Layout Definition for e-Beam Diagnostics

S. Di Mitri (90min.)

Prologue

a e-Beam diagnostics is a vast and multi-disciplinary field, and necessarily interfacing with e-beam dynamics (a dedicated international conference, IBIC, is devoted to this field only).

- We will limit to the interplay of beam dynamics and diagnostic resolution power, skipping details on the diagnostic hardware (which is assumed to do what we expect it does...)
\square For reason of space, we will limit to some of the most common diagnosis techniques, and discuss their impact on the machine layout.

In the following, we will consider measurement of:

- mean energy,
- energy spread,
- bunch length,
- transverse emittance

Mean Energy ~ Spectrometer

* How to proceed:

1. geometry of the ref. trajectory (θ, R) is fixed by the mechanical assembly;
2. B_{y} is chosen to center the beam onto the detector (screen or BPM);
3. calculate $\left\langle p_{z}\right\rangle$.

* Measurement errors:
- trajectory distortion before/after the dipole magnet,
- dipole field calibration errors (vs. the supplying current),
- misalignment of the dipole/detector.

Typical error is of at $\sim 1 \mathrm{MeV}$ level, at energies higher than 10s of MeV.

Energy Spread ~ Spectrometer

* Average over the beam particle ensemble:

$$
\left\langle p_{z}^{2}\right\rangle=\left\langle p_{z}\right\rangle^{2}+\left\langle p_{z}\right\rangle^{2} \frac{\left\langle\Delta x^{2}\right\rangle}{\eta_{x}^{2}} ; \Rightarrow \sigma_{E}=\langle E\rangle \frac{\sigma_{x}}{\eta_{x}}
$$

* The measurement of σ_{E} depends on the value of η_{x}. This can be measured in turn as follows:

1. change the beam mean energy (by a few \%),
2. look at the variation of beam centroid position on the detector,
3. apply a polynominal fit to the curve $\Delta x(\delta)$; the linear term is η_{x}.

Energy Resolution

* The beam spot size at the screen is the sum of the geometric (betatron) and chromatic (dispersive) particle motion:

$$
\sigma_{x}=\sqrt{\varepsilon_{x} \beta_{x}+\eta_{x}^{2} \sigma_{\delta}^{2}}
$$

* The energy resolution due to the beam geometric optics (for an infinite screen resolution) is:

$$
\sigma_{E, \text { es }}=\frac{\sqrt{\varepsilon_{x} \beta_{x}}}{\eta_{x}}\langle E\rangle \quad \square \text { minimize } \beta_{x} / \sqrt{\eta_{x}} \text { by design }
$$

* In reality, the finite screen resolution (millimeter per pixel) can be neglected if it is smaller than the geometric beam size:

$$
\sigma_{E, \text { res }}=\frac{\sqrt{\varepsilon_{x} \beta_{x}}}{\eta_{x}}\langle E\rangle \gg \frac{\sigma_{\text {screen,res }}}{\eta_{x}}\langle E\rangle \quad \square \quad \sigma_{\text {screen,res }} \ll \sqrt{\varepsilon_{x} \beta_{x}}
$$

EXERCISE: assume $\sigma_{\text {screen,res }}=30 \mu \mathrm{~m} /$ pixel, $\gamma \varepsilon_{x}=1 \mathrm{~mm} \mathrm{mrad}$ at $100 \mathrm{MeV}, \eta_{x}=1.5 \mathrm{~m}$. Evaluate β_{x} at the screen to ensure $\sigma_{E, \text { res }}=10 \mathrm{keV}$. Is it large enough to overcome $\sigma_{\text {screen,res }}$?

Impact on the Layout Design

these affect only β_{x}
$>$ Make η_{x} large to minimize $\sigma_{E, \text { res }} \Rightarrow$ large bending angle (typically > 20deg) \Rightarrow add quadrupoles after the dipole
$>$ Make β_{x} small to minimize $\sigma_{E, \text { res }} \Rightarrow$ use quadrupoles after the dipole \Rightarrow use quadrupoles before the dipole
$>$ For any given screen resolution, make β_{x} larger to increase the beam size \Rightarrow tune the ratio $\sqrt{ } \beta_{x} / \eta_{x}$ to keep $\sigma_{E \text {,res }}$ fixed

- A BPM soon after the dipole can be easily used for the mean energy measurement, being less sensitive to trajectory distortion occurring between the dipole and the screen.
- A SCREEN at the line end takes advantage of the maximum dispersion and optics tuning. It is devoted to the energy spread measurement.

Bunch Length ~ RF Deflector

- RF deflector transverse kick:

$\left\{\begin{array}{l}\text { For } \varphi_{\mathrm{RF}} \approx 0^{\circ} \text {, the RMS spot size on the screen: } \sigma_{y, S}=\frac{e V_{\perp}}{E} \sigma_{z}\left[\frac{\omega_{R F}}{c} \cos \varphi_{R F}\right] \sqrt{\beta_{D} \beta_{S}} \sin \left(\Delta \psi_{D S}\right) \\ \text { For } \varphi_{R F} \approx 90^{\circ} \text {, the } C M \text { deviation onto the screen is: }\left\langle\Delta y y_{S}\right\rangle=\frac{e V_{\perp}}{E} \sqrt{\beta_{D} \beta_{S}} \sin \left(\Delta \psi_{D S}\right) \sin \varphi_{R F}\end{array}\right.$

How to proceed:

- vary $\varphi_{R F}$ and measure $\left\langle\Delta y_{S}\right\rangle$, then fit the curve to compute the "optics calibration factor" $B=e V_{\perp} R_{34} / E \quad[\mathrm{~mm} / \mathrm{rad}]$;
- now measure $\sigma_{y, s}$ and evaluate the bunch length as $\sigma_{z}=\sigma_{y, s} / B$;

Bunch Length Resolution

* Beam non-zero transverse emittance and residual z-y correlations (e.g., by transverse wakefield) affect the calibration curve, thus the σ_{z} resolution.

- Shift of the parabola minimum reveals an incoming $z-y$ correlation, which is removed by a nonzero V_{\perp}.

Vertical offset of the parabola minimum reveals a nonzero vertical emittance (finite spot size for $\mathrm{V}_{\perp}=0$).

* If we assume no net wakefield effect, the bunch length resolution due to the beam geometric optics (for an infinite screen resolution) at the zero-crossing RF phase is:

$$
\sigma_{z, \text { res }}=\frac{\sigma_{y, S}}{T_{R F} R_{34}}=\frac{p_{z} c \sqrt{\varepsilon_{y}}}{e V_{\perp} k_{R F} \sqrt{\beta_{D}}\left|\sin \Delta \psi_{D S}\right|}
$$

* In practice, V_{\perp} and $\beta_{y, s}$ should be large enough to ensure $\sigma_{y, s} \gg \sigma_{\text {screen,res }}$.

Impact on the Layout Design

\Rightarrow Make $\beta_{y, D}$ large to minimize $\sigma_{z, \text { res }} \Rightarrow$ use quadrupoles before the deflector
$>$ Make $\Delta \psi_{s, D}$ close to $\pi / 2$ to minimize $\sigma_{z, \text { res }} \Rightarrow$ use quadrupoles, possibly after the deflector.
> Make $\beta_{y, s}$ large to dominate over $\sigma_{\text {screen,res }} \Rightarrow$ use quadrupoles, possibly after the deflector.
\square Two BPMs at the deflector edges can be used for beam steering onto the deflector electric axis, thus for a correct setting of the RF phase.

A SCREEN at the end of the diagnostic line is devoted to the bunch length measurement.

Projected Emittance ~ Quadrupole Scan

1. The transport matrix from quadrupole (thin lens approximation) to detector (screen) is assumed to be known:

$$
T=Q S=\left(\begin{array}{ll}
S_{11}+K S_{12} & S_{12} \\
S_{21}+K S_{22} & S_{22}
\end{array}\right)
$$

2. The beam matrix transforms according to $: \Sigma_{f}=T \Sigma_{0} T^{t}$
3. The beam matrix element $\left\langle x^{2}\right\rangle$ is quadratic in the quadrupole integrated strength, $\mathrm{K}:=\mathrm{kl}$

$$
\begin{aligned}
\Sigma_{11}\left(=\left\langle x^{2}\right\rangle\right) & =\left(S_{11}^{2} \Sigma_{11_{0}}+2 S_{11} S_{12} \Sigma_{12_{\mathrm{o}}}+S_{12}^{2} \Sigma_{22_{0}}\right) \\
& +\left(2 S_{11} S_{12} \Sigma_{11_{\mathrm{o}}}+2 S_{12}^{2} \Sigma_{12_{\mathrm{o}}}\right) K+S_{12}^{2} \Sigma_{11_{\mathrm{o}}} K^{2}
\end{aligned}
$$

4. In practice: vary the quad strength k and measure σ_{x} at the screen. Then fit with a parabola:

$$
\begin{aligned}
\Sigma_{11} & =A(K-B)^{2}+C \\
& =A K^{2}-2 A B K+\left(C+A B^{2}\right)
\end{aligned}
$$

- Emittance and the Twiss parameters from the fitting coefficients:

$$
\epsilon_{x}=\sqrt{A C} / S_{12}^{2} \quad \beta_{x}=\frac{\Sigma_{11}}{\epsilon}=\sqrt{\frac{A}{C}} \quad \alpha_{x}=-\frac{\Sigma_{12}}{\epsilon}=\sqrt{\frac{A}{C}}\left(B+\frac{S_{11}}{S_{12}}\right)
$$

Projected Emittance ~ Multiple Screens, Fixed Optics

1. Multiple beam size mesurements are now done with fixed quadrupole strength, but at different locations (multi-screen).
2. The beam size at screen 1 ...n-th transforms according to:

3. Determine vector o by minimizing the sum (least square fit):

$$
\chi^{2}=\sum_{l=1}^{n} \frac{1}{\sigma_{\Sigma_{x}^{(l)}}^{(l)}}\left(\begin{array}{l}
\Sigma_{x}^{(l)}-\sum_{i=1}^{3} B_{l i} o_{i}
\end{array}\right)^{2} \quad \begin{aligned}
& \text { System needs at least } 3 \text { screens, for } 3 \\
& \text { independent parameters to be determined: }
\end{aligned}
$$

Beam size Beam size Transport matrix measurement error measured (quads setting)

$$
\epsilon=\sqrt{o_{1} o_{3}-o_{2}^{2}}, \quad \beta=o_{1} / \epsilon, \quad \alpha=-o_{2} / \epsilon
$$

Twiss Parameters - Optics Matching

Transverse Phase Space ~ Multiple Screens

- Force the beam phase space rotating along the diagnostic line. Look at different screens (fixed optics) or vary a quadrupole's strength.
- Collect all phase space projections onto the spatial coordinate (projected beam size). Then apply the MENT algorithm to reconstruct, for the given transport matrix, the phase space at the source point.
- In general, tomographic reconstruction is as accurate as many experimental points are used. But, redundancy is avoided as the phase space is sampled at different rotation angles. Minimum reconstruction error is for 45° phase advance between samples.

$\longleftarrow \sim$ phase space at the detector(s)

$\longleftarrow \sim$ projections

Beam Enevelope vs. Phase Space

Measure the beam size at the screen

Trace the phase space ellipse back at the quadrupole entrance. This approximates the beam envelope.

Impact on the Layout Design

> At leats one quad + one screen, for the "quad-scan".
$>$ More quads can be tuned simultaneously to make the scan in one plane while the beam size is mantained almost constantin the other (multi-quad scan).
\rightarrow By adding at least two more screens, e.g. at 60° phase advance \Rightarrow "multiple screens - fixed optics", without touching the optics for beam production.
> With "mutiple screens", the emittance measurement is less sensitive to erros with (at least) 4 screens at 45° phase advance. This would also permit "phase space tomography" with four points, at fixed optics.

BPMs near quadrupoles allow the beam to be centered into the magnets, so avoiding trajectory steering when the strengths are varied.
\square Beam size detectors can be either metallic targets (e.g., $\sim 100 \mu \mathrm{~m}$ thick Yttrium Aluminum Garnet target producing visible fluorescence, or $\sim 10 \mu \mathrm{~m}$ thick Aluminum foil producing Optical transition Radiation). Alternatively, wire scanners ed to intercept the beam.

Longitudinal Phase Space - Post-processing

Note: slice energy spread is the sum of uncorrelated and correlated one

Slice Emittance, Slice Energy Spread

* RF V-deflector + beam goes straight:

* RF V-deflector + H-bent beam:

318 USPA 2 ¹gune 22005 Energy (MeV)

Quad-scan is applied to the stretched beam. The image is then sampled and the emittance is computed for each slice.

The slice energy spread is dominated by the RF curvature ($x-E$ correlation) at the bunch edges, and by the optics resolution in the core.

18

RF Deflector-Induced Energy Spread

$\square A$ time-varying transverse magnetic field B_{x} for deflection implies an off-axis longitudinal electric field $E_{z} \propto r$ (Panofsky-Wenzel theorem).

RF DEFLECTOR (MAGNETIC)

OOwing to the particles longitudinal motion, $E_{z}(r)$ changes the longitudinal momentum \rightarrow RF deflector induced energy spread, δ.
$\delta \cong \frac{1}{L} \int_{0}^{L} d s \frac{\Delta p_{z}(s)}{p_{z}}=\frac{1}{L} \int_{0}^{L} d \int_{0}^{s^{\prime}}\left(-\frac{e}{p_{z} c} E_{z}\left(y, s^{s}\right) d s^{\prime}=-\frac{e}{p_{z} c} \frac{1}{L} \int_{0}^{L} d s \int_{0}^{s^{\prime}} E_{z, 0} k_{R} y(s) \cos \varphi_{R F} d s^{\prime}=\ldots\right.$
\square Why do particles sample $E_{z}(y)$ off-axis ?

- They travel off-axis due to non-zero beam size and divergence.
- They are (vertically) displaced by deflection inside the cavity.

Estimate of Beam Heating

\square For an RMS beam size $\sigma_{y}=\sqrt{\beta_{y, D} \varepsilon_{y}}$, the previous equation gives:
$\sigma_{\delta, \beta} \cong \ldots=-\frac{e E_{z, 0} k_{R F} \cos \varphi_{R F}}{p_{z} c} \frac{1}{L} \int_{0}^{L} d s \int_{0}^{s^{\prime}} d s^{\prime} \sqrt{\beta_{y, D} \varepsilon_{y}} \cong-\frac{e E_{z, 0} k_{R F} \cos \varphi_{R F}}{p_{z} c} \frac{1}{L} \cdot \frac{L^{2}}{2} \cong\left(\frac{e V_{R F} k_{R F} \cos \varphi_{R F}}{p_{z} c}\right) \frac{\sqrt{\beta_{y, D} \varepsilon_{y}}}{2}$
\square For a cavity length L, we obtain:
$\sigma_{\delta, L} \cong \ldots=-\frac{e E_{z, 0} k_{R F} \cos \varphi_{R F}}{p_{z} c} \frac{1}{L} \int_{0}^{L} d s \int_{0}^{s} d s^{\prime} \int_{0}^{s^{\prime}} y^{\prime}(s) d s^{\prime \prime}=-\frac{e E_{z, 0} k_{R F} \cos \varphi_{R F}}{p_{z} c} \frac{1}{L} \cdot \frac{e V_{R F} k_{R F} \cos \varphi_{R F}}{p_{z} c} \frac{L^{3}}{6} z \cong$ $\cong\left(\frac{e V_{R F} k_{R F} \cos \varphi_{R F}}{p_{z} c}\right)^{2} \frac{L}{6} z$

At the zerocrossing RF phase:

$$
\sigma_{\delta} \approx \frac{e V_{R F} k_{R F}}{2 p_{z} c} \sqrt{\beta_{y, D} \varepsilon_{y}+\sigma_{z}^{2}\left(\frac{e V_{R F} k_{R F}}{p_{z} c}\right)^{2} \frac{L^{2}}{9}}
$$

This is uncorrelated with z, but correlated with y.

This is correlated with, and averaged over z.

Other Diagnostic Elements (BC Region)

A dispersive region ($B C$) allows to profit of diagnostics for time, energy and transverse beam characterization, both on-line and invasive.

\checkmark BPhM = Bunch PHase (Arrival) Monitor,
\rightarrow e-beam arrival time respect to the machine clock. On-line \rightarrow arrival time jitter feedback.
\rightarrow When used before and after a chicane, it gives the beam time-delay across it.
\checkmark E-BPM = Energy-Beam Position Monitor,
\rightarrow e-beam mean energy. On-line \rightarrow energy-feedback.
\checkmark Wire Scanner (alternatively, YAG/OTR screen),
\rightarrow beam energy spread. Invasive.
\checkmark Collimator (or Scraper),
\rightarrow in the presence of a linear t-E correlation (energy chirp), it selects longitudinal bunch slices, to be characterized downstream with no need of a deflector.
\checkmark CRM $=$ Coherent Radiation Monitor, \rightarrow bunch length variation. On-line \rightarrow bunch length (peak current) feedback.

Summing Up

1. Mean energy
2. Energy spread
3. Quadrupole scan
4. Transverse tomography
5. Bunch length
6. Slicing
7. Slice transverse emittance
8. Slice energy spread
9. Geometric collimation

Summing Up

Trajectory Steering (1-to-1)

\square Now consider a quadrupole magnet in between:

In reality, spatial constraints force to compromises:

- A BPM too close to steering magnets makes the correction largely inefficient - poor sensitivity to trajectory control.
- A BPM too far from steering magnets leads to poor reconstruction of the beam trajectory - poor correction.

Trajectory Sampling

Optimize the correctors and BPMs layout with codes.
Over-sampling may lead to:

- improvement of the correction sensitivity, \rightarrow weaker corrector strengths
- redundancy (degeneracy),
\rightarrow stronger corrector strengths
4 BPMs per β-period can sample and reconstruct the trajectory.

