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Outline

1. Single-particle equations of longitudinal motion          
through a Linac. 
– Ultra-relativistic approximation
– Acceleration through standing-wave structure
– Generating an “energy-chirp”

2. Magnetic-chicane compressors
– Conceptual picture
– The 4-bend chicane compressor
– Alternate magnetic compression layouts 
– Momentum compaction and compression factor 

3. The need to linearize the beam longitudinal phase-
space for efficient compression
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Longitudinal dynamics: 
motion through an accelerating structure 

• Neglect transverse motion for now and focus on longitudinal motion 
– In first approximation the longitudinal dynamics is unaffected by the transverse motion. 

• Longitudinal dynamics through an accelerating structure.
– Dynamics is driven by the longitudinal component of electric field  
– Consider standing-wave structures  
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𝐸𝑧 𝑡, 𝑠 = 𝐸𝑧0 𝑠 cos 𝜔rf𝑡 + 𝜑rfOn axis (x=y=0) accelerating field: 

Design structure so that  as the electron moves 
from cell to cell it sees the same sign of 𝑬𝒛.    

1.3GHz , Super Conducting (SC) 9-Cell Tesla RF cavities
are operated as  standing-wave structures  

rf phase 
rf frequency

𝝎𝐫𝐟 =
𝟐𝝅

𝒇𝐫𝐟

On-axis Longitudinal E-field for TESLA Cavity 



Acceleration through a standing-wave structure 

• Operating mode
– the electron travels through one cell in half rf period 

cell length is half the rf wavelength 𝜆rf = 𝑐/𝑓rf
– “𝜋-mode” is the standard operating mode for standing-wave structures 4

Cross section of 
3-cell accelerating
structure

lrf /2

Ez

Longitudinal 
E-field

En
er

g
y 

g
a

in
 

En
er

g
y 

lo
ss

 

𝐸𝑧 𝑡, 𝑠 = 𝐸𝑧0 𝑠 cos 𝜔rf𝑡 + 𝜑rf

𝒔



Equations of motion for single particle dynamics

• Neglect collective effects, dissipative effects (e.g. radiation)

• Canonical (Hamiltonian) formalism

• Define coordinate system, orbit of reference particle:
– Transverse coordinates 𝑥 = 𝑝𝑥 = 𝑦 = 𝑝𝑦 = 0 (ideally corresponding to 

center of magnets, accelerating structures ,etc)

– Longitudinal  coordinates for an individual particle:
– different options are possible depending  on choice of the independent variable with respect 

to which we parametrize the orbit:

• Coordinates for any particle in bunch can be  expressed in terms of deviations 
from reference  orbit
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Independent variable 1st canonical coordinate 2nd canonical coordinate

𝑡 , time 𝑠 𝑡 , orbit path-length 𝑝𝑠 𝑠 ,  longitudinal 
momentum

𝑠 , orbit path-length 𝑡 𝑠 ,   time of flight 𝐸 𝑠 ,   (total) energy



Hamiltonian for charged-particle interaction with E&M 
field and equations of motion through rf structures

• Specialize Hamiltonian to longitudinal motion  for on-axis electron (𝑞 = −𝑒)
interacting with electric field 𝐸𝑧 𝑡, 𝑠 = 𝐸𝑧0 𝑠 cos 𝜔rf𝑡 + 𝜑rf .
–  𝑠 direction is the same as the  𝑧 direction
– Identify scalar potential associated with field from standing wave structure                          

𝝓 = 𝒄𝒐𝒔 𝝎𝒓𝒇𝒕 + 𝝋𝒓𝒇  𝟎
𝒔
𝑬𝒛𝟎 𝒔′ 𝒅𝒔′
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𝑯 = 𝒎𝟐𝒄𝟒 + 𝒄𝟐 𝒑 − 𝒒𝑨(𝒙)
𝟐
+ 𝒒𝝓(𝒙)

• General Hamiltonian with time 𝒕 as the independent  variable [i.e. a 
particle orbit solution of the canonical equations are    (  𝑥,  𝑝) = (𝑥(𝑡), 
 𝑝(𝑡)) ]

𝐵(  𝑥) = 𝛻 × 𝑨(𝒙) 𝐸  𝑥 = −𝑞𝛻𝝓(𝒙)

𝑯 = 𝒎𝟐𝒄𝟒 + 𝒑𝒔
𝟐𝒄𝟐 − 𝒆𝝓 𝒔, 𝒕

• Equations of motion :

𝒅𝒑𝒔
𝒅𝒕

= −
𝝏𝑯

𝝏𝒔
= −𝒆𝑬𝒛𝟎 𝒔 𝒄𝒐𝒔 𝝎𝐫𝐟𝒕 + 𝝋𝐫𝐟

𝒅𝒔

𝒅𝒕
=
𝝏𝑯

𝝏𝒑𝒔
=

𝒄𝟐𝒑𝒔

𝒎𝟐𝒄𝟒 + 𝒄𝟐𝒑𝒔
𝟐
=

𝒑𝒔
𝒎𝜸



Things are simpler in the ultrarelativistic approximation 

• Through most of the linac the electron velocity is close enough to 
spead of light 𝒗𝒛~𝒄, i.e. 𝛾 = ∞

– Note: The ultra-relativistic approx. does  not apply in the injector. Non-relativistic 
motion can be exploited to do bunch compression (velocity bunching). We’ll see this 
tomorrow

– Caution: for proper modeling of other aspects of beam dynamics  (e.g. space charge) 
𝛾 cannot be taken to be infinite in the Linac either. 
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• When the motion is ultra-relativistic it is more convenient to use 𝒔 instead of 𝒕
as the independent variable:

𝒅𝒔

𝒅𝒕
≃ 𝒄

𝑑𝑝𝑠
𝑑𝑡

= −𝑒𝐸𝑧0 𝑠 cos 𝜔rf𝑡 + 𝜑rf

𝒅𝒑𝒔
𝒅𝒔

=
𝒅𝒑𝒔
𝒅𝒕

𝒅𝒕

𝒅𝒔
≃ −

𝒆

𝒄
𝑬𝒛𝟎 𝒔 𝒄𝒐𝒔 𝝎𝐫𝐟𝒕(𝒔) + 𝝋𝐫𝐟

• What’s the meaning? 𝒕(𝒔) is the arrival time of the electron measured by an 
observer at longitudinal position 𝒔

• Say, 𝑠 = 0 is the entrance of accelerating structure. Identify the particle that passes 
there at 𝑡 = 0 as the reference particle. For this particle  we have  𝒕 ≡ 𝒕𝒓 𝒔 = 𝒔/𝒄



Specify particle coordinate w.r.t reference particle

• We  specify the time of arrival of any particle in the bunch 
relatively to the time of arrival of the reference (or 
“synchronous”) particle i.e.: 
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𝚫𝒕 𝒔 = 𝒕 𝒔 − 𝒕𝒓 𝒔Dt(s)<0 means particle is ahead
of reference particle

(it arrives earlier at 𝒔) 

• Instead of expressing separation between particles in terms of difference of 
time of flight we can also express it in terms of distance, i.e. 

• Q: How does 𝑧 (or Δ𝑡) vary as a particle travels through an accelerating 
structure?
– A: In the ultra-relativistic approximation all particles are described as moving with  the 

same velocity   ( = c). So the separation between particles doesn’t change:

𝒛 = 𝜟𝒕/𝒄

𝑑𝑧

𝑑𝑠
≃ 0

• Next:  Find the energy change experienced by an electron 
travelling through an RF travelling wave structure. 

Use notation 𝑧 instead of 𝛥𝑧 for simplicity



Energy change through rf structure

• Ideally 𝐸𝑧0 𝑠 is symmetric with respect the structure midpoint  
– Expand in a cos Fourier-series, with vanishing values at boundaries. Assume idealized 

profile with exact symmetry w.r.t rf structure center 

9
𝚫𝑬 𝒛 = 𝒆𝑽 𝐜𝐨𝐬 𝒌𝐫𝐟𝒛 + 𝝋𝐫𝐟

𝐄𝒂 ≡
𝐕

𝑳𝒔

(sin term vanishes)

𝑑𝑝𝑠
𝑑𝑠

= −
𝒆

𝒄
𝑬𝒛𝟎 𝒔 𝒄𝒐𝒔 𝝎𝐫𝐟𝒕(𝒔) + 𝝋𝐫𝐟 = −

𝒆

𝒄
𝑬𝒛𝟎 𝒔 𝒄𝒐𝒔 𝝎𝐫𝐟(𝒕𝒓 𝒔 + 𝚫𝒕) + 𝝋𝐫𝐟 =

= −
𝒆

𝒄
𝑬𝒛𝟎 𝒔 𝒄𝒐𝒔 𝒌𝐫𝐟𝒔 + 𝒌𝐫𝐟𝒛 + 𝝋𝐫𝐟

Δ𝐸 = 𝑐  −𝐿𝑠/2
𝐿𝑠/2 𝑑𝑠

𝑑𝑝𝑠

𝑑𝑠
= 𝑒 − 𝑚𝐸0𝑚  

−𝐿𝑠/2

𝐿𝑠/2 cos(𝑚
𝜋

𝐿𝑠
𝑠) cos(𝑘𝑟𝑓𝑠)𝑑𝑠 cos 𝑘rf𝑧 + 𝜑rf

Acceleration Voltage

Acceleration  gradient

Energy change by electron with coordinate 𝒛:

𝑽

𝐿𝑠 = (𝑛  +1 2)𝜆rf

𝑠 ∈ [−𝐿𝑠/2, 𝐿𝑠/2]

𝐸𝑧0 𝑠 =  𝑚𝐸0𝑚 cos(𝑚
𝜋

𝐿𝑠
𝑠) m=1,3,5,…

𝑳𝒔

𝝀𝐫𝐟

𝑛 = 2

𝑬𝒛𝟎

𝒌𝐫𝐟 = 𝝎𝐫𝐟/𝒄
RF-wavenumber



A couple of remarks on formula for energy change 

• Acceleration of reference particle at  𝑧 = 0

• Max. acceleration is when the cavity is operated  “on crest”  𝜑rf = 0.
– “Zero-field” crossing (when there is no net acceleration) corresponds to 𝜑rf = ±𝜋/2
– “In trough” corresponds to 𝜑rf = ±𝜋

• However,  another convention is often used where  rf phase is shifted by 90deg                                        
– In this case the “crest” corresponds to 𝜑rf = 𝜋/2

• Same formula applies  to acceleration through travelling wave structures 10

𝑬 𝒛 = 𝑬𝒊 + 𝒆𝑽𝒄𝒐𝒔 𝒌𝐫𝐟𝒛 + 𝝋𝐫𝐟

𝑬 = 𝑬𝒊 + 𝒆𝑽𝒄𝒐𝒔 𝝋𝐫𝐟

𝐸 𝑧 = 𝐸𝑖 + 𝑒𝑉 sin 𝑘rf𝑧 + 𝜑rf

(“zero-phase is on crest” rf-phase convention)

Elegant rf phase convention

∆𝑬

head

tail

𝝋𝐫𝐟 = 𝟎 (beam “on crest”) 

𝒛
head

𝝋𝐫𝐟 = −𝝅/𝟐
(beam at “zero-crossing”) 

tail

𝝋𝐫𝐟 = −𝝅
(beam 
“in  trough”) 

head



How do we choose the rf phase ?

• For maximum acceleration, the cavities should be operated on crest …

Q: Why do we ever want to operate the cavities off-crest?
A:  To control the beam  “energy chirp”, i.e. the correlation between a 
particle position 𝒛 within the bunch and its energy 𝑬

– The ability to put an energy chirp on a beam is needed to do bunch 
compression through a magnetic chicane (see following slides) 
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Definition of 
linear 

(relative) 
energy chirp

𝒉𝟏 =
𝚫𝑬

𝑬𝟎𝑳𝒃

𝒛

𝑬
Beam without

energy chirp
Beam with
energy chirp

𝒛

𝑬

∆𝑬

𝑳𝒃

head

head

Electron beam longitudinal  phase space 

𝐸0



Linear chirp from an rf structure operated off crest 
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Example of              
off-crest 

acceleration:

𝑓r𝑓 =1.3 GHz

𝜆rf = 23 𝑐𝑚

𝑉0 = 129 𝑀𝑉
𝜑rf = −30.3𝑜

Linear chirp
(exit of structure) 𝒉𝟏 =

𝟏

𝑬(𝟎)

𝒅𝑬(𝟎)

𝒅𝒛
= −

𝒆𝑽𝒌𝐫𝐟 𝒔𝒊𝒏 𝝋𝐫𝐟

(𝑬𝒊+𝒆𝑽 𝒄𝒐𝒔 𝝋𝐫𝐟)

≃
𝐸 𝐿𝑏/2 −𝐸 −𝐿𝑏/2

𝐸(0) 𝐿𝑏

Taylor expand through first order in 𝒛:

𝐸 𝑧 = 𝐸𝑖 + 𝑒𝑉 cos 𝑘rf𝑧 + 𝜑rf ≈
𝐸𝑖 + 𝑒𝑉 cos𝜑rf − 𝑒𝑉𝑘rf 𝑧 sin 𝜑rf + 𝑂 𝑧 2

Beam @ entrance of structure Beam @ exit of structure 

finite uncorrelated 
energy spread

∆𝑬

𝒛

𝑳𝒃 = 𝟒𝒎𝒎

𝚫𝑬/𝑬 = 𝟑.𝟒%

𝒉𝟏~
𝟎.𝟎𝟑𝟒

𝟎.𝟎𝟎𝟒𝒎
= 𝟖. 𝟓𝒎−𝟏



How can we compress an ultra-relativistic beam? 

• Longitudinal density (peak current) of bunches out of injector is 
typically too low (10s A) for efficient lasing (we need 100s A, at least).  
We need to compress the bunch. 

• To compress the bunch we need to be able to change the electrons’ 
longitudinal coordinate  𝑧

• We have problem: equation of motion of  ultra-relativistic electron 
(trough an accelerating structure or transport line):
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𝒅𝒛

𝒅𝒔
≃ 𝟎

We need to make the electrons
interact with something so that the electrons can slip  with respect 

to each other in some controllable way 

Solution: bring in a magnetic field 

Relative longitudinal position of 
particles in the bunch

does not change (the beam is ‘frozen’). 



Coming up with a concept for a bunch compressor I 

• Basic observation: particles with different energy in magnetic field 
follow different trajectories (e.g. a spectrometer) 
– A spectrometer exploits the particle separation in the transverse direction (x). We are 

interested in the fact that this is associated with different path-lengths. Meaning:      
a magnetic field also introduces a separation longitudinally 
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E=E0

E<E0

E>E0

Snap-shot taken when
particle with lower
energy leaves the magnet 

ref. particle
has energy E0

Suppose particles 
injected have all 
the same long. 
coordinate as the 
reference particle
𝒛=0

Higher-energy particle 
trails behind (the 

trajectory is longer)

𝐳 >0

lower -
energy 
particle 

skips 
ahead

𝒛 <0

DipoleMagnetic field 
B perpendicular 

to trajectories

𝒛

x

𝒛

x

Note: in this configuration
the dipole stretches out
rather than compressing
the beam …

𝟏

𝑩𝝆
=
𝒒

𝒑
≃
𝒒𝒄

𝑬

Radius 
of curvature

Ultra-relativistic
approximation



Coming up with a design for a compressor II 

• By introducing a properly defined correlation between  𝑬 and 𝒛 we can control 
the differential path-length among portions of the beam and effectively 
compress
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E=E0E<E0 E>E0

Suppose  the 
particle with 

higher (lower) 
energy is in the 

head (tail)  
of bunch

Dipole
Magnetic field 
perpendicular 
to trajectories

head

tail

𝒛

x

𝒛

x
A single 180 deg
bending magnet could in principle 
be used as a compressor 
but dispersion in the x-direction
is not good for us …



From concept to realization of a practical compressor

• The spectrometer example tells us that we can use dipoles 
(magnetic field)  and particle energy/position correlation
within bunch correlation to compress
– Happily we know how to create an E/z correlation: Accelerate off-crest!
– A single magnet in principle would work (not in practice…)
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• Problem: find a combination of dipoles that satisfies the following 
requirements:

– The system should be an overall achromat (after we are done with compression 
electrons with different energy should not spread out horizontally)

– Vanishing overall bend angle (After compression the beam “keeps going straight”, 
unless we are designing a different kind of machine e.g. an ERL)

– Modest bend angle for each dipole (short magnets; and synchrotron radiation emitted  
does not perturb the beam too much – more on this later)



The most popular bunch compressor:       
four-dipole,  C-shape chicane 

• Bend angle for  on-momentum (reference) particle:

• Bend angle for a particle off momentum 

• The system is an achromat by design (barring magnet errors/imperfections)
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𝜽𝟎 ≃
𝑳𝑩
𝝆
=
𝒆𝑩

𝒑𝟎
𝑳𝑩

𝜽 =
𝜽𝟎

𝟏 + 𝜹

𝜽𝟏 + 𝜽𝟐 + 𝜽𝟑 + 𝜽𝟒 = 𝟎 (𝑎𝑛𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚)

𝜽𝟏

𝜽𝟐 = −𝜽𝟏 𝜽𝟑 = −𝜽𝟏

𝜽𝟒 = −𝜽𝟏

𝜽𝟎

Electron w/ lower 
energy is ahead 

Electron w/ higher 
energy is  behind

Electron w/ higher 
energy travels on shorter 
path and catches up

Electron w/ lower 
energy falls
back

Reference 
particle

𝜹 ≡
𝚫𝒑

𝒑𝟎
≃

𝚫𝐄

𝑬𝟎
(ultra-relativistic approx.)

𝜃0

𝑳𝑩

𝜌



1st-order calculation of path-length dependence on 𝜹

• Thin lens approximation for the dipoles (finite bend angle  resulting from infinitesimally short 
dipole and infinitely large magnetic field): 𝜃 =

𝑳𝑩→𝟎

𝑹𝑩→𝟎
= 𝒇𝒊𝒏𝒊𝒕𝒆

• Path-length of off-momentum electron:   𝐬 =
𝟐𝑳𝟏

𝐜𝐨𝐬 𝜽
+ 𝑳𝟐

• Path-length of on-momentum (reference-particle) electron:  𝒔𝟎 =
𝟐𝑳𝟏

𝐜𝐨𝐬 𝜽𝟎
+ 𝑳𝟐
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𝜃0

𝑳𝟏 𝑳𝟐 𝑳𝟏

Δ𝑠 = 𝑠 − 𝑠0 = 2𝐿1(
1

cos 𝜃
−

1

cos 𝜃0
) ≃ 2𝐿1 (

1

1−
𝜃2

2

−
1

1−
𝜃0
2

2

) = 𝐿1 𝜃2 − 𝜃0
2

= 𝐿1𝜃0
2(

1

1+𝛿 2 − 1) ≃ −𝟐𝑳𝟏𝜽𝟎
𝟐𝛿 + O(𝜃0

4, 𝛿2)

𝜽 =
𝜽𝟎

𝟏 + 𝜹

Linear dependence on 𝑳𝟏 Quadratic  dependence on 𝜽𝟎

𝜃

𝑳𝟏
𝐜𝐨𝐬𝜽off-momentum electron

on-momentum electron

Path-length difference:



Aside on the “R”-matrix

• Electron coordinate in 6D phase space 𝒙 = (𝒙, 𝒙′, 𝒚, 𝒚′, 𝒛, 𝜹)
• Linear dynamics from point 𝒔𝟎 to point 𝒔𝟏: 𝒙𝟏 = 𝑹(𝒔𝟎 → 𝒔𝟏)𝒙𝟎
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𝒙𝟏 = 𝑹𝒙𝟎

Electron  coordinate 
vector at exit of 
beamline

𝑹 =

𝑅11 𝑅12
𝑅21 𝑅22

0 0
0 0

0 𝑅16
0 𝑅26

0 0
0 0

𝑅33 𝑅34
𝑅43 𝑅44

0 0
0 0

𝑅51 𝑅52
0 0

0 0
0 0

1 𝑅56
0 1

• Most general form of transfer-matrix in Linac section containing horizontal bends            
(in the absence of x/y coupling  and acceleration)

By design, through a chicane: 
𝑅16 = 𝑅26 = 𝑅51 = 𝑅52 = 0

beamline𝒙𝟎

Electron  coordinate
vector at entrance of

beamline

𝒔𝟎 𝒔𝟏

𝑹(𝒔𝟎 → 𝒔𝟏)



“𝑹𝟓𝟔” for a 4-bend chicane

• Beyond linear dynamics: 
• 𝑋𝑖 = 𝑅𝑖𝑗𝑥𝑗 + 𝑇𝑖𝑗𝑘𝑥𝑗𝑥𝑘 + … where 𝑥𝑖 = 𝒙 𝒊

• Longitudinal slippage: 𝒛𝟏 = 𝒛𝟎 + 𝑹𝟓𝟔𝜹𝟎 + 𝑻𝟓𝟔𝟔𝜹𝟎
𝟐 + …
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• Longitudinal slippage? 𝒛𝟏 = 𝒛𝟎 + 𝑹𝟓𝟏𝒙𝟎 + 𝑹𝟓𝟐𝒙𝟎
′ + 𝑹𝟓𝟔𝜹𝟎

– or Δ𝑧 = 𝑧1 − 𝑧0 = 𝑅51𝑥0 + 𝑅52𝑥0
′ + 𝑅56𝛿0

• What is 𝑹𝟓𝟔 for a chicane?   (𝑹𝟓𝟏 = 𝑹𝟓𝟐 = 𝟎, by design)
– From previous slides:  Δ𝒔 = −𝟐𝑳𝟏𝜽𝟎

𝟐𝛿0
– Δ𝑡 = Δ𝑠/𝑐. Recall we defined "𝑧“ as scaled time  Δ𝑧 = 𝑐Δ𝑡 therefore Δ𝑧 = Δs

– 𝑹𝟓𝟔 = −𝟐𝑳𝟏𝜽𝟎
𝟐

We’ll get back to this later 

Negative sign: a higher-energy particle follows a shorter 

path and ends up ahead (𝑧 < 0,  according to our sign convention). 



Expression for compression factor
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𝒛

𝑬

𝑧

𝐸

𝑳𝒃 = 𝟐𝒍𝒃

𝒛

𝑬
Initial
bunch

𝒛

𝑬

Bunch
exits
chicane

𝑪 =
𝒍𝒃
𝒍𝒃
′ =

𝟏

|𝟏 + 𝑹𝟓𝟔𝒉𝟏|

𝑙𝑏
′ = 𝑙𝑏 − |𝑅56|ℎ1𝑙𝑏

|Δ𝑧| = |𝑅56|
Δ𝐸

𝐸
= |𝑅56 |ℎ1𝑙𝑏

Bunch
enters
chicane

𝒍𝒃

𝒍𝒃′

rf structure
operated
off-crest

𝜟𝑬

𝑬
= 𝒉𝟏𝒍𝒃

𝑳𝒃 = 𝟐𝒍𝒃
𝑬 𝒛 = 𝑬𝒊 + 𝒆𝑽𝒄𝒐𝒔 𝒌𝐫𝐟𝒛 + 𝝋𝐫𝐟

ℎ1 = −
𝑒𝑉𝑘rf 𝑠𝑖𝑛 𝜑rf

(𝐸𝑖+𝑒𝑉 𝑐𝑜𝑠 𝜑rf)

bunch length 

head 



Expression for compression factor
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𝒛

𝑬

𝑧

𝐸

𝑳𝒃 = 𝟐𝒍𝒃

𝒛

𝑬
Initial
bunch

𝒛

𝑬

Bunch
exits
chicane

𝑪 =
𝒍𝒃
𝒍𝒃
′ =

𝟏

|𝟏 + 𝑹𝟓𝟔𝒉𝟏|

𝑙𝑏
′ = 𝑙𝑏 − |𝑅56|ℎ1𝑙𝑏

|Δ𝑧| = |𝑅56|
Δ𝐸

𝐸
= |𝑅56 |ℎ1𝑙𝑏

Bunch
enters
chicane

𝒍𝒃

𝒍𝒃′

rf structure
operated 
off-crest

𝜟𝑬

𝑬
= 𝒉𝟏𝒍𝒃

𝑳𝒃 = 𝟐𝒍𝒃
𝑬 𝒛 = 𝑬𝒊 + 𝒆𝑽𝒄𝒐𝒔 𝒌𝐫𝐟𝒛 + 𝝋𝐫𝐟

ℎ1 = −
𝑒𝑉𝑘rf 𝑠𝑖𝑛 𝜑rf

(𝐸𝑖+𝑒𝑉 𝑐𝑜𝑠 𝜑rf)

bunch length 

head 



A more formal definition of compression factor 
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𝒛𝟏

𝑬

𝑬 𝒛𝟎 = 𝑬𝒊 + 𝒆𝑽𝒄𝒐𝒔 𝒌𝐫𝐟𝒛𝟎 +𝝋𝐫𝐟

Think of beam as a line in 
𝐸/𝑧 phase space (negligible slice energy spread)

𝟏

𝑪
≡

𝒅𝒛𝟏 𝒛𝟎
𝒅𝒛𝟎

If 𝐸 𝑧0 - the energy chirp - is nonlinear then 
𝐶 depends on 𝑧 (compression will vary along 
bunch). Generally, we refer to 𝐶(𝑧 = 0)
as the nominal  compression factor.

• Action through the compressor:

Beam right
before 
compression

𝑧1 = 𝑧0 + 𝑅56𝜹𝟎 = 𝑧0 + 𝑅56
𝑬 𝒛𝟎 −𝑬𝑩𝑪

𝑬𝑩𝑪

• Differentiate:

Δ𝑧1 = Δ𝑧0 + 𝑅56
𝟏

𝑬𝑩𝑪

𝒅𝑬 𝒛𝟎

𝒅𝒛𝟎
Δ𝑧0

Δ𝑧1 = Δ𝑧0 1 + 𝑅56
𝟏

𝑬𝑩𝑪

𝒅𝑬 𝒛𝟎
𝒅𝒛𝟎

Δ𝑧1 = Δ𝑧0 1 + 𝑅56𝒉𝟏 ≡ Δz0/C

|Δ𝑧1| ≡ |Δz0|/C



Example of macroparticle simulation:                   
off-crest acceleration + compression
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(Idealized) beam
out of the injector

E=100MeV

Beam accelerated
off-crest to E=210MeV

Beam @ exit 
of compressor

Parabolic
current profile

𝑪 =
𝑰𝒇

𝑰𝒊
=
𝟎. 𝟏𝟒𝟓𝑨

𝟎. 𝟒𝟓𝑨
~𝟑. 𝟐

𝑪 =
𝝈𝒛𝒊
𝝈𝒛𝒇

=
𝟒𝟓𝟎𝝁𝒎

𝟏𝟒𝟒𝝁𝒎
~𝟑. 𝟏

Distorted parabolic
profile (dynamics is 
not completely 
linear)

Small energy 
chirp 



S-shape chicane

Arc (e.g. FODO-cell) SLC arcs

NLC BC2

FLASH
LCLS
FERMI
X-FEL
SACLA

> 0

reverse sign

< 0

simple, achromatic

< 0

achromatic,

LT

C-shape chicane

Various options for bunch compressor design 

FLASH
X-FEL

Bunch head < 0𝑳𝒄

Formulas valid in the small-angle approx. Courtesy of P. Emma

𝜽
𝑳𝑩

𝜽𝑻



Cranking up compression …
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Not apparent  
on this scale 

there is a small 
quadratic term 

in the chirp

Compression 
magnifies 

the curvature 

(Idealized) beam
out of the injector

E=100MeV

Beam accelerated
off-crest to E=210MeV

Beam @ exit 
of compressor

Current spike 
results



Non-linearities in the rf waveform compromise 
beam quality after compression

• Spiky current profiles are generally not desirable 
– We like high peak current, but if the beam is very spiky only a small fraction 

of the beam may  end up having sufficiently high current
– Spiky currents are associated with large energy spread (not good)
– If we do external-laser seeding in rgw FEL we like to have a bunch core 

where the current is about uniform
– rf and other wakefield effects are magnified by presence of spikes and will 

make ‘spikiness’ even worse when bunch is further compressed.

• Is there a way to fix this?
– One can deal with the problem by reducing compression  (not good).
– Choosing a small 𝑘rf for the accelerating structure (not practical; generally, 

choice of rf frequency is determined by other considerations) 

• Effective solution was proposed by D. Dowell,et al. in the ~90’s
– Compensate the dominant (quadratic) nonlinearity  by use of harmonic 

cavities

27



Analysis of rf waveform nonlinearities through 
accelerating rf section 
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𝑬𝑰 = 𝑬𝒊 + 𝒆𝑽𝐜𝐨𝐬 𝒌𝒛 + 𝝋 ≃ 𝑬𝒊+ 𝒆𝑽𝐜𝐨𝐬𝝋 − 𝒌𝒛𝒆𝐕𝟎𝐬𝐢𝐧𝝋 − 𝒆
𝑽𝒌𝟐

𝟐
𝒛𝟐 𝐜𝐨𝐬𝝋 + 𝑶(𝒛𝟑)

0-order term >0
(acceleration)

Quadratic term <0

Q: How can we win? (i.e. compensate  2nd

order term and still  have overall acceleration?)

A: Choose  𝒌𝑯 > 𝒌

−
𝑽𝒌𝟐

𝟐
𝐜𝐨𝐬𝝋 +

𝑽𝑯𝒌𝑯
𝟐

𝟐
= 𝟎 𝑉𝐻 = 

𝑘2

𝑘𝐻
2 𝑉 cos 𝜑

∆𝑬

𝒛Energy of particle
at exit of accelerating 
structure 

• How can we compensate the quadratic term? 
– Idea: pass beam through a second rf section (with different rf wavenumber)  

𝑬𝑰𝑰 = 𝑬𝑰 + 𝒆𝑽𝑯 𝐜𝐨𝐬 𝒌𝑯𝒛 + 𝝋𝑯 ≃ 𝑬𝑰+ 𝒆𝑽𝑯 𝐜𝐨𝐬𝝋𝑯 − 𝒌𝑯𝒛𝒆𝐕𝑯𝐬𝐢𝐧𝝋𝑯 − 𝒆
𝑽𝑯𝒌𝑯

𝟐

𝟐
𝒛𝟐 𝐜𝐨𝐬𝝋𝑯 + 𝑶(𝒛𝟑)

To cancel quadratic curvature from 
accelerating structure this term 
should be >0; i.e. 𝒄𝒐𝒔 𝝓𝑯 < 0 ,  say 
(𝒄𝒐𝒔𝝋 = −𝟏). This structure is  
decelerating

0-order term <0



3rd –order Harmonic Linearizer at FLASH (3.9GHz)

• Operationally linearizer rf frequency is best chosen to be a harmonic number of rf
frequency of accelerating structures (FLASH uses 1.3GHz SC accelerating structures) 

29

Installation  of cryomodule w./ linearizer Time-resolved measurements
of longitudinal phase space 

∆𝑬

𝒛

Linearizer
off 

Linearizer
on 



Formula for setting of linearizer revisited:
Life is always more complicated…

• Modified setting of harmonic cavity when accounting for the 2nd order term 
𝑻𝟓𝟔𝟔 in momentum compaction (Homework Exercise):

30

𝑧1 = 𝑧0 + 𝑅56𝛿0 + 𝑻𝟓𝟔𝟔𝜹𝟎
𝟐

𝒆𝑽𝑯 =
𝒌𝟐

𝒌𝑯
𝟐 − 𝒌𝟐

𝑬𝑩𝑪 𝟏 +
𝟐

𝒌𝟐
𝑻𝟓𝟔𝟔
𝑹𝟓𝟔

𝟑 𝟏 −
𝟏

𝑪

𝟑

− 𝑬𝒊

Compression factor

• Nonlinear momentum compaction in chicane is usually             
non-negligible and has  to be compensated too

Beam energy @ compressor
(minimizing 𝑉𝐻 favors doing compression at 

low energy) 

• Formula valid for 𝝓𝑯 = −𝟏𝟖𝟎𝒐 and  one-stage (single chicane) compression
• If multiple compressors are present,  𝑉𝐻 setting varies somewhat but typically not too 

much (after first BC  the bunch, is shorter and less vulnerable to rf nonlinearities) 
• Further small adjustments may be needed to account for collective effects (rf wakefields, 

CSR).
• Alternate method to linearize:  sextupole magnets within magnetic compressor (works well 

in arc-shaped compressors, not so well in chicanes where relatively small dispersion tends to 
requires too-strong sextuple magnets)

𝑪 =
𝟏

|𝟏 + 𝑹𝟓𝟔𝒉𝟏|

For standard chicanes
(Homework Exercise)

𝑻𝟓𝟔𝟔 ≃ −
𝟑

𝟐
𝑹𝟓𝟔 > 𝟎

Energy of   
beam entering 
Linac section



Summary highlights from this morning.

• Energy change by particle travelling through  rf structure (ultra-relativistic 
approx.)
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𝑬 𝒛 = 𝑬𝒊 + 𝒆𝑽𝒄𝒐𝒔 𝒌𝐫𝐟𝒛 + 𝝋𝐫𝐟

• Linear chirp acquired by beam when rf structure is operated off-crest

𝒉𝟏 = −
𝒆𝑽 𝒌𝐫𝐟 𝒔𝒊𝒏 𝝋𝐫𝐟

(𝑬𝒊+𝒆𝑽 𝒄𝒐𝒔 𝝋𝐫𝐟)

𝑪 =
𝟏

|𝟏 + 𝑹𝟓𝟔𝒉𝟏|

• Compression factor through beamline with finite momentum compaction 𝑅56

• Momentum compaction for 4-bend C-shape chicane (thin lens approximation 
𝐿𝐵 ≪ 𝐿1):

𝑹𝟓𝟔 = −𝟐𝑳𝟏𝜽𝟎
𝟐

𝒆𝑽𝑯 =
𝒌𝟐

𝒌𝑯
𝟐 − 𝒌𝟐

𝑬𝑩𝑪 𝟏 +
𝟐

𝒌𝟐
𝑻𝟓𝟔𝟔
𝑹𝟓𝟔

𝟑
𝟏 −

𝟏

𝑪

𝟑

− 𝑬𝒊

• Setting of harmonic cavity linearizer:



Summary highlights

• Undulator radiation /FEL resonance equation; undulator parameter”
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𝝀 =
𝝀𝒖
𝟐𝜸𝟐

𝟏 +
𝑲𝟐

𝟐

𝝆 =
𝟏

𝟒

𝟏

𝝅𝟐

𝑰

𝑰𝑨

𝝀𝒖
𝟐

𝜸𝟑𝝈𝒙
𝟐
𝑲 × [𝑱𝑱] 𝟐

𝟏/𝟑

• FEL 𝜌 (Pierce) parameter, 1D Theory FEL gainlength

𝐿𝑔 ~
1

4𝜋 √3

𝜆𝑢
𝜌

𝜺⊥ ≲
𝝀

𝟒𝝅
𝝈𝜹 < 𝝆

• Requirements for beam relative energy spread and transverse rms emittance

𝑩𝟔 =
𝑵

𝜺𝒏𝒙𝜺𝒏𝒚𝜺𝒏𝒛

• E-beam brightness

𝚫𝜺𝒙
𝜺𝒙𝟎

≃
𝜷𝒙
𝟐𝜺𝒙𝟎

𝜟𝒙′𝟐

• Emittance growth due to angular kick perturbation

𝑲 =
𝒆𝑩𝟎𝝀𝒖
𝟐𝝅𝒎𝒄

≃ 𝟎. 𝟗𝟑𝟒𝝀𝒖 𝒄𝒎 𝑩[𝑻]

𝑩𝟓 =
𝑰

𝜺𝒏𝒙𝜺𝒏𝒚
𝑩𝟒 =

𝑸

𝜺𝒏𝒙𝜺𝒏𝒚



Supplemental material
33
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𝒛

𝑬

Correlated vs. uncorrelated energy spread 

𝝈𝜹𝒖 𝝈𝜹

So far we have assumed model beams

with negligible  uncorrelated 𝝈𝜹𝒖 (or ‘slice’)
energy spread.

A finite 𝝈𝜹𝒖 limits the minimum bunch length 
that can be achieved (see next slide)



over-compression
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𝒛

𝑬

𝒛

𝑬

𝒛

𝑬

Min.  bunch length  determined 
by uncorrelated energy spread 

More prevalent mode 
of compression

Sign of  energy chirp 
is reversed

𝝈𝒛
′ = 𝝈𝒛

𝟐/𝑪𝟐 + (𝑹𝟓𝟔𝝈𝜹𝒖)
𝟐

Bunch length
after compression  

Initial  uncorrelated 
energy spread 

𝝈𝜹 = 𝒉𝟏𝝈𝒛
𝟐 + 𝝈𝜹𝒖

𝟐
Projected energy
spread  before
Compression…

Modes of compression;  

𝑪 =
𝟏

|𝟏 + 𝑹𝟓𝟔𝒉𝟏|

𝟏 + 𝑹𝟓𝟔𝒉𝟏 > 𝟎 𝟏 + 𝑹𝟓𝟔𝒉𝟏 = 𝟎

𝟏 + 𝑹𝟓𝟔𝒉𝟏 < 𝟎

𝝈′𝒛

𝝈𝜹𝒖
′ =

𝝈𝒛
𝝈𝒛
′ 𝝈𝜹𝒖~𝑪𝝈𝜹𝒖

…same 
after 
compression

Slice energy
spread 
after compression

In next few slides: 
How to work out these expressions

under-compression max. compression 



How do particle distributions evolve in phase space? 

• For Hamiltonian systems (volume preserving)
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𝒒

𝒑

𝒒′

𝒑’

𝑓(𝑞, 𝑝; 𝑠)

𝑓(𝑞′, 𝑝′; 𝑠′)

density function 
for particle distribution
at present ‘time’ s

Particle distribution 
at later  time s’

The particle dynamics is described by a map
from space 𝑞, 𝑝 to space (𝑞′, 𝑝′):

𝒒′ = 𝒒′ 𝒒, 𝒑
𝒑′ = 𝒑′ 𝒒, 𝒑

𝑞, 𝑝

𝑞′, 𝑝′

𝒇 𝒒′, 𝒑′; 𝒔′ = 𝒇(𝒒, 𝒑; 𝒔)

𝑑𝑁 = 𝑓 𝑞, 𝑝; 𝑠 𝑑𝑞𝑑𝑝

𝑓 𝑞′, 𝑝′; 𝑠′ = 𝑓( 𝑞(𝑞′𝑝′), 𝑝(𝑞′, 𝑝′); 𝑠)



Evolution of beam distribution through compressor 
(longitudinal phase space) I

• Assume linear approximation 
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1 2

(𝑧1, 𝛿1)

𝑓(𝑧1, 𝛿1; 𝑠1) 𝑓(𝑧2, 𝛿2; 𝑠2)

(𝑧2, 𝛿2)

𝒛𝟐 = 𝒛𝟏 + 𝑹𝟓𝟔𝜹𝟏

𝜹𝟐 = 𝜹𝟏

Coordinates:

Beam density:

𝛿1 =
Δ𝐸

𝐸𝐵𝐶
=

𝐸−𝐸𝐵𝐶

𝐸𝐵𝐶

(Particle energy doesn’t change) 

• Assume gaussian model of beam distribution 

𝒇(𝒛𝟏, 𝜹𝟏) =
𝑵

𝟐𝝅𝝈𝒛𝟏𝝈𝜹𝟏
𝐞𝐱𝐩(−

𝒛𝟏
𝟐

𝟐𝝈𝒛𝟏
𝟐
−

𝜹𝟏 − 𝒉𝟏𝒛𝟏
𝟐

𝟐𝝈𝜹𝟏
𝟐

)



Evolution of beam distribution through compressor II

• Calculate rms bunch length and energy spread 
– Homework exercise
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𝒇(𝒛𝟐, 𝜹𝟐; 𝒔𝟐) = 𝒇( 𝒛𝟏 𝒛𝟐, 𝜹𝟐 , 𝜹𝟏 𝒛𝟐, 𝜹𝟐 ; 𝒔𝟏 ) =

𝑵

𝟐𝝅𝝈𝒛𝟏𝝈𝜹𝟏
𝐞𝐱𝐩(−

𝒛𝟐 − 𝑹𝟓𝟔𝜹𝟐
𝟐

𝟐𝝈𝒛𝟏
𝟐 −

𝜹𝟐 − 𝒉𝟏(𝒛𝟐−𝑹𝟓𝟔𝜹𝟐)
𝟐

𝟐𝝈𝜹𝟏
𝟐 )

𝑧1 = 𝑧2 − 𝑅56𝛿1

𝛿1 = 𝛿2

𝑧2 = 𝑧1 + 𝑅56𝛿1

𝛿2 = 𝛿1

Invert 

𝜎𝑧2
2 = 〈(𝑧2 − 〈 𝑧2〉)

2〉

𝜎𝛿2
2 = 〈(𝛿2 − 〈𝛿2〉)

2〉

Where:   ≡  𝑑𝑧2𝑑𝛿2𝑓(𝑧2, 𝛿2)


