TUNERS

Jean Delayen

Center for Accelerator Science Old Dominion University and Thomas Jefferson National Accelerator Facility

Introduction – "Big Picture" for Tuners

- SRF/RF system should consume RF power efficiently
 - Minimizes klystron size and capital cost
 - − Higher $Q_{external}$ (> 10⁷) \leftarrow → more efficient ER
 - Reduced Microphonics actively controlled?
- RF Stability
 - Attained by controlling cavity RF phase (0.05°, RMS) and RF amplitude (2 x 10⁻⁴, RMS)
- Availability / Reliability / Maintainability
 - Use machine as scheduled
 - Operate machine as desired
 - Repair machine (if required) for use and operation
 - → Examine what has been achieved on some existing systems to stimulate discussion

Introduction: Pertinent Cavity Info

	CEBAF	CEBAF Upgrade (SL21,FEL03)	CEBAF Upgrade (Renascence)	RIA, β=0.47	SNS, β=0.61	SNS, β=0.81	TESLA 500
Frequency (MHz)	1497	1497	1497	805	805	805	1300
Gradient (MV/m)	5	12.5	18	10	10.3	12.1	23.4
Operating Mode	CW	CW	CW	CW	Pulsed, 60 Hz, 7%	Pulsed, 60 Hz, 7%	Pulsed, 60 Hz, 1%
Bandwidth (Hz)	220	75	75	40	1100	1100	520
Q _{external}	6.6 x 10 ⁶	2.0 x 10 ⁷	2.0 x 10 ⁷	2.0 x 10 ⁷	7.0 x 10⁵	7.0 x 10⁵	3.0 x 10 ⁶
Lorentz Detuning (Hz)	75	312	324	1600	470	1200	434
Microphonics (Hz, 6σ)	-	±10	±10	±10	±100	±100	NA
Stiffness (lb/in)	26,000 (calc'd)	37,000 (calc'd)	20,000-40,000 (calc'd)	< 10,000	8,000 (meas'd)	17,000 (meas'd)	31,000 (est'd)
Sensitivity (Hz/μm)	373	267	~300 (calc)	> 100	290	230	315

Tuner Requirements & Specifications

	CEBAF	CEBAF Upgrade (SL21,FEL03)	CEBAF Upgrade (Renascence)	RIA, β=0.47	SNS, β=0.61	SNS, β=0.81	TESLA 500
Coarse Range (kHz)	±200	±200	±400	950	±245	±220	±220
Coarse Resolution (Hz)	NA	< 2	2 - 3	< 1	2 - 3	2 - 3	< 1
Backlash (Hz)	>> 100	< 3	< 3	NR	< 10	< 10	NR
Fine Range	No Fine Tuner	> 550 Hz / 150 V	1.2 kHz / 1000 V 30 kHz / 30 A	11 kHz / 100 V	> 2.5 kHz / 1000 V	>2.5 kHz / 1000 V	No Fine Tuner
Fine Resolution (Hz)	NA	< 1	< 1	< 1	< 1	< 1	< 1
Demo of Active Microphonics Damped?	Νο	?	No	Yes	Νο	Νο	Νο
Tuning Method	Tens. & Comp.	Tension	Tension	NA	Comp.	Comp.	Tens. & Comp.
Mechanism, Drive Comp.	Immersed, Vac/Warm	Vacuum, Vac/Warm	Vacuum, Vac/Cold	Vacuum, Vac/Ext	Vacuum, Vac/Cold	Vacuum, Vac/Cold	Vacuum, Vac/Cold

Upgrade Tuner for SL21 and FEL03 Cryomodules -Description

- Scissor jack mechanism
 - Ti-6AI-4V Cold flexures & fulcrum bars
 - Cavity tuned in tension only
 - Attaches on hubs on cavity
- Warm transmission
 - Stepper motor, harmonic drive, piezo and ball screw mounted on top of CM
 - Openings required in shielding and vacuum tank
- No bellows between cavities
 - Need to accommodate thermal contraction of cavity string
 - Pre-load and offset each tuner while warm

Prototype Tuner for CEBAF Ugrade

Prototype Tuner for CEBAF Ugrade

Warm Drive Components and Cross Section of Upgrade CM

- Stepper Motor
 - 200 step/rev
 - 300 RPM
- Low voltage piezo
 - 150 V
 - 50 μm stroke
- Harmonic Drive
 - Gear Reduction = 80:1
- Ball screw
 - Lead = 4 mm
 - Pitch = 25.75 mm
- Bellows/slides
 - axial thermal contraction

CEBAF Upgrade Coarse Tuner Resolution/Deadband Test

Resolution/Deadband < 2 Hz Drift due to Helium pressure fluctuations

Upgrade Tuner – SL21 / FEL03 : Range and Resolution (Piezo Hysteresis)

Upgrade Cryomodule – Access to Tuner Drive Components

Cavity String Support Schemes : Tuning approach affect supports

Renascence Tuner Assembly with Two Cold Piezo Actuators

Renascence Tuner Description

- Mechanism "Rock Crusher" All cold, in vacuum components
 - Stainless steel frame
 - Attaches to chocks on cavity
 - Attaches via shoulder bolts to helium vessel head
 - Dicronite coating on bearings and drive screw
 - Cavity tuned in tension only

Shown hanging in VTA Test Stand, attached to EP3 cavity, ready for cold testing

Renascence Tuner – VTA Testing : Range (Helium vessel compliance reduces actual stroke)

RIA Tuner (MSU)

- Mechanism
 - Stainless steel rocker arm and drive rod
 - Attaches to chocks on cavity
 - Attaches via flexures and threaded studs to helium vessel head
 - Cavity tuned in compression or tension
- Cold transmission compressive/tensile force on drive rod
- Stepper motor and piezo external to vacuum tank
- Bellows on vacuum tank
 - Need to accommodate relative thermal contraction of cavities
 - Allow tuner transmission to float (unlocked) during cooldown
 - Pre-load each tuner while warm, account for vacuum loading on bellows

RIA Tuner (MSU) – Rocker Arm / Schematic

RIA Tuner – Test Results: Coarse and Fine Tuner Range; Active Feedback Control

SNS Tuner - Description

- Mechanism scaled from original DESY/Saclay design
 - Stainless steel frame
 - Attaches to chocks on cavity
 - Attaches via flexures and threaded studs to helium vessel head
 - Dicronite coating on bearings and drive screw
 - Cavity tuned in compression only
- Cold transmission
 - Components in insulating vacuum space
 - Stepper motor and harmonic drive rated for UHV, cryogenic and radiation environment (www.phytron.com)
- Bellows between cavities
 - Need to accommodate relative thermal contraction of cavities
 - Pre-load each tuner while warm

SNS Tuner Assembly w/ Piezo Actuator

SNS Tuner Assembly w/ Piezo Actuator

SNS Tuner with Piezo Actuator Installed on Helium Vessel & Cavity

SNS Tuner – CMTF Test Results: Fine Tuner Range and Hysteresis; Piezo Compensation

Jefferson Lab

Frequency Tuners

Saclay Lever Tuner spec.

- → ± 460 kHz tuning range
- - → ~ 1kHz fast compensation by piezo

Current Saclay Tuner

- Double lever system: ratio ~ 1/17
- Stepping motor with Harmonic Drive gear boxe
- Screw nut system : lubricant treatment (balzers Balinit C coating) for working at cold and in vacuum
- ΔZ_{max} = ± 5 mm and ΔF_{max} = ± 2.6 MHz
- theoretical resolution: δz = 1.5 nm !
- \cdot calculated stiffness: 180 kN/mm (measured : 100 kN/mm to be verified)

Blade Tuners

Blade Tuner spec.

- → \pm 1 mm fine tuning (on cavity) \rightarrow ΔF on all piezo (sum) ≈ 3.5 kN
- → 1 kHz fast tuning $\rightarrow \approx$ 3 µm cavity displacement $\rightarrow \approx$ 4 µm piezo displacement
 - → 4 µm piezo displacement $\rightarrow \approx \Delta$ F on all piezo ≈ 11.0 N

TESLA - Blade Tuner

- Mechanism All cold, in vacuum components
 - Titanium frame
 - Attaches to helium vessel shell
- Pre-tune using bolts pushing on shell rings
- Dicronite coating on bearings and drive screw
- Cavity tuned in tension or compression blades provide axial deflection

Piezoelectric Tuners

Response time <1ms.</p>

- Layered piezo-ceramic material electrically connected in parallel operating at 26K with a resolution of 2nm purchased from APC.
- Not designed for high frequency operation.

Magnetostrictive tuners

- Magnetostrictive actuator designed and built by Energen, Inc.
- Response time ~6ms.
- Magnetostrictive rod coaxial with an external solenoid operating at 4K.
- Not designed for high frequency operation.

Renascence Cavity – VTA Test Results

Magnetostrictive Actuator on Tuner

Voltage-Controlled Reactance

- Has been successfully applied at lower frequencies
- Unlikely to be applicable at the frequency and power levels for TM₀₁₀ cavities

Pneumatic Tuners

Have been used successfully for many years in low velocity structures

Waveguide Stubline Tuning

- Commonly used to adjust coupling
- Could also be used to compensate for detuning
- Issues:
 - Part of the waveguide becomes part of the resonant system
 - Speed for dynamic control of microphonics

High Power Vector Modulator

$$V_{out} = j V_{inc} \cos(\phi_1 - \phi_2) e^{j(\phi_1 + \phi_2)}$$

Can provide simultaneous amplitude and phase control

Y. W. Kang et al, ORNL

Jefferson Lab

Figure 4: High power vector modulator prototype shows input and output port, water cooling port, and ferrite phase shifters.

Coarse Tuners

- Typically cold, must be reliable and maintainable \rightarrow access ports
- Direct cavity drive reduces stiffness requirements on helium vessel
- Tuner/HV stiffness > 10x cavity
- Flexures exhibit reduced backlash
- Typically tune in tension or compression to avoid "dead band"

Fine Tuners

- Piezo
 - Operate in compression
 - Warm range 5-10x > cold range
 - Capacitive device, Low vs. High voltage
 - Consider hysteresis

- Magnetostrictive
 - Must operate cold
 - Consider lead thermal design, required current ~10 Amps
 - Inductive element
 - Consider hysteresis

Closing / Summary : Comparison of Tuner Features (2 of 2)

- Transmission Location (maintainability)
 - Cold placement
 - Materials considerations (CTE, lubrication, vacuum)
 - Access for repair or replacement
 - Electrical feedthroughs
 - Warm placement
 - Cooldown/tuning compliance
 - Port for transmission
 - Bellows
- Testing (minimizes risk associated with reliability and availability)
 - Perform accelerated life tests on critical components
 - Feedback results into design prior to production
 - Develop thorough acceptance tests to verify operation

