#### Plan for the week

- This afternoon: Surface resistance at high RF fields
- **Tuesday afternoon**: TM-class cavity design
- Wednesday morning: Computer Lab + cavity limitations
- Thursday afternoon: Cavity fabrication
- Friday morning: Surface preparation







## SURFACE RESISTANCE AT HIGH RF FIELDS

Gianluigi Ciovati

Thomas Jefferson National Accelerator Facility



Thomas Jefferson National Accelerator Facility



#### Outline

- Surface resistance in strong RF fields
  - Thermal feedback model
  - Non-linear BCS
  - Hot-spots
- RF losses due to vortices' motion
  - Oscillation of pinned vortices
  - Vortex penetration
  - Hotspot generation





## **BCS Surface Resistance**



- Superconducting gap  $\Delta$  on the Fermi surface
- For T<< T<sub>c</sub>, a small fraction of electrons are unbound due to thermal dissociation of the Cooper pairs
- Thermally-activated quasiparticles define the exponentially small BCS surface resistance

Clean limit ( $l << \xi_0$ ) BCS surface resistance at low field ( $H << H_c T/T_c$ )  $R_s \simeq \frac{\mu_0^2 \omega^2 \lambda^4 \Delta n_0}{k_B T p_F} \ln\left(\frac{\Delta}{\hbar \omega}\right) \exp\left(-\frac{\Delta}{k_B T}\right)$ 

The higher  $T_c = 0.57\Delta$  the smaller the BCS surface resistance





## **R<sub>BCS</sub>: Impurities Dependence**



BCS resistance of Nb at 1.5 GHz, 4.2 K

Jefferson Lab

• Scattering mechanisms and normal state conductivity:  $\sigma_n = e^2 n_0 l/p_F$ ,  $p_F = \hbar (3\pi^2 n_0)^{1/3}$ 

$$\lambda = \lambda_L \sqrt{1 + \frac{\xi_0}{l}}$$

• Dirty limit ( $l \ll \xi_0$ ):

$$R_{BCS} \propto \lambda^3 \sigma_n \propto \frac{1}{\sqrt{l}}$$

• Clean limit  $(l \gg \xi_0)$ :

$$R_{BCS} \propto l \qquad \sigma_n \rightarrow \sigma_{eff} \Box e^2 n_0 \lambda / p_F$$





## **R<sub>S</sub>(H<sub>0</sub>): Thermal Feedback**



To first order we obtain:

$$R_{s}(T, H_{0}) = R_{s}(T_{0}, 10 \text{mT}) \left[ 1 + \gamma^{*} \left( \frac{H_{0}}{H_{c}} \right)^{2} \right]$$

$$\gamma^* \left(T_0\right) = R_{BCS} \left(T_0\right) \frac{H_c^2 \Delta}{2k_B T_0^2} \left(\frac{d}{\kappa} + \frac{1}{h_K}\right) \approx 0.2 - 1 \text{ at } 2 \text{ K}$$

- $\kappa(T)$  Thermal conductivity
- $h_{\kappa}(T)$  Kapitza conductance





#### **Thermal Conductivity of Nb**





Thomas Jefferson National Accelerator Facility



#### **Thermal Conductivity of Nb**







#### Kapitza Resistance



$$R_{K} = 1/h_{K}$$

- Determines the heat exchange at the outer surface of the cavity wall in contact with He bath
- Arises from non-unity phonon transmission coefficient across the interface

$$h_{K}(T_{s}, T_{0}) = 200T^{4.65} \left[ 1 + 1.5 \left( \frac{T_{s} - T_{0}}{T_{0}} \right) + \left( \frac{T_{s} - T_{0}}{T_{0}} \right)^{2} + 0.25 \left( \frac{T_{s} - T_{0}}{T_{0}} \right)^{3} \right] \left( \frac{W}{K m^{2}} \right)$$





## **Meissner Current at Inner Cavity Surface**



- Surface current density cannot exceed the depairing current density  $J_d = H_s/\lambda \sim 5MA/cm^2$
- London penetration depth

$$\lambda = \left(\frac{m}{e^2 n_s(T)\mu_0}\right)^{1/2} \cong 40 \ nm$$



Thomas Jefferson National Accelerator Facility



## **Effect of Current on Thermal Activation**



- thermally-activated normal electrons. Nonlinearity of surface resistance R<sub>s</sub> (J).
- Critical pairbreaking velocity:

$$v_c = \frac{\Delta}{p_F}$$





## **Non-Linear** R<sub>BCS</sub>

$$n(J) = \frac{n_{\text{eq}}}{2} \int_0^{\pi} \exp(p_F v_s \cos \theta / k_B T) \sin \theta d\theta$$
  
=  $n_{\text{eq}} \frac{\sinh \beta}{\beta}$  where  $\beta(x, t) = \beta_0 \exp(-x/\lambda) \cos \omega t$ 

$$\beta_0 = \frac{v_{\rm s} p_{\rm F}}{k_{\rm B} T} = \frac{\pi}{2^{3/2}} \frac{H_0}{H_{\rm c}} \frac{\Delta}{k_{\rm B} T}$$

Current driving parameter

For T = 2 K and T<sub>c</sub>= 9.2K, the parameter  $\beta_0$  varies from 0 at H<sub>0</sub> = 0 to 8 at H<sub>0</sub> = 160 mT







## **Non-Linear** R<sub>BCS</sub>

 $q(t) = \int \sigma(v_{\rm s}) E^2(x, t) dx, \qquad \text{where} \qquad \sigma(v_{\rm s}) = \sigma_{\rm BCS} n(v_{\rm s}) / n_{\rm eq} \qquad E(x, t) = -\lambda \frac{\partial \left( B_0 e^{-x/\lambda} \cos \omega t \right)}{\partial t}$  $\frac{q}{H_0^2} = 2R_{\rm BCS}\sin^2\omega t \int_0^\infty e^{-2x/\lambda} \frac{\sinh(\beta_{\rm a}e^{-x/\lambda})}{\lambda\beta_{\rm a}e^{-x/\lambda}} dx$ 

Integrating and averaging over the RF period we obtain  $R_{BCS}^{nl}(H_0) = 2\langle q \rangle / H_0^2$ 

$$R_{BCS}^{nl} = \frac{8R_{BCS}}{\pi\beta_0^2} \int_0^{\pi} \sinh^2\left(\frac{\beta_0}{2}\cos\tau\right) \tan^2\tau \,d\tau \qquad \tau = \omega t$$
  
For  $\beta_0 \ll 1$ 
$$R_{BCS}^{nl} \cong \left[1 + \frac{\pi^2}{384} \left(\frac{\Delta}{T}\right)^2 \left(\frac{H_0}{H_c}\right)^2\right] R_{BCS}$$







## **R<sub>S</sub>(H<sub>0</sub>): Thermal Feedback**





Thomas Jefferson National Accelerator Facility



## **R<sub>S</sub>(H<sub>0</sub>): Thermal Feedback**







#### **Breakdown Field**

Quench will occur at  $T_{\rm m}=T_{\rm b}$  at which  $H_0(T_{\rm m})$  is maximum

#### Assuming linear R<sub>BCS</sub>



 $H_{\rm b} \cong 200 \text{ mT} \qquad \begin{array}{l} \text{For } {\rm T_0} = 2{\rm K}, \, {\rm d} = 3 \text{ mm}, \, \kappa = 20 \text{ W/m K}, \, {\rm h_K} = 5 \text{ kW/m^2 K}, \, \Delta/{\rm k_B} = 17.7{\rm K}, \\ {\rm R_s}(2{\rm K}) = 20 \text{ n}\Omega \end{array}$ 





## **R<sub>S</sub>(H<sub>0</sub>): Parameters Dependence**

#### **Baseline parameters**





Thomas Jefferson National Accelerator Facility



## **R<sub>S</sub>(H<sub>0</sub>): Parameters Dependence**



## **R<sub>S</sub>(H<sub>0</sub>): Parameters Dependence**



## R<sub>S</sub>(H<sub>0</sub>): Data







#### **Models Comparison with Data**



## Effect of Impurities on R<sub>s</sub> at High Field



• Unlike in the moderately dirty limit, in a clean SC the quasiparticle density of states become that of a normal-conductor (gapless) at  $H < H_{sh}$ 





## Effect of Impurities on R<sub>s</sub> at High Field



 $R_s(H) \propto \exp(-\varepsilon_g(H)/kT)$ 

Impurities in the top ~40nm layer of Nb can decrease the non-linearity of  $R_{\rm s}$  at high fields





## **Effect of Hot-Spots**



Regions of radius  $r_0$  where A(x,y) or H(x,y) is locally enhanced (impurities, GBs, thicker oxide patches, field focusing near surface defects, local vortex penetration, etc.)

$$\kappa \nabla^2 T - \widetilde{\alpha}(T)(T - T_0) + q(T, H, r) = 0$$

 $T(x,y) = T_s + \delta T(x,y)$ , where  $T_s$  satisfies the uniform heat balance  $\alpha(T_a)(T_a - T_0) = q_0(T_s, H)$ , and  $\delta T(x,y)$  is a disturbance due to defects:

$$\tilde{\alpha} = \frac{h_{\kappa}}{1 + d h_{k} / \kappa} \qquad \qquad \kappa \nabla^{2} \delta T - \left( \widetilde{\alpha} - \frac{\partial q}{\partial T} \right) \delta T + \delta q = 0$$

Excess heat generation  $\delta q = H^2 \delta R/2 + R \delta H^2/2$  in the region of radius r<sub>0</sub>





#### **Temperature Distribution**

$$\delta T(r) = \frac{\Gamma}{2\pi\kappa d} K_0 \left(\frac{r}{L}\right), \qquad r > r_0 \qquad \Gamma = \int \delta q(x, y) dx dy$$

A hotspot produces a temperature disturbance  $\delta T(r)$ , which spreads along the cavity wall over the distance L >>  $r_0$  greater than the defect size

$$L = \frac{L_h}{\sqrt{1 - f(H/H_b)}}, \qquad L_h = \sqrt{\frac{d\kappa}{\alpha}}$$
Where  $f(H/H_b) = (\partial q/\partial T)/\alpha \rightarrow 1$  at  $H \rightarrow H_b$ 

$$\frac{L_h}{\sqrt{1 - (H/H_{bb})^2}}$$
L increases with H and diverges at the uniform breakdown field,  $H = H_b$ 



L≅-



## **Averaged Surface Resistance**

$$\eta = \frac{r_0^2}{L_h^2} \left( \frac{\delta A}{A} + \frac{\delta H^2}{H^2} \right)$$

Quantifies extra power generated by the defect due to

- local enhancement of BCS factor A
- local field enhancement

Considering weak hot-spots ( $\eta \ll 1$ ):

Extra dissipation in a hotspot:

$$\widetilde{\alpha}\int \delta T(x,y)dxdy = \frac{\pi}{2}L^2H^2\eta_s R_s(T_s)$$

Global surface resistance with the account of non-overlapping hotspots:

 $\widetilde{R}_{s}(T,H) = R_{s}(T,H) \left[ 1 + \frac{g}{1 - (H_{0}/H_{b0})^{2}} \right] \qquad g = <\eta > \frac{\pi L_{h}^{2}}{\ell_{s}^{2}}$ 

 $R_s(H)$  is the uniform surface resistance,  $\ell_s$  is the mean spacing between hotspots,  $H_{b0}$  is the uniform breakdown field,

#### Nonlinear contribution to the global R<sub>s</sub> due to expansion of hotspots with H.





# **Q**<sub>0</sub>(**H**) for Linear BCS + Hot-Spots

Inserting the expression of  $R_s(H)$  from the previous slide in the "analytical" thermal balance equation we obtain: 10<sup>10</sup>



 $H_0(\theta)$  is maximum at  $\theta = 1$ , which defines the global breakdown field  $H_b$  reduced by weak hotspots (g<<1):

$$H_{b} \cong \left(1 - \frac{\sqrt{g}}{2}\right) H_{b0}$$





## Summary

- Several mechanisms lead to a similar increase of R<sub>s</sub> for increasing RF fields:
  - Thermal impedance
  - Hot-spots
  - Intrinsic R<sub>BCS</sub> non-linearity
- All this mechanisms cause the increase of  $R_s(H)$  by thermal feedback
- Experiments should be designed to test the influence of each contribution





## **Vortices in Type-II Superconductors**



• The magnetic field inside a type-II superconductor is quantized. The unit flux quantum (*fluxon*) is

$$\Phi_0 = \frac{h}{2e} = 2.07 \times 10^{-15} \,\mathrm{Wb}$$

- Supercurrent flows around the fluxon to shield the sc (current vortex)
- The fluxon with the associated current vortex is called *fluxoid*





## **Vortices in Type-II Superconductors**



Non-superconducting core of radius  $\sim \xi$  surrounded by circulating currents spread over  $\sim \lambda$ .

Nb:  $\lambda \cong 40 \text{ nm}, \xi \cong 32 \text{ nm}$ 

Nb<sub>3</sub>Sn:  $\lambda \cong 90$  nm,  $\xi \cong 3$  nm



Energy increase due to loss of condensation energy





#### **Lorentz Force**



$$\mathbf{f}_{\mathbf{L}} = \mathbf{J}_{\mathbf{s}} \times \Phi_0$$

 $\mathbf{J}_{s}$ : total supercurrent density due to all other vortices and any net transport current at the location of the core of the vortex

Flux lines tend to move transverse to the current

Flux lines moving with velocity v induce an electric field  $\mathbf{E} = \mathbf{B} \times \mathbf{v}$ parallel to J: acts like a resistive voltage

Flux line motion causes dissipation

$$\mathbf{P} = \mathbf{J} \cdot \mathbf{E}$$





## **Flux Flow**



Viscous flux flow of vortices driven by the Lorentz force  $\eta \vec{v} = \phi_0 [\vec{J} \times \hat{n}], \qquad \vec{E} = [\vec{v} \times \vec{B}] \quad \text{Faraday law}$ 

This yields the liner flux flow E-J dependence:

 $\vec{E} = \rho_f \vec{J}, \qquad \rho_f = \rho_n B / B_{c2}$ 

Volume fraction of normal vortex cores

E FF

Vortex viscosity  $\eta$  is due to dissipation in the vortex core and can be expressed in terms of the normal state resistivity  $\rho_n$ :

$$\eta = \phi_0 B_{c2} / \rho_n$$

For E =  $1\mu$ V/cm and B = 1T, the vortex velocity

v = E/B=0.1 mm/s



Thomas Jefferson National Accelerator Facility



## **Vortices in Type-II Superconductors**

- Vortex penetration
- Vortex pinning







#### **Surface Barrier**



Two forces acting on the vortex at the surface:

- Meissner currents push the vortex in the bulk
- Attraction of the vortex to its antivortex image pushes the vortex outside

Thermodynamic potential G(b) as a function of the position b:

$$G(b) = \phi_0 [H_0 e^{-b/\lambda} - H_v(2b) + H_{c1} - H_0]$$
  
Meissner Image

Vortices have to overcome the surface barrier even at  $H > H_{c1}$  (Bean & Livingston, 1964)

Surface barrier disappears only at the overheating field H =  $H_c$  at which the surface J reaches the depairing current density





#### **Vortex Penetration into SC**



Magneto-optical studies of a coriented  $MgB_2$  film show that below 10 K the global penetration of vortices is dominated by complex dendritic structures abruptly entering the film.

Figure shows magneto-optical images of flux penetration (image brightness represents flux density) into the virgin state at 5 K. The respective images were taken at applied fields (perpendicular to the film) of 3.4, 8.5, 17, 60, 21, and 0 mT.





## **Vortex Penetration in RF Field**



Vortex entry at the local penetration field  $B_v = \phi_0/4 \pi \lambda \xi_s \approx 0.71 B_c$ .

$$\eta \dot{u} = \frac{\phi_0 H_0}{\lambda} e^{-u/\lambda} \sin \omega t - \frac{\phi_0^2}{2\pi\mu_0 \lambda^3} K_1 \left(\frac{2\sqrt{u^2 + \xi^2}}{\lambda}\right)$$

Vortex eq. of motion

Vortex enters the surface at t=0 when  $B > B_v$ 

At time  $t=t_c$ ,  $|B(t_c)| > |-B_v| \rightarrow$  an anti-vortex enters the surface while the vortex is at position  $u_c$ 

• Eqs. of motion of vortex and anti-vortex

At time  $t=t_a$  vortex and anti-vortex annihilate,  $u_+(t_a) = u_-(t_a)$ 





#### **Vortex Trajectory**





М





## **Vortex Trajectory**

Only single-vortex penetration was considered:  $B_v < B_0 < B_2$ •

 $B_2 \sin \omega t_2 - \frac{\phi_0}{\pi \lambda^2} K_1\left(\frac{u_2}{\lambda}\right) = B_v$  Defines the rf amplitude  $B_2$  above which a second vortex would enter

The time it takes for a vortex to move by a distance  $\sim \lambda$  from the surface is:

$$\tau = \frac{\mu_0 \lambda^2 \eta_0}{\phi_0 B_v} \simeq \frac{2\mu_0 \lambda^3}{\rho_n \xi} \qquad \sim 4 \times 10^{-12} \text{ s for Nb}$$





#### **Dissipation due to vortex motion**

The power  $Q = (\omega \eta / 2\pi) \oint v^2 dt$  dissipated due to the work of the viscous drag force is given by:

$$Q = \frac{\omega\eta}{\pi} \left[ \int_{t_0}^{t_c} \dot{u}^2 dt + \int_{t_c}^{t_a} (\dot{u}_+^2 + \dot{u}_-^2) dt \right]$$

In the low-frequency limit:  $Q = 2\omega \phi_0 B_v / \pi \mu_0$ 

 $\sim 1 \text{ W/m}$  at 1 GHz





Thomas Jefferson National Accelerator Facility



#### How fast is vortex entry?

$$v_m \sim \frac{\lambda}{\tau}$$

- For Nb: v<sub>m</sub> ~ 10 km/s is greater than the speed of sound and exceeds the BCS pairbreaking velocity v<sub>c</sub> = 0.8 km/s
- Radical change of the vortex due to nonequilibrium effects in the vortex core)
- Nonlinear viscous drag depending on the vortex velocity
- Dynamically generated vortex mass
- Vortex becomes very hot

Larkin and Ovchinnikov: nonequilibrium effects in the vortex core decrease the drag coefficient  $\eta$  as *v* increases:

$$\eta(v) = \frac{\eta_0}{1 + v^2 / v_0^2} \qquad v_0: \text{ critical velocity} < v_m$$





#### **Jumpwise Vortex Penetration**



The vortex first moves from u=0 to  $u=u_1$ , then jumps from point 1 to point 2, after which it moves continuously until the next jump and annihilation with the antivortex on the way back





#### **Jumpwise Vortex Penetration**







## **Temperature Around the Oscillating Vortex**

The distribution of T(r, t) around a moving vortex is described by a thermal diffusion equation

$$C\dot{T} = k\nabla^2 T - \alpha(T - T_0) + \eta(T_m)v^2(t)f(x - u(t), y)$$

dissipation in the vortex core

 $f(r) = \pi^{-1} \xi_1^{-2} \exp(-r^2/\xi_1^2)$  core form factor δT(x,y)/T<sub>Q</sub> 0.75 0.5 y/d 0.25 x/d -2

Steady-state solution for weak overheating:

$$\delta T(\vec{r}) = \frac{Q}{2\pi k} \ln \frac{\cosh(\pi y/2d) + \cos(\pi x/2d)}{\cosh(\pi y/2d) - \cos(\pi x/2d)}, \quad |r| >> r_0$$
  
$$\delta T_m = \frac{Q}{\pi k} \ln \frac{4d}{\pi r_0}, \qquad |\vec{r}| < r_0$$

Q: average dissipated power due to vortex motion

• For Nb: with k = 10 W/mK, f = 2 GHz,  $Q \approx 4B_v \phi_o/\mu_o$ d = 3mm, r<sub>0</sub> = 100 nm, B<sub>v</sub> = 150 mT, we get

 $\delta T_m \approx 0.6 K$ 





# Pinning

Ideal single crystals <u>without defects</u> have a finite flux flow resistivity and partial Meissner effect



J<sub>c</sub>

- Defects pin vortices restoring <u>almost</u> zero resistivity for J smaller than the critical current density  $J_c$
- Unlike the thermodynamic quantities ( $T_c H_{c1}$ ,  $H_{c2}$ ), the value of  $J_c$  can be strongly sample dependent.
- Force balance condition per unit volume, where the pinning force F(T,B) vanishes at B<sub>c2</sub>

$$BJ_c(T,B) = F_p(T,B)$$

• Pinning of vortex lines is determined by defect microstructure on different length scales  $\xi < | < \lambda$ .

 Competition between vortex-pin attraction and vortex-vortex repulsion



 $\mathbf{F}_{\mathbf{p}}$ 

B/B<sub>c2</sub>



## **Core Pinning**



- Gain of a fraction of the vortex core line energy,  $\epsilon_0 = \pi \xi^2 \mu_0 H_c^2/2$ , if the core sits on a defect
- Pinning energy  $U_p$  and force  $f_p$  for a columnar pin of radius r:

$$egin{aligned} U_p &pprox arepsilon_0 rac{r^2}{\xi^2}, & f_p &pprox 2arepsilon_0 rac{r}{\xi^2}, & r << \xi, \ U_p &pprox arepsilon_0, & f_p &pprox rac{arepsilon_0}{r}, & r > \xi \end{aligned}$$

- For r <<  $\xi$ , only a small fraction of the core energy is used for pinning,  $f_p$  is small
- For r >>  $\xi$ , the whole  $\epsilon_0$  is used, but the maximum pinning force  $f_p \sim \epsilon_0/r$  is small

Columnar

pin

 $2\lambda$ 

<u>2ξ</u>

<u>2ξ</u>

pins

r

Х



## **Optimum Core Pin Size and Maximum J**<sub>c</sub>



- Because f<sub>p</sub>(r) is small for both r << ξ and r >> ξ the maximum pinning force occurs at r ≃ ξ.
- The same mechanism also works for precipitates.

What is the maximum  $J_{c}$  for the optimum columnar pin?

• Optimum pin allows to reach the depairing current density!

Core pinning

by a planar defect

of thickness  $\approx \xi$  is

also very effective

$$J_{\max} \cong \frac{f_p(\xi)}{\phi_0} = \frac{\phi_0}{8\pi\mu_0\xi\lambda^2} \cong J_d$$







## **High J**<sub>c</sub>-Values for DC Transport

#### Real pinning microstructure in NbTi



Pinning effectively prevents vortex motion in presence of a DC current: maintains R=0 up to high J<sub>c</sub>-values





## **Trapped vortices in SRF cavities (1)**

• Field cooling in residual Earth field



• Thermoelectric currents during cooldown across T<sub>c</sub>







## **Trapped vortices in SRF cavities (2)**

- The resulting distribution of trapped vortices in the cavity can be highly inhomogeneous and the trapping efficiency depends on the material treatment (Post-purification annealing, strong oxidation, large amount of chemical etching)
- Due to the random nature of pinning centers within the wall thickness, we do not know the orientation of the trapped vortices with respect to the cavity surface







## **Effect of Pinning**



The Eq. of motion can be solved for small oscillations and the dissipated power can be calculated

Vortex oscillations under RF field cause losses





## **Vortex Free Layer**



- Vortex-free layer of thickness  $d_c \sim \lambda$  at the surface

$$\frac{\phi_0^2}{2\pi\mu_0\lambda^3}K_1\!\left(\frac{2d_c}{\lambda}\right) = \frac{f_p}{\ell}, \qquad \qquad \varepsilon \cong \frac{\phi_0^2}{4\pi\mu_0\lambda^2}\ln\frac{\lambda}{\widetilde{\xi}}$$

• Pinning time constant:

$$\tau_p = \frac{\eta \ell^2}{2\varepsilon} = \frac{\tau \kappa}{\ln \kappa} \left(\frac{\ell}{\lambda}\right)^2 \qquad \frac{\tau_p \sim 10^{-8} \text{ s}}{\text{ for } \ell \sim 4 \text{ }\mu\text{m}}$$





## **RF** Dissipation

- Seek a solution of the eq. of motion of the form:  $u(y,t)=u_0(y)+\delta u(y,t)$
- Solve linearized eq. of motion for the Fourier component  $\delta u_{\omega}(y) = \int \delta u(y,t) e^{-i\omega t} dt$

$$Q_v = \frac{\eta_0 \omega^2}{2\ell} \int_{-\ell/2}^{\ell/2} |\delta u_{\omega}(y)|^2 dy \qquad \text{dissipated power per unit vortex length}$$

 $Q_v/a = B_0^2 R_i/2\mu_0^2$  dissipated power per unit area resulting in additional surface resistance

$$\begin{split} R_{i} &= \frac{\phi_{0}^{2} \langle e^{-2d/\lambda} \rangle}{\lambda^{2} \eta a} \Biggl[ 1 - \frac{\sinh \sqrt{\omega \tau_{p}} + \sin \sqrt{\omega \tau_{p}}}{\sqrt{\omega \tau_{p}} (\cosh \sqrt{\omega \tau_{p}} + \cos \sqrt{\omega \tau_{p}})} \Biggr] \\ & \uparrow \\ & \text{High-frequency} \\ & \text{limit} \end{split}$$





## **RF** Dissipation



 $R_i$  depends strongly on the distribution of the pinning centers (and therefore on the size  $\ell$  of the pinned vortex segments)

- $R_i \propto \omega^{\beta} \ \beta \cong 0.5$ -0.7 in agreement with experiments on Nb cavities<sup>2</sup>
- $\tau_p \sim 10^{-8}$  s from experiments on Nb cavities<sup>2</sup>  $\implies \ell \sim 4 \ \mu m$





## **RF** Dissipation

• Stronger pinning  $(\downarrow \tau_p)$  reduces  $R_i$ 

**Experimental evidence:** Reduced RF losses in YBCO (47.7 GHz) by adding 7% BZO pinning centers !



N. Pompeo et al., ASC'08, Chicago, paper 4MC05





#### **Vortex Hotspot**





Thomas Jefferson National Accelerator Facility



#### **Lorentz Electron Microscopy of Vortex Structures**



Fascinating vortex movies at: <u>http://www.hitachi.com/rd/research/em/movie.html</u>



Thomas Jefferson National Accelerator Facility

