

Elettra Sincrotrone Trieste

CSR-Induced Emittance Growth and Related Design Strategis

S. Di Mitri (60min.)

CSR Emission, 1-D Approximation

In the following we adopt a simplified picture for the CSR transverse effect. Experimental results suggest that it is accurate enough for describing *most* of the practical cases.

- □ Photons are emitted in the beam direction of motion, at any point along the curved trajectory in a dipole magnet \Rightarrow CSR longitudinal effect, $p_z(s) \rightarrow p_z(s)$
 - $\delta p_z(s)$. We thus neglect direct trasverse forces associated to the CSR field.

As opposite to geometric wakefields in RF structures, CSR shows up a tailhead effect, in which photons emitted by trailing electrons catch up with leading electrons.
Dipole magnet

CSR-Induced Energy Spread

- **Coherent emission** ($\lambda \ge \sigma_z$) dominates over incoherent by a **factor** N_e .
- Closed-form expression exists for the electric field along direction of motion:
 - two particles on same trajectory path,
 - uniform circular motion (steady-state),
 - use expressions for retarded-fields

- □ 1D models accounting for transient effects are implemented in tracking codes.
- □ Codes with 2D CSR transverse forces exist; 3D effects are in progress.
- □ The most notable **macroscopic** effect of CSR is on the **transverse** dynamics.

CSR-Induced Emittance Growth: Naïve Picture

□ At any point of emission/absoprtion, particle's transverse coordinates do not change: $\Delta x=0$, $\Delta x'=0$. Since the emission happens in an energy-dispersive region, it implies $\Delta x_{\beta}=-\Delta x_{\eta}$. That is, the particle starts β -oscillating (Δx_{β}) around a new dispersive trajectory ($-\Delta x_{\eta}$).

□ Once η_x is zeroed, e.g. At the exit of a symmetric chicane, the CSR-induced β oscillation remains: the beam as «gained» a non-zero C-S amplitude which sums
up to its initial emittance.

S. Di Mitri - Lecture We9

x' – x trace space of different slices (chirp removed)

USPAS June 2015

CSR-Induced Emittance Growth: Estimate

 $\delta p_{z,CSR}$ is correlated with z along the bunch (see previous expression for the energy change):

⇒ all particles at the same z-slice feel approximately the same CSR kick (we are assuming a slice much shorter than the bunch length, say 1/10 or even less).

Different bunch slices feel different CSR kicks, thus move on different β -trajectories. If the slice ellipses are not concentric, the projected emittance is larger, although individual slices may have the same slice emittance. Use the 'beam matrix' to compute the CSR effect (single-kick approximation, average effect):

$$\varepsilon \approx \left[\det \begin{pmatrix} x_{\beta}^{2} \\ \varepsilon_{0}\beta + \eta^{2}\sigma_{\delta,CSR}^{2} \\ -\varepsilon_{0}\alpha + \eta\eta'\sigma_{\delta,CSR}^{2} \\ \varepsilon_{0}\alpha + \eta\eta'\sigma_{\delta,CSR}^{2} \\ \varepsilon_{0}\frac{1+\alpha^{2}}{\beta} + \eta'^{2}\sigma_{\delta,CSR}^{2} \\$$

takes care of the coupled betatron and dispersive motion.

 $H = |\eta^2 + (\beta \eta' + \alpha \eta)^2 / \beta$

USPAS June 2015

CSR in a 4-Dipoles (Symmetric) Chicane

Warning! *CSR* propagation in *drifts* can be important, but it is *neglected here*!

Assume θ<<1.
 Assume α_x≈0 between dipole 3 and 4.

- H-function is larger in proximity of dipole 4, and of the order of $\beta\theta^2$.
- Also, σ_z is shorter (CSR field is stronger) between dipole 3 and 4

Projected Emittance and Bunch Length

PRSTAB 12, 030704 (2009)

Horiz. Proj. Emittance vs. upstream quad strength

Strategies for a 4-Dipoles Compressors Design

CSR-emittance can be minimized in RMS sense (along the bunch) with the following prescriptions (not exclusive), which apply to the lattice design:

$$R_{56} \cong -2\theta^2 \left(L + \frac{2}{3} l_b \right)$$

 $\sigma_{\delta_{,CSR}} = 0.2459 \cdot r_e^2 \frac{N \theta_B R^{1/2}}{\gamma}$

- Design the chicane with the lowest R_{56} you may need (this implies a larger energy spread for the same compression factor, thus high field quality to minimize chromatic aberrations).
 - For a given R₅₆, use small bending angles (in case, use longer dipoles and drifts).
- Set the compressor energy as high as possible (this requires more off-crest phasing for the same relative energy spread at the chicane).

 $\sigma_{\pi}^{4/3}$

$$\boldsymbol{\mathcal{E}} \cong \boldsymbol{\mathcal{E}}_{0} \sqrt{1 + \frac{H}{\boldsymbol{\mathcal{E}}_{0}} \boldsymbol{\sigma}_{\boldsymbol{\delta}, CSR}^{2}}$$

 Minimize H-function in the second half of the chicane, e.g. squeeze β_x to a minimum in between dipole 3 and 4.

Other Strategies

PRSTAB 10, 031001 (2007) PRSTAB 16, 060703 (2013) and courtesy D. Kahn

□ We can even play with the chicane geometry, in order to minimize the cumulative effect of CSR kicks at the dipoles. This involves the chicane geometry and/or the beam optics:

CSR-Emittance in a Transfer Line (σ_z =const.)

Problem.

When the **bunch length** is short and **constant** along a **multi-bend line** (e.g., high energy transfer line connecting linac to undulators), we cannot recognize any «dominant» point of CSR emission (e.g., dipole 4 in a chicane). Which design prescription, then?

Idea.

Adjust the optics along the line so that successive CSR kicks cancel each other (~SBBU approach!). For symmetric CSR-source points, optics symmetry and π phase advance between dipoles is a solution. More general optics schemes work as well if Twiss functions and phase advance are properly «balanced».

Warnings.

- This approach assumes identical CSR kicks in module, e.g. same bunch length emitting CSR in identical dipoles.
- The simplest analysis (see next slides) assume point-like optics functions in the dipoles (thin lens approximation). More accurate analysis implies dipoles' thick length.
- We neglect any transient CSR field at the dipoles' edges, and CSR in drift sections. These effects can be taken into account in tracking codes, e.g. ELEGANT.

Optics Balance & Courant-Snyder Invariant

- A. Use the Courant-Snyder formalism for the particle coordinates. Initial invariant is zero.
- B. While traversing a dipole, add the CSR induced η -terms. This leads to an increase of the particle C-S invariant:
- C. Repeat until the end of the line. Each new invariant after a CSR kick in a dipole, can be defined in terms of J_1 and of the local Twiss functions. After the last dipole we find:

$$2J_{1} = \gamma_{1}x_{1}^{2} + 2\alpha_{1}x_{1}x_{1} + \beta_{1}x_{1}^{2} = H_{1}\delta_{CSR}^{2}$$

$$\Delta \gamma \varepsilon = \gamma \varepsilon_0 \left[\sqrt{1 + \frac{H_1 \sigma_{\delta, CSR}^2}{\varepsilon_0} X_{17}} - 1 \right] < 0.1 \mu m$$

Potential Applications of Optics Balance

- □ Compensating CSR kicks produced in consecutive chicanes (BC1, BC2,...) ??
 - Preliminarly investigated, with poor results. Difficulties arise from optics control in and between the chicanes. The scheme also limits the flexibility of beam transport between the chicanes.

□ Compensating CSR kicks produced in long magnetic compressor, like a 180 deg arc ??

• Preliminarly investigated at GeV energies. Same principle than in a lowemittance storage ring lattice, where ε -control requires many, weak dipoles, thus a long line.

CSR-Induced Slice Emittance Growth

Slice emittance is affected if the bunch becomes so short that particle cross over large portions of it, and, at the end of compression, lie in a slice different from the initial one ("phase mixing") \Rightarrow incoherent "sum" of C-S invariants.

This effect is more subtle than projected emittance growth and it is usually investigated with particle **tracking codes**.

