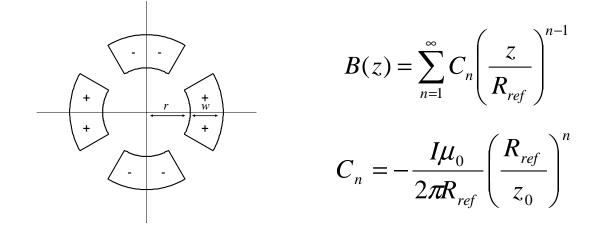


Two layer design



US Particle Accelerator School – Austin, TX – Winter 2016

Quadrupole design using sector coils



$$B_2 = -\frac{I\mu_0 R_{ref}}{2\pi} \operatorname{Re}\left(\frac{1}{z_0^2}\right) = -\frac{I\mu_0 R_{ref}}{2\pi} \frac{\cos 2\theta}{|z_0^2|} \qquad I \to j\rho d\rho d\theta$$

$$B_2 = -8\frac{j\mu_0 R_{ref}}{2\pi} \int_0^{\alpha} \int_r^{r+w} \frac{\cos 2\theta}{\rho^2} \rho d\rho d\theta = -\frac{4j\mu_0 R_{ref}}{\pi} [\sin 2\alpha] \ln\left(1 + \frac{w}{r}\right)$$

Multipoles of a quadrupole sector coil

$$B_{6} = \frac{\mu_{0} j R_{ref}^{5}}{\pi} \frac{\sin(6\alpha)}{6} \left(\frac{1}{r^{4}} - \frac{1}{(r+w)^{4}} \right)$$

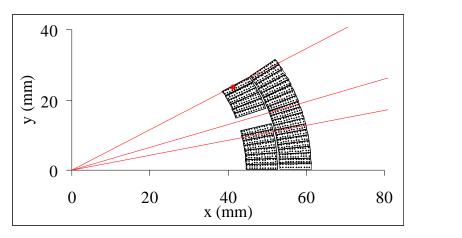
for $\alpha = \pi/6$ (30°) one has $B_6 = 0$

$$B_{10} = \frac{\mu_0 j R_{ref}^8}{\pi} \frac{\sin(10\alpha)}{10} \left(\frac{1}{r^8} - \frac{1}{(r+w)^8}\right)$$

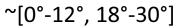
for $\alpha = \pi/10$ (18°) or $\alpha = \pi/5$ (36°) one sets $B_{10} = 0$

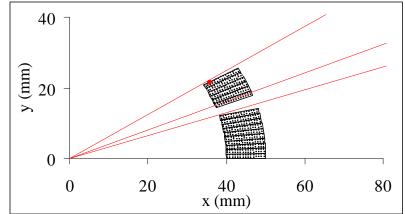
It follows the same philosophy of the Dipole design!

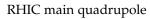
Examples

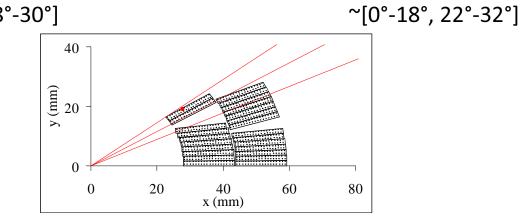


Tevatron main quadrupole







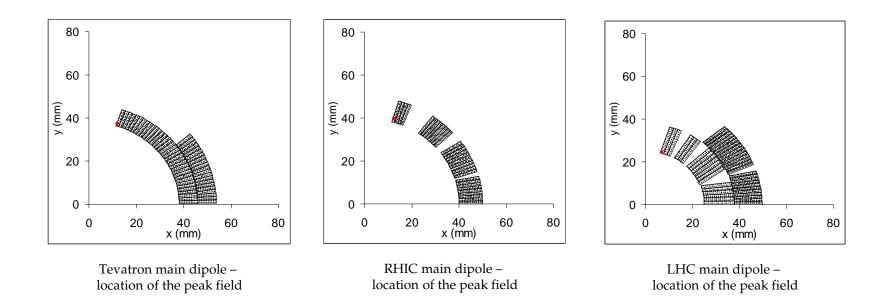


LHC main quadrupole

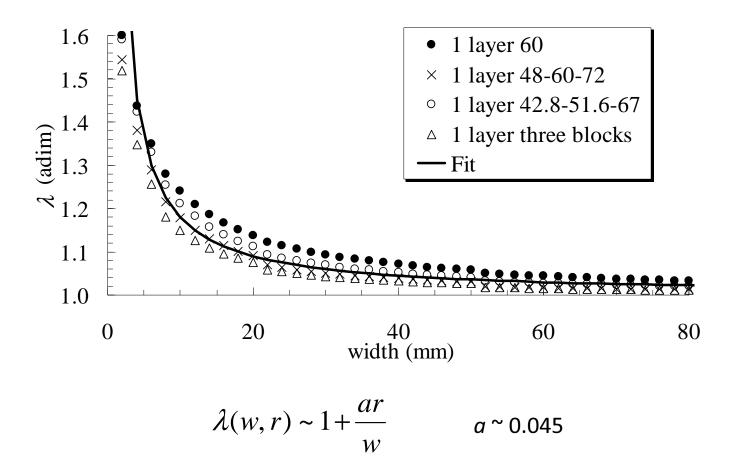
~[0°-24°, 30°-36°]

US Particle Accelerator School – Austin, TX – Winter 2016

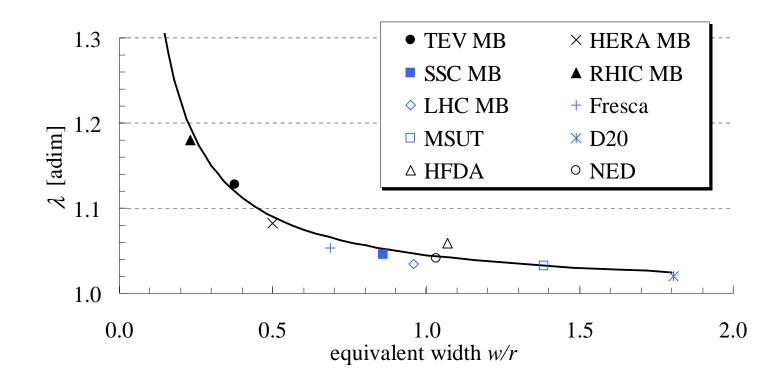
Peak field and bore field ratio (λ)



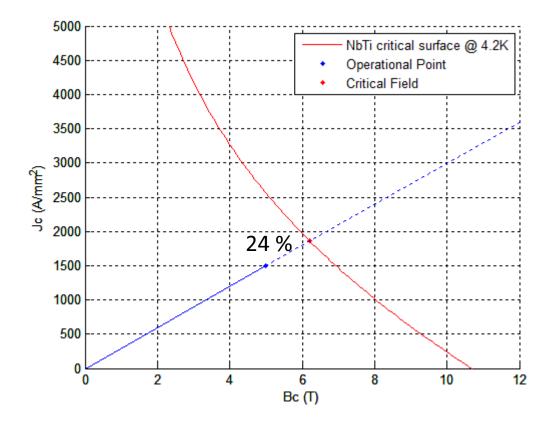
Peak field and bore field ratio (λ)



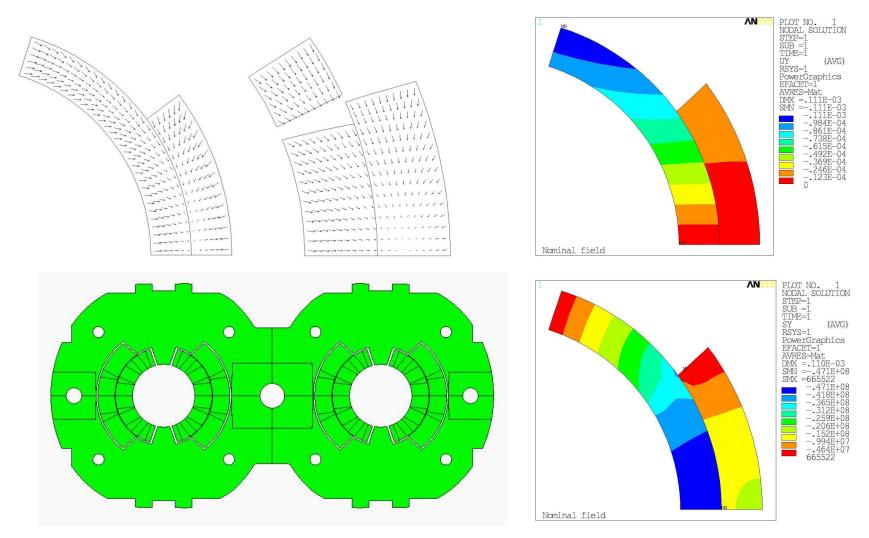
Examples



Operational Margin



Lorentz Forces



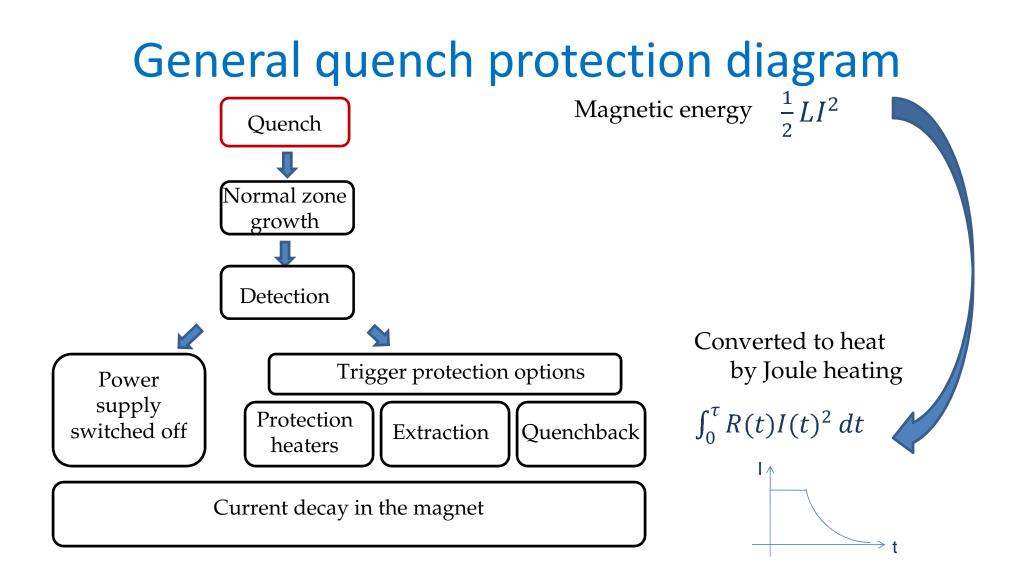
US Particle Accelerator School – Austin, TX – Winter 2016

Quench protection

- A superconducting accelerator magnet has a large magnetic stored energy
- A quench produces a resistive zone
- Current is flowing through the magnet

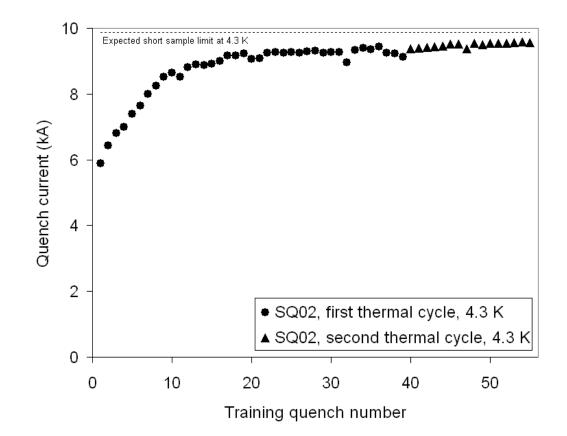
Joule Heating Voltages (R and L)

- The challenge of the protection is to provide a safe conversion of the magnetic energy to heat in order to minimize
 - Peak temperature ("hot spot") and temperature gradients in the magnet
 - Peak voltages
- The final goal being to avoid any magnet degradation
 - High temperature => damage to the insulation or stabilizer
 - Large temperature gradient => damage to the conductor due to differential thermal expansion of materials



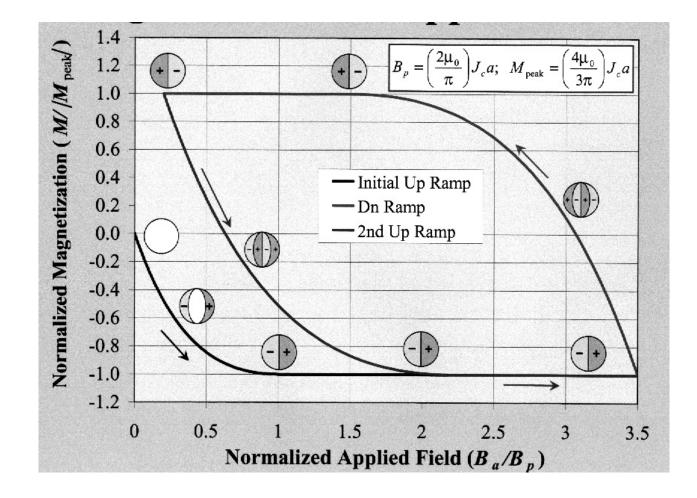
The faster this chain happens the safer is the magnet

Training

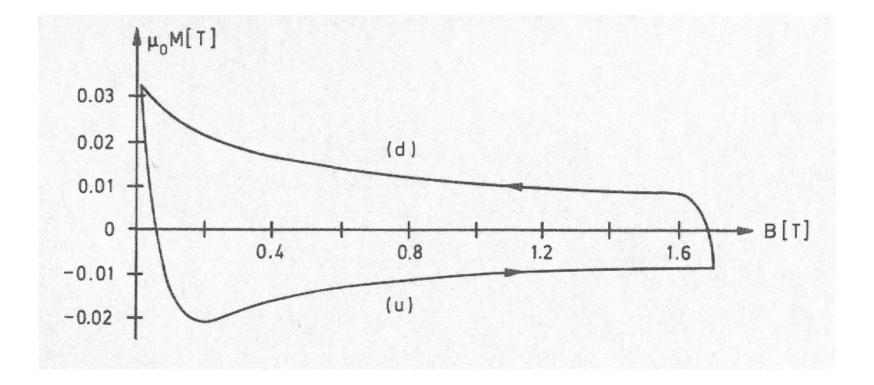


US Particle Accelerator School – Austin, TX – Winter 2016

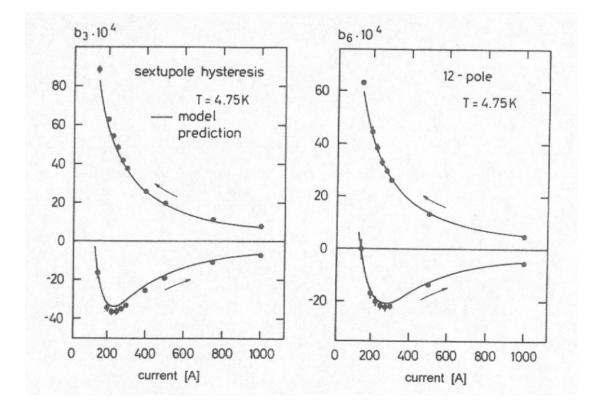
Magnetization



Magnetization



Magnetization



Summary

- Design and Fabrication of Superconducting Magnets belong to a different Universe
- Although the mathematical formulation for the field generation is shared, the design of superconducting magnets involves many other aspects:
 - o Thermal considerations
 - o Mechanical Analysis
 - Fabrication techniques
 - o **Quench Protection**
 - o Material Science
- If one is interested to learn more about superconducting magnet, one should attend to the Superconducting Accelerator Magnets USPAS course. The material for that course can be found at:

http://etodesco.web.cern.ch/etodesco/uspas/uspas.html

Next...

Unusual design examples