

# **SURFACE PREPARATION**

Gianluigi Ciovati

#### Thomas Jefferson National Accelerator Facility







### **Required Procedures for Qualifying SRF Cavities**

- Degreasing surfaces to remove contaminates
- Chemical removal of exterior films incurred from welding
- Removal of damage layer of niobium from fabrication (~150  $\mu$ m)
- Removal of hydrogen from bulk Nb
- Mechanical tuning
- Chemical removal of internal surface for clean assembly  $(10-20 \ \mu m)$ 
  - Additional "cleaning" steps if Electropolishing (EP) is used
- High Pressure Rinsing (HPR) to remove particulates from interior surfaces (incurred during chemistry and handling)
- Drying of cavity for assembly in cleanroom (reduce risk of particulate adhesion and reduce wear on vacuum systems)
- Clean assembly
- Clean evacuation
- Low-temperature baking

If cavity meets specs after cryo-RF test...







# **Additional Steps for Cavity String**

- Final mechanical tuning
- He-vessel welding
- Degreasing
- Final material removal (10-20 μm)
- Final HPR
- Horizontal assembly into cavity-string
- Evacuation of cavity string





### **Required Procedures for Qualifying SRF Cavities**

- Degreasing surfaces to remove contaminates
- Chemical removal of exterior films incurred from welding
- Removal of damage layer of niobium from fabrication (~150  $\mu$ m)
- Removal of hydrogen from bulk Nb
- Mechanical tuning
- Chemical removal of internal surface for clean assembly (10-20  $\mu$ m)
  - Additional "cleaning" steps if Electropolishing (EP) is used
- High Pressure Rinsing (HPR) to remove particulates from interior surfaces (incurred during chemistry and handling)
- Drying of cavity for assembly in cleanroom (reduce risk of particulate adhesion and reduce wear on vacuum systems)
- Clean assembly
- Clean evacuation
- Low-temperature baking





# **Degreasing with Ultrasonic Agitation**

#### Why is degreasing needed

- To remove grease, oil and finger prints from cavity surfaces
- To remove surface contamination due to handling, RF measurements and QA inspection



#### Implementation:

- Ultrasonic degreasing with detergent (Micro-90<sup>®</sup>, Liqui-Nox<sup>®</sup>), 1%-2% concentration, and ultra pure water
- Usually performed in Hepa filtered air
- Water quality is good, 18 M $\Omega$  cm, Filtration > 0.2 $\mu$ m
- Manually or semi-automated processes available
- Problem: Parts are wet and vulnerable to particulate contamination





# **Ultrasonic Cleaning**

- Immersion of components in DI water and detergent medium
- Wave energy forms microscopic bubbles on component surfaces. Bubbles collapse (cavitation) on surface loosening particulate matter.
- Transducer provides high intensity ultrasonic fields that set up standing waves. Higher frequencies lowers the distance between nodes which produce less dead zones with no cavitation.
- Ultrasonic transducers are available in many different wave frequencies from 18 kHz to 120 kHz, the higher the frequency the lower the wave intensity.

Cavities and all hardware components (Flanges, nuts & bolts...) have to be degreased with ultrasonic cleaning





### **Megasonic Cleaning**





**Thomas Jefferson National Accelerator Facility** 

Slide 7 of 97



# **Studies on Efficient Cleaning Methods**





Thomas Jefferson National Accelerator Facility



Slide 8 of 97

### **Example on Nb Sample**

Test on cleaning procedure/detergent: Nb sample polluted with grease and oil



Not efficient cleaning



After Ultrasonic cleaning with sufficient detergent and procedure





### **Ultrasonic Tanks for Cavity Cleaning**







# **Required Procedures for Qualifying SRF Cavities**

- Degreasing surfaces to remove contaminates
- Chemical removal of exterior films incurred from welding
- Removal of damage layer of niobium from fabrication (~150  $\mu$ m)
- Removal of hydrogen from bulk Nb
- •

- Chemical:
- Buffered Chemical Polishing
  (BCP)
- Hi Electropolishing (EP)

Surface for Centrifugal Barrel Polishing (CBP)

to remove particulates from interior

surfaces (incurred during chemistry and handling)

- Drying of cavity for assembly in clean room (reduce risk of particulate adhesion and reduce wear on vacuum systems)
- Clean assembly
- Clean evacuation







### Acid Etching of Sub-components & Cavities:



#### **Implementation: (BCP or EP)**

- Sub-components require
  - Removal of oxides which come from fabrication steps → lower losses and improve sealing
- Cavities require:
  - Interior chemistry to remove damaged surface layer incurred in welding and deep drawing (100-200µm)
  - Exterior chemistry to remove surface oxides that occurred in welding (10-30µm)

Slide 12 of 97

- Subcomponents usually processed by hand in wet bench
- Acid quality usually electronic grade or better, low in contaminants
- Acid temperature control required to prevent additional absorption of hydrogen (Q-disease)
- Acid mixture difficult to QA





### **The Need For Material Removal**



K. Saito



**Thomas Jefferson National Accelerator Facility** 

Slide 13 of 97

### **Nb Surface**





Thomas Jefferson National Accelerator Facility

Slide 14 of 97



# **Buffered Chemical Polish (BCP)**

HF (49%), HNO<sub>3</sub> (65%), H<sub>3</sub>PO<sub>4</sub> (85%) Mixture 1:1:1 , or 1:1:2 by volume typical

Oxidation  $2Nb + 5HNO_3 \rightarrow Nb_2O_5 + 5NO_2$  Brown gas

Reduction

 $Nb_2O_5 + 6HF \rightarrow H_2NbOF_5 + NbO_2F 0.5H_2O + 1.5H_2O$ 

NbO<sub>2</sub>F 0.5H<sub>2</sub>O + 4HF → H<sub>2</sub>NbOF<sub>5</sub> + 1.5H<sub>2</sub>O

**Reaction exothermic!** Use H<sub>3</sub>PO<sub>4</sub> as "buffer" to slow reaction rate







# **Use of BCP:**

- 1:1:1 still used for etching of subcomponents (etch rates of  $\sim 8$ ulletµm/min)
- 1:1:2 used for most cavity treatments (etch rates of ~ 3  $\mu$ m/min) ullet
  - Agitation necessary  $\rightarrow$  reaction products at surface
  - Acid is usually cooled to 10-15 °C (1-3  $\mu$ m/min) to control the reaction rate and Nb surface temperatures (reduce hydrogen absorption)



Slide 16 of 97





# **BCP: Surface Roughness and Etching Rate**









Slide 17 of 97

# **BCP Systems for Cavity Etching**

- Bulk & Final chemistry
  - Bulk removal of (100-200  $\mu$ m)
  - Final removal of (5-20 µm) to remove any additional damage from QA steps and produce a fresh surface



#### Implementation:

- Cavity held vertically
- Closed loop flow through style process, some gravity fed system designs
- Etch rate 2x on iris then equator, if no stirring mechanism
- Temperature gradient causes increased etching from one end to the other
- Manually connected to the cavity but process usually automated





### **Chemical Etching Setups**



Old system for CEBAF cavities



BCP of single cell cavity under chemical flow hood







# **Chemical Etching of Outer Surface**

- ~ 20 um are removed from the outer surface of the cavity by BCP to remove "dirty" layer after fabrication in order to improve the heat transfer at the Nb/LHe interface (Kapitza resistance)
- Some labs do this as part of cavity preparation procedure (DESY), some don't (JLab)
- No clear influence on cavity performance





# Electropolishing



Electropolishing (EP) of Niobium:

Both electrodes are immersed in electrolyte
A voltage is applied between Nb (anode)
and counter electrode (cathode, Al)

Basic reactions:

#### Oxidation

 $2Nb + 5SO_4^{2-} + 5H_2O \rightarrow Nb_2O_5 + 10H^+ + 5SO_4^{2-} + 10e^{-1}$ 

#### Reduction

 $Nb_2O_5 + 6HF \rightarrow H_2NbOF_5 + NbO_2F 0.5H_2O + 1.5H_2O$ 

 $10H^+ + 10e^- \rightarrow 5H_2$ 

Hydrogen gas produced at cathode



Thomas Jefferson National Accelerator Facility

Slide 21 of 97



# **I-V Curve**



- 0-V2: Concentration Polarization occurs, active dilution of niobium
- V2-V3: Limiting Current Density, viscous layer on niobium surface
- >V3: Additional Cathodic Processes Occur, oxygen gas generated



Electrode potentials should be measured wrt a Reference Electrode!





# Good surface finish when in right I(V)

Talk by K.Saito in JLAB on Oct. 2003

#### Micro and macro electropolishing in niobium EP



Kenji Saito, KEK, 1989





# **Basic Mechanism for EP**

- Anodization of Nb in H<sub>2</sub>SO<sub>4</sub> forces growth of Nb<sub>2</sub>O<sub>5</sub>
- F<sup>-</sup> dissolves Nb<sub>2</sub>O<sub>5</sub>
- These competing processes result in current flow and material removal
- Above a certain anodization potential, the reaction rate plateaus, limited by how fast fresh F<sup>-</sup> can arrive at the surface (*diffusion-limited*)
- The diffusion coefficient sets a scale for optimum leveling effects









# **EP: tricky process**

- The current density  $(30-100 \text{ mA/cm}^2)$  in the plateau region:
  - decreases linearly with lower  $HF/H_2SO_4$  ratio
  - increases with increasing temperature
- Temperature during the process is maintained between  $25 35 \ ^{\circ}\text{C}$
- Current oscillations often observed during polishing (dynamic balance between oxide formation and dissolution). It's not a necessary condition for good surface finishing but indication of good processing parameters (temperature, voltage, agitation, HF concentration)

Finding the right balance among the processing parameters becomes complicated when polishing multi-cell cavities!





### **EP: Smooth Surface**



Surface roughness with EP

Typical roughness of ~ 1  $\mu$ m (100 x 100  $\mu$ m<sup>2</sup> scale)





### **EP Setups: Half-Cells**



R.L. Geng, Cornell Univ.



#### Material removal prior to final equatorial EBW





# **EP Systems: Single-Cell**











# **EP Systems: Single-Cell**



# Single-Cell setup at CERN Horizontal continuous electropolishing, polishing rate $\sim 0.3~\mu m/min$



Thomas Jefferson National Accelerator Facility



Slide 29 of 97



DESY









JLAB















#### Nomura Plating and KEK



**Thomas Jefferson National Accelerator Facility** 



JSA

### **EP** Issues

- HF disappears quickly from electrolyte due to surface temperature and evaporation and must be added routinely
- Difficult to add HF to the Sulfuric, reaction looses HF plus adds water to electrolyte which causes matt finishes
- Sulfur precipitates found on niobium surfaces (insoluble) and in system piping (monoclinic), impossible to add meaningful filtration
- Removal of sulfuric from surfaces difficult and requires significant amounts of DI water, hydrogen peroxide or alcohol rinses
- Typically cavity processed horizontally, slowly rotated
- Etch rate 2x on iris then equator

### Why bother with EP?





Slide 34 of 97

### **EP:** achieving high accelerating field



1999, KEK



Slide 35 of 97



# **EP:** achieving high accelerating field



2001, CERN-CEA-DESY Collaboration




## **EP: achieving high accelerating field**





**Thomas Jefferson National Accelerator Facility** 



Slide 37 of 97

### **EP:** achieving high accelerating field





Thomas Jefferson National Accelerator Facility



Slide 38 of 97

### Why Is EP Better?

- Q-drop recovers after baking
- Smoother surface







#### EP: used also in low- $\beta$ cavities for heavy ion accelerator





Thomas Jefferson National Accelerator Facility



Slide 40 of 97

## **Vertical EP**



- No rotary acid seals
- Twice removal rate than horizontally rotating EP
- No sliding electrical contacts
- No large acid reservoir and heat exchanger









#### **Vertical EP**



Jefferson Lab

**Thomas Jefferson National Accelerator Facility** 

Slide 42 of 97

![](_page_41_Picture_5.jpeg)

## **Challenge to EP: Large Grain Nb & BCP**

![](_page_42_Figure_1.jpeg)

Slide 43 of 97

![](_page_42_Picture_3.jpeg)

### Large-Grain Nb Surface After BCP

![](_page_43_Figure_1.jpeg)

Slide 44 of 97

## **Challenge to EP: Large Grain Nb & BCP**

![](_page_44_Figure_1.jpeg)

- Studies at DESY show higher  $E_{acc}$  after EP even for large-grain Nb
- The typical performance of large-grain Nb cavities treated by BCP would satisfy the requirements for most accelerator projects

![](_page_44_Picture_4.jpeg)

![](_page_44_Picture_7.jpeg)

### **Centrifugal Barrel Polishing**

![](_page_45_Figure_1.jpeg)

![](_page_45_Picture_2.jpeg)

**Thomas Jefferson National Accelerator Facility** 

Slide 46 of 97

![](_page_45_Picture_5.jpeg)

## **CBP** Implementation

#### Centrifugal Barrel Polishing (CBP)

![](_page_46_Picture_2.jpeg)

![](_page_46_Picture_3.jpeg)

#### Implementation:

- Plastic stones and liquid abrasive added inside cavity and rotated
- Stones rubbing on surface removes material thus smoothing the surfaces (including weld areas)
- Benefit is less overall chemistry needed (80 μm) and smooth weld areas

![](_page_46_Figure_8.jpeg)

• Removal of material 2x on equators then irises. Average removal rate ~ 5  $\mu$ m/h

![](_page_46_Picture_10.jpeg)

![](_page_46_Picture_12.jpeg)

![](_page_46_Picture_13.jpeg)

## **Barrel Polishing Machine at JLab**

![](_page_47_Figure_1.jpeg)

![](_page_47_Picture_2.jpeg)

![](_page_47_Picture_3.jpeg)

• Removal rate ~  $3 - 4 \mu m/h$ 

![](_page_47_Picture_5.jpeg)

![](_page_47_Picture_6.jpeg)

![](_page_47_Picture_8.jpeg)

![](_page_47_Picture_9.jpeg)

### **Required Procedures for Qualifying SRF Cavities**

- Degreasing surfaces to remove contaminates
- Chemical removal of exterior films incurred from welding
- Removal of damage layer of niobium from fabrication (~150  $\mu$ m)
- Removal of hydrogen from bulk Nb
- Mechanical tuning
- Chemical removal of internal surface for clean assembly (10-20  $\mu$ m)
  - Additional "cleaning" steps if Electropolishing (EP) is used
- High Pressure Rinsing (HPR) to remove particulates from interior surfaces (incurred during chemistry and handling)
- Drying of cavity for assembly in clean room (reduce risk of particulate adhesion and reduce wear on vacuum systems)
- Clean assembly
- Clean evacuation
- Low-temperature baking

![](_page_48_Picture_13.jpeg)

![](_page_48_Picture_16.jpeg)

## **Heat Treatment for H-degassing**

- H absorption occurs during chemical and/or mechanical material removal
- Reduce bulk H concentration in Nb to avoid Q-disease
- The heat treatment also "stress-relieves" the Nb
- Different parameters at different labs:
  - 600 °C/10 h at JLab
  - 800 °C/2 h at DESY
  - 750 °C/3 h at KEK

![](_page_49_Figure_8.jpeg)

![](_page_49_Picture_9.jpeg)

![](_page_49_Picture_11.jpeg)

## **High Temperature Vacuum Furnace**

![](_page_50_Picture_1.jpeg)

Heat Treatment Furnace at JLab up to 1250 °C,  $P \le 10^{-6}$  Torr

![](_page_50_Picture_3.jpeg)

Vacuum furnace in KEK : Temp.= 1300 °C max, Vac. = 1xE-6 torr

Slide 51 of 97

Use Residual Gas Analyzer to monitor the partial pressure of residual gases during heat treatment

![](_page_50_Picture_6.jpeg)

![](_page_50_Picture_8.jpeg)

### **Required Procedures for Qualifying SRF Cavities**

- Degreasing surfaces to remove contaminates
- Chemical removal of exterior films incurred from welding
- Removal of damage layer of niobium from fabrication (~150  $\mu$ m)
- Removal of hydrogen from bulk Nb
- Mechanical tuning
- Chemical removal of internal surface for clean assembly (10-20  $\mu$ m)
  - Additional "cleaning" steps if Electropolishing (EP) is used
- High Pressure Rinsing (HPR) to remove particulates from interior surfaces (incurred during chemistry and handling)
- Drying of cavity for assembly in clean room (reduce risk of particulate adhesion and reduce wear on vacuum systems)
- Clean assembly
- Clean evacuation
- Low-temperature baking

![](_page_51_Picture_13.jpeg)

![](_page_51_Picture_16.jpeg)

## **Mechanical Tuning**

• Small mechanical adjustments to the cavity's cells to obtain flat field profile and desired frequency

![](_page_52_Picture_2.jpeg)

![](_page_52_Picture_3.jpeg)

**Thomas Jefferson National Accelerator Facility** 

![](_page_52_Picture_5.jpeg)

Slide 53 of 97

## **Post-EP Cleaning**

- Degreasing surfaces to remove contaminates
- Chemical removal of exterior films incurred from welding
- Removal of damage layer of niobium from fabrication (~150  $\mu$ m)
- Removal of hydrogen from bulk Nb
- Mechanical tuning
- Chemical removal of internal surface for clean assembly (10-20  $\mu$ m)
  - Additional "cleaning" steps if Electropolishing (EP) is used
- High Pressure Rinsing (HPR) to remove particulates from interior surfaces (incurred during chemistry and handling)
- Drying of cavity for assembly in clean room (reduce risk of particulate adhesion and reduce wear on vacuum systems)
- Clean assembly
- Clean evacuation
- Low-temperature baking

![](_page_53_Picture_13.jpeg)

## **EP: high E<sub>acc</sub> but large scattering**

![](_page_54_Figure_1.jpeg)

![](_page_54_Picture_2.jpeg)

Thomas Jefferson National Accelerator Facility

![](_page_54_Picture_4.jpeg)

Slide 55 of 97

### **Post-EP Cleaning Processes**

- Ethanol Rinse (DESY)
- "Flash" BCP (10 μm) (DESY)
- "Flash" EP (3 μm, fresh acid, no re-circulation) (KEK)
- Ultrasonic Degreasing with Micro-90 and hot water (JLab)

![](_page_55_Figure_5.jpeg)

![](_page_55_Picture_6.jpeg)

**Thomas Jefferson National Accelerator Facility** 

![](_page_55_Picture_8.jpeg)

Slide 56 of 97

### **Required Procedures for Qualifying SRF Cavities**

- Degreasing surfaces to remove contaminates
- Chemical removal of exterior films incurred from welding
- Removal of damage layer of niobium from fabrication (~150  $\mu$ m)
- Removal of hydrogen from bulk Nb
- Mechanical tuning
- Chemical removal of internal surface for clean assembly (10-20 µm)
   Additional "cleaning" steps if Electropolishing (EP) is used
- High Pressure Rinsing (HPR) to remove particulates from interior surfaces (incurred during chemistry and handling)
- Drying of cavity for assembly in clean room (reduce risk of particulate adhesion and reduce wear on vacuum systems)
- Clean assembly
- Clean evacuation
- Low-temperature baking

![](_page_56_Picture_12.jpeg)

![](_page_56_Picture_15.jpeg)

## **High Pressure Rinsing (HPR)**

• SRF cavities cleaning method to remove particulates from handling and contaminants after chemistry from the inner surface

![](_page_57_Figure_2.jpeg)

![](_page_57_Picture_3.jpeg)

#### **ACCEL** Instruments

![](_page_57_Picture_5.jpeg)

![](_page_57_Picture_7.jpeg)

![](_page_57_Picture_8.jpeg)

## **High Pressure Rinsing (HPR)**

![](_page_58_Figure_1.jpeg)

Fig. 7 Residual particle on a wafer surface after HPR.

![](_page_58_Picture_3.jpeg)

![](_page_58_Picture_5.jpeg)

![](_page_58_Picture_6.jpeg)

#### **Particle Removal Mechanism**

![](_page_59_Figure_1.jpeg)

![](_page_59_Picture_2.jpeg)

- Hydrodynamic model allows
  estimating the shear stress τ of the
  water jet, which depends on flow
  rate and pressure
- Particle removal by rolling if the water shear stress is greater than a critical shear stress  $\tau_0$ , related to the particle size, adhesion force and surface roughness

$$\tau_0 = \frac{F_{ad}}{44a_p^2} \sqrt{2\frac{H}{a_p} + \left(\frac{H}{a_p}\right)^2}$$

![](_page_59_Picture_6.jpeg)

![](_page_59_Picture_9.jpeg)

#### **Adhesion Forces**

Particle of diameter d

![](_page_60_Figure_2.jpeg)

Adhesion forces:

- $F = \alpha \frac{Q^2}{4\pi\epsilon_0 d^2}$ Coulomb
- Capillary  $F = 2\pi \gamma d$   $\gamma$ : surface tension
- Van der Waals  $F = \frac{7.2 \text{eV}}{16\pi} \frac{d}{z^2}$

Example: 1 µm glass particle on water 1.4×10<sup>-7</sup> N

- 4.5×10<sup>-7</sup> N
- 3×10<sup>-8</sup> N
- Electrical double layer  $F \propto \frac{\Delta \Phi^2 d}{r}$

![](_page_60_Picture_12.jpeg)

![](_page_60_Picture_13.jpeg)

![](_page_60_Picture_15.jpeg)

## **Ultrapure Water Quality**

- Water quality of ultrapure water for SRF cavities preparation:
  - Resistivity: 18.2 MΩcm
  - Total organic carbon (TOC): < 5 ppb</p>
  - Particulate counts (> 0.3  $\mu$ m/l): < 10
  - Bacteria counts: < 0.1 CFU/100ml</p>

#### Typical water purification stages:

![](_page_61_Figure_7.jpeg)

![](_page_61_Picture_8.jpeg)

![](_page_61_Picture_10.jpeg)

## HPR QA

- Online monitoring of TOC, resistivity and particulate counts
- Collection of water from rinsed cavity for particulate analysis

![](_page_62_Picture_3.jpeg)

![](_page_62_Picture_4.jpeg)

Slide 63 of 97

![](_page_62_Picture_5.jpeg)

![](_page_62_Picture_7.jpeg)

### **HPR Systems**

![](_page_63_Picture_1.jpeg)

# HPR stand inside the clean room at JLab

![](_page_63_Picture_3.jpeg)

Slide 64 of 97

![](_page_63_Picture_4.jpeg)

![](_page_63_Picture_6.jpeg)

#### **HPR Systems**

![](_page_64_Picture_1.jpeg)

![](_page_64_Picture_2.jpeg)

# HPR stand inside the clean room at DESY

![](_page_64_Picture_4.jpeg)

![](_page_64_Picture_6.jpeg)

### HPR spray heads optimization

![](_page_65_Picture_1.jpeg)

Very effective on irises

Equator fill with water  $\rightarrow$  too high flow rate

- For a given pump displacement the nozzle opening diameter and number of nozzles sets the system pressure and flow rate
- HPR spray heads needs to be optimized for a particular cavity geometry!

![](_page_65_Picture_6.jpeg)

![](_page_65_Picture_8.jpeg)

![](_page_65_Picture_9.jpeg)

#### **HPR Jet Characterization**

![](_page_66_Picture_1.jpeg)

• Use a load cell to measure the force vs. distance of the water jet

$$F = \rho \cdot Q \cdot u \qquad u = \sqrt{\frac{2 \cdot p}{\rho}} \qquad \begin{array}{c} u = \text{velocity} \\ Q = \text{flow} \\ p = \text{pressure} \\ \rho = \text{density} \end{array}$$

![](_page_66_Picture_4.jpeg)

![](_page_66_Picture_6.jpeg)

#### Water Pressure vs. Distance

![](_page_67_Figure_1.jpeg)

![](_page_67_Picture_2.jpeg)

**Thomas Jefferson National Accelerator Facility** 

Slide 68 of 97

![](_page_67_Picture_5.jpeg)

## **Different HPR Configurations**

| Lab.           | #<br>nozzles | Tested<br>nozzles                 | Flow [l/min]<br>(1 nozzle) | Pump<br>Press<br>[bar] |                                                                                                                                                                                                                            |
|----------------|--------------|-----------------------------------|----------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JLAB<br>Prod   | 2            | SSC-FAN:<br>1502<br>4002<br>40015 | 5@85 bar                   | 85                     | <ul> <li>"Fan" jet allows greater surface coverage compared to a standard round jet</li> <li>HPR Duration: 3 - 12 h on 9-cell cavity</li> <li>Cavity rotation: 2 – 20 rpm</li> <li>Wand movement: 8 – 50 mm/min</li> </ul> |
| JLAB<br>R&D    | 2            | SSC-FAN                           | 5@85 bar                   | 85                     |                                                                                                                                                                                                                            |
| Rab            | 9            | Φ=0.4 mm<br>Sapphire              |                            |                        |                                                                                                                                                                                                                            |
| KEK<br>Tsukuba | 8            | Φ=0.6 mm<br>SS                    | 1.5@70 bar                 | 70-50                  |                                                                                                                                                                                                                            |
| KEK<br>Nomura  | 8            | Φ=0.6 mm<br>SS<br>Φ=0.6 mm        | 1.1@50 bar                 | 50-40                  |                                                                                                                                                                                                                            |
|                |              | SS                                | 0.9@40 bar                 |                        |                                                                                                                                                                                                                            |
| DESY           | 8            | Φ=0.6 mm<br>Sapphire              | 1.6@100 bar                | 90-110                 |                                                                                                                                                                                                                            |

![](_page_68_Picture_2.jpeg)

![](_page_68_Picture_5.jpeg)

## **Performance Improvement After HPR**

![](_page_69_Picture_1.jpeg)

**TESLA** Cavities

![](_page_69_Picture_3.jpeg)

**CEBAF** Cavities

![](_page_69_Figure_5.jpeg)

![](_page_69_Picture_6.jpeg)

Thomas Jefferson National Accelerator Facility

![](_page_69_Picture_8.jpeg)

Slide 70 of 97

#### **HPR Issues**

![](_page_70_Picture_1.jpeg)

• This is still the best cleaning method against field emission!

#### **ISSUES:**

- HPR systems are still not optimized for the best surface cleaning performance
- Surface left in a vulnerable state, wet

![](_page_70_Picture_6.jpeg)

![](_page_70_Picture_8.jpeg)

![](_page_70_Picture_9.jpeg)

## **Dry Ice Cleaning**

- Complementary method to HPR, developed at DESY
- Liquid CO<sub>2</sub> jet flowing through a nozzle and resulting in a snow/gas mixture at a temperature of 194 K
- Removal of hydrocarbons and sub-micron particles while keeping the surface dry by
  - Thermal
  - Mechanical
  - Chemical
- Could be applied to a fully assembled cavity mounted horizontally as a part of a "cavity-string"

![](_page_71_Picture_8.jpeg)

![](_page_71_Picture_9.jpeg)

![](_page_71_Picture_11.jpeg)

![](_page_71_Picture_12.jpeg)
#### **Required Procedures for Qualifying SRF Cavities**

- Degreasing surfaces to remove contaminates
- Chemical removal of exterior films incurred from welding
- Removal of damage layer of niobium from fabrication (~150  $\mu$ m)
- Removal of hydrogen from bulk Nb
- Mechanical tuning
- Chemical removal of internal surface for clean assembly (10-20  $\mu$ m)
  - Additional "cleaning" steps if Electropolishing (EP) is used
- High Pressure Rinsing (HPR) to remove particulates from interior surfaces (incurred during chemistry and handling)
- Drying of cavity for assembly in cleanroom (reduce risk of particulate adhesion and reduce wear on vacuum systems)
- Clean assembly
- Clean evacuation
- Low-temperature baking



#### **Particulates in Air**

• Cleanroom technology is required to prevent airborne particulates from settling on the surface of SRF cavities







### **Cleanroom Technology**

**Cleanroom**: a controlled environment in which all incoming air, water and chemicals are filtered to meet high standards of purity. Temperature, humidity and pressure are controlled, but the key element is air filtrations.









# **Type of Cleanrooms**



#### Non-Unidirectional airflow type



Unidirectional airflow type





### **Cleanroom Classification**

| ISO<br>Classification<br>number       | Maximum concentration limits (particles/m <sup>3</sup> of air) for particles equal to and larger than the considered sizes shown below |                                          |                                                        |                                      |                        |                                  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------|--------------------------------------|------------------------|----------------------------------|
|                                       | >=0.1µm                                                                                                                                | n>=0.2µm                                 | >=0.3µm                                                | >=0.5µm                              | >=1µm                  | >=5.0µm                          |
| ISO Class 1                           | 10                                                                                                                                     | 2                                        |                                                        |                                      |                        |                                  |
| ISO Class 2                           | 100                                                                                                                                    | 24                                       | 10                                                     | 4                                    |                        |                                  |
| ISO Class 3                           | $1\ 000$                                                                                                                               | 237                                      | 102                                                    | 35                                   | 8                      |                                  |
| ISO Class 4                           | 10 000                                                                                                                                 | 2 370                                    | 1 020                                                  | 352                                  | 83                     |                                  |
| ISO Class 5                           | 100 000                                                                                                                                | 23 700                                   | 10 200                                                 | 3 520                                | 832                    | 29                               |
| ISO Class 6                           | 1 000<br>000                                                                                                                           | 237 000                                  | 102 000                                                | 35 200                               | 8 320                  | 293                              |
| ISO Class 7                           |                                                                                                                                        |                                          |                                                        | 352 000                              | 83 200                 | 2 930                            |
| ISO Class 8                           |                                                                                                                                        |                                          |                                                        | 3 520 000                            | 832 000                | 29 300                           |
| ISO Class 9                           |                                                                                                                                        |                                          |                                                        | 35 200 000                           | 8 320 000              | 293 000                          |
| ISO 14644-1 Classes<br>FS 209 Classes | Class 3<br>Class1                                                                                                                      | Class 4<br>Class 10<br>Cavity<br>assembl | Class 5<br>Class 10<br>Class 10<br>Cleanro<br>y for SR | Class 6<br>00 Class 100<br>90m<br>2F | Class 7<br>00 Class 10 | Class 8<br>0, 000 Class 100, 000 |







#### **Particle Counters**





Slide 78 of 97





# **People in Cleanrooms**

- People are a major source of particulate contamination inside a clean room through:
  - Body Regenerative Processes Skin flakes, oils, perspiration and hair.
  - Behavior Rate of movement, sneezing and coughing.
  - Attitude Work habits and communication between workers.





Thomas Jefferson National Accelerator Facility



Slide 79 of 97

# **Assembly: Vacuum Hardware**

- The cavity strings have to be vacuum tight to a leak rate of  $< 1 \text{ x}10^{-10}$  torr l/sec
- The sealing gaskets and hardware have to be reliable and particulate-free
- The clamping hardware should minimize the space needed for connecting the beamlines





# **Assembly: Vacuum Hardware**

- Present choice for ILC cavities: diamond-shaped AlMg<sub>3</sub>-gaskets + NbTi flanges + bolts
  Also used for SNS cavities
- Alternative:

radial wedge clamp, successfully used for CEBAF upgrade cavities • AlMg-Gasket





• Radial Wedge Clamp



Slide 81 of 97





#### **Cavity Assembly**









#### **Required Procedures for Qualifying SRF Cavities**

- Degreasing surfaces to remove contaminates
- Chemical removal of exterior films incurred from welding
- Removal of damage layer of niobium from fabrication (~150  $\mu$ m)
- Removal of hydrogen from bulk Nb
- Mechanical tuning
- Chemical removal of internal surface for clean assembly (10-20  $\mu$ m)
  - Additional "cleaning" steps if Electropolishing (EP) is used
- High Pressure Rinsing (HPR) to remove particulates from interior surfaces (incurred during chemistry and handling)
- Drying of cavity for assembly in cleanroom (reduce risk of particulate adhesion and reduce wear on vacuum systems)
- Clean assembly
- Clean evacuation
- Low-temperature baking





### **Clean Evacuation**



- Oil-free pump stations with leak check and residual gas analyzer
- Laminar venting with pure, particle filtered N<sub>2</sub> or Ar







# **Clean Vacuum Systems**

 "Dirty" or "contaminated" (hydrocarbons, air leaks) vacuum system can re-contaminate the surface of a clean cavity! Settling velocity for particles in air at room temperature





Thomas Jefferson National Accelerator Facility





#### **Required Procedures for Qualifying SRF Cavities**

- Degreasing surfaces to remove contaminates
- Chemical removal of exterior films incurred from welding
- Removal of damage layer of niobium from fabrication (~150  $\mu$ m)
- Removal of hydrogen from bulk Nb
- Mechanical tuning
- Chemical removal of internal surface for clean assembly (10-20  $\mu$ m)
  - Additional "cleaning" steps if Electropolishing (EP) is used
- High Pressure Rinsing (HPR) to remove particulates from interior surfaces (incurred during chemistry and handling)
- Drying of cavity for assembly in cleanroom (reduce risk of particulate adhesion and reduce wear on vacuum systems)
- Clean assembly
- Clean evacuation
- Low-temperature baking





# **Low-Temperature Baking**



Hot  $N_2$  gas uniformly heats up the cavity (JLab)

# Infrared heaters heating the open cavity inside the cleanroom (Saclay)



Slide 87 of 97





# If Everything Works Well...



 $E_p \cong 80 \text{ MV/m}, B_p \cong 170 \text{ mT}$  can be achieved in the vertical test of 9-cell ILC cavities (~ 1 m<sup>2</sup> of Nb surface)





# **Additional Steps for Cavity String**

- Final mechanical tuning
- He-vessel welding
- Degreasing
- Final material removal (10-20 μm)
- Final HPR
- Horizontal assembly into cavity-string
- Evacuation of cavity string





#### **Helium Vessel Welding**





Slide 90 of 97





# **String Assembly**

- A cavity string is assembled in a class 10 or class 100 clean room on an assembly bench over a period of several days after they have been qualified in a vertical or horizontal test.
- Prior to assembly, the cavities are high pressure rinsed for several hours, dried in a class 10 clean room, mounted onto the assembly bench and auxiliary parts are attached.
- The most critical part of the assembly is the interconnection between two cavities, monitored by particle counting





## **Example of Cavity Assembly Sequence**





Thomas Jefferson National Accelerator Facility

Slide 92 of 97



#### **Coupler Insertion Procedure**









# **String Assembly**



XFEL at DESY: 8 cavities per string



SNS  $\beta_g$ =0.61 string at JLab: 3 cavities per string

Slide 94 of 97





# If Everything Works Well...

35 MV/m without field emission in operation with electron beam is possible!







#### **Comments on Facilities and Process Steps**

#### **RF** Cavities

RF structures have excellent quality in materials and fabrication but flange designs require significant hardware for assembly and extensive manual labor → lots of room for errors

Facilities

- Cleanroom environments are typically excellent, easy to monitor
- DI water quality excellent in most cases, easy to monitor
- Sub-component cleaning not at same level with cleaning quality for cavities
- Many system failures reported, leading to large recovery times
- No two process system designs the same

Process Steps

Jefferson Lab

- Assembly steps present the most interaction and largest source of particulate contamination, very difficult to monitor
- Subcomponent cleaning insufficient but easy to monitor
- BCP Chemistry in good control easy to monitor
- EP currently has less process control and more process variables





Slide 96 of 97

## **History Plot of High Gradient**





Thomas Jefferson National Accelerator Facility



Slide 97 of 97