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Outline

• FEL physics: the basics  
– Spontaneous undulator radiation; Incoherent vs. coherent radiation
– Physical picture of FEL process (SASE)
– Essentials of 1D FEL theory 
– Notion of e-beam brightness
– Refresher on concept of emittance
– Seeding & beam quality

• Undulator technology

• Beam and high-level Linac design parameters
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Main goal here is to make a case
for the need of                                      

high-brightness beams 



FEL basics
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The undulator as 
the center-piece 
of an FEL
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3.4-m
undulator
magnet

LCLS Undulator Hall 

𝝀 =
𝝀𝒖
𝟐𝜸𝟐
𝟏 +
𝑲𝟐

𝟐

Radiation 
wavelength

(observed on-axis)

Undulator
period

Relativistic
factor, electron energy 

(E/mc2)

Undulator parameter: 𝑲 =
𝒆𝑩𝟎𝝀𝒖

𝟐𝝅𝒎𝒄

Peak B-field

Spectral bandwidth:
𝚫𝝀

𝝀
≃
𝟏

𝑵𝒖
≃ 𝟎. 𝟗𝟑𝟒𝝀𝒖 𝒄𝒎 𝑩[𝑻]

Undulator radiation formula
(same as FEL  resonance condition)

(Planar undulator)



Incoherent vs. Coherent 
Radiation Power 
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𝝀

Single electron

𝑵𝒑𝒉~𝝅𝜶
𝑲𝟐

𝟏 + 𝑲𝟐/𝟐

Bunch length ≫ 𝝀

𝑵𝒑𝒉~𝑵𝒆𝝅𝜶
𝑲𝟐

𝟏 + 𝑲𝟐/𝟐

Incoherent
emission 

Linear in no. of 
electrons/bunch

“Nanobunch” beam length ≤ 𝝀 Quadratic in no. of 
electrons/bunch

𝑵𝒑𝒉~𝑵𝒆
𝟐𝝅𝜶

𝑲𝟐

𝟏 + 𝑲𝟐/𝟐

Fully coherent
emission 

Can we generate nano-bunches???

no. photons emitted by  
1 electron through                       
𝑁𝑢 undulator periods in 
~1/𝑁𝑢 bandwidth  and                      
~1/(𝛾∗2𝑁𝑢) solid angle 

𝝀

𝝀

𝝀

𝜶 = 𝒆𝟐 /ℏ𝒄 (cgs)

Radiation wavelength 



z

x

Due to sustained interaction, some electrons gain energy, while others lose 
energy modulation at 1 

e- losing energy slow down, and e- gaining energy catch up  density 

modulation at 1 (microbunching) 

Micro-bunched beam radiates coherently at 1, enhancing 

the process  exponential growth of rad. power (Pr  rPe)

u

e-

1
x-ray

Electrons slip behind EM wave by 1 per undulator period (u)

+ - + - + -

- + - + - +

K/g

vxEx > 0

+

-

A pictorial view of  
the FEL gain process

E t

E t

vxEx > 0vxEx > 0

undulator

~10s-0.1 nm

Courtesy of   P. Emma



SASE FEL
• Self-Amplified Spontaneous Emission FEL

– Fundamental mode of operation of x-FELs
– Emission is jump-started by spontaneous  u-radiation emission
– bunching develops and grows exponentially to saturation as a result of the FEL process  

7

P(s) = P0 ∙exp(s/Lg)

Snap shots of small portion of e-beam developing bunching along  undulator line*   

𝝀

𝑠

*Genesis simulations

𝝀 𝝀

Emission saturates
after distance 𝐿𝑠

Gain length 𝐿𝑔
in exp growth 
regime



Important facts/quantities that we need to 
keep in mind about FEL processes

• The FEL gain length. The smaller the more efficient 
the FEL process, the sooner we achieve saturation, 
the shortest the undulator, the less $$$ we need to 
spend
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𝑃 = 𝑃0𝑒
𝑠/𝐿𝑔

• Lot of physics goes into determining 𝐿𝑔. For accurate determination do 
detailed numerical simulations (e.g GENESIS code) 

• Simplified  analytical models and formulas  give useful insight.

• Radiation power grows exponentially along the 
undulator (typical behavior for instability-
driven processes) until saturation

𝐿𝑔

𝐿𝑠~ 20𝐿𝑔
• Saturation length. The exponential growth regime 

of emitted power saturates after  about 15-20 𝐿𝑔
(this sets the scale for the undulator length)

ℓ𝑐~𝜆
𝐿𝑔

𝜆𝑢

• Cooperation length. The  length over which 
electrons within the bunch can “communicate” with 
each other (i.e. how far ahead the radiation emitted 
by an electron  goes by the time it travels through 
𝐿𝑔 )



1D Model for FELs
• Basic assumption:  ‘Cold beam’: zero-emittance, zero-energy spread.  Infinitely wide  

beam with uniform transverse density (no radiation diffraction effects) 

9

𝝆 =
𝑰

𝜸𝟑𝑰𝑨

𝝀𝒖
𝟐

𝟐𝝅𝝈𝒙𝝈𝒚

𝑲× [𝑱𝑱] 𝟐

𝟑𝟐𝝅

𝟏/𝟑 • Pierce parameter 𝝆.The jack of all 
trades of 1D FEL theory.                
Typical  values 𝜌 ≲ 10−3

e-beam
peak current 

Alfven current
𝑰𝑨 ≃ 𝟏𝟕𝒌𝑨

Transverse rms beam size
(gauss distribution) *

Undulator
parameter [𝑱𝑱] = 𝑱𝟎 𝝃 − 𝑱𝟏 𝝃 with 𝝃 =

𝑲𝟐

𝟐 𝟐+𝑲𝟐
, 𝑱𝟎, 𝑱𝟏 =Bessel Functions 

Notice
1/3  exponent 

𝐿𝑔 ~
1

4𝜋 √3

𝜆𝑢
𝜌

• The FEL gain length is inversely proportional to 𝜌
=> We want large 𝜌!

𝑃𝑟 ~1.6 × 𝜌 𝑃𝑏
• Radiation peak power at saturation is proportional to 
𝜌 and beam power: 𝑃𝑏 = 𝐸𝑏𝐼/𝑒. Large 𝜌 is good. 

𝐿𝑠 ~
𝜆𝑢
𝜌

• Length to saturation. About ~4𝜋 3𝐿𝑔 ~20 𝐿𝑔 gain length.               
Large 𝜌 is good.

𝐸𝑟 ~1.6 × 𝜌 𝐸𝑏
Alternate expression in terms of emitted
radiation energy per pulse 𝐸𝑟 and bunch energy 𝐸𝑏

Note: 𝜌 is expressed in terms of a ‘equivalent gaussian’  beam, i.e. a beam with transverse peak density  equal to that of the nominal uniform beam   



FEL performance benefits from beam high current,             
small transverse emittance, small energy spread

• 1D FEL model ->  for high-performance we need large 𝜌 -> large 
beam density (

𝑰

𝝈𝒙𝝈𝒚
∝

𝑸

𝝈𝒛𝝈𝒙 𝝈𝒚
) 

• Two important beam requirements 
– beyond cold-beam 1D theory
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• E-beam transverse geometric rms
emittance  𝜺⊥ should be on the order 
of, or smaller than,  the radiation 
emittance 𝜺𝒓 =

𝝀

𝟒𝝅
.  

𝝈𝜹 < 𝝆
• E-beam relative energy spread 𝝈𝜹 should be 

smaller (in fact a bit smaller) than 𝜌,              
say < 0.5𝜌 . Electrons with energy too 
different from nominal slip off the FEL 
resonance and do not contribute to  lasing

𝜺⊥ ≲
𝝀

𝟒𝝅



Quick aside: Quantitative description of 3D 
effects by Ming Xie’s FEL model 

• Analytical treatment of a fairly complete 3D theory of FEL gain 
complicated but feasible 

• Min Xie (mid ~90s)  gave a simple parametrization of gain length based on 
numerical solutions of 3D theory 
– Very handy   
– Used extensively for FEL design optimization
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𝑳𝒈 = 𝑳𝒈𝟎(𝟏 + 𝚲)

𝚲 = 𝚲(𝑿𝜹, 𝑿𝒅, 𝑿𝜺)

𝑋𝛿 =
4𝜋𝝈𝜹
𝜆𝑢
𝐿𝑔0

𝑋𝑑 =
𝜆

4𝜋𝝈𝒓
2 𝐿𝑔0

𝑋 =
4𝜋𝜺⊥
𝛽𝑡𝑤𝑖𝑠𝑠𝜆

𝐿𝑔0

Scaled energy spread 

Scaled transverse size 

Scaled emittance

1D limit recovered when 𝑋𝛿, 𝑋𝑑 , 𝑋 → 0 while keeping the beam charge density constant 

1D-theory gain length
3D-theory 
gain length
(generally 
longer than 𝐿𝑔0)

M-X found polynomial approx. to this function



Beam brightness as a measure of beam 
quality and FEL performance 

• Recap: to get  good performance we want a beam with

– high current (large no. of particles; short bunches)
– small energy spread 
– small transverse emittance (small divergence;  large transverse particle density)

• Can we come up with a figure of merit that captures  all the desirable 
beam properties at once?

• Particle density in phase space?
– ->  6D beam brightness 
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𝑩𝟔 =
𝑵

𝜺𝒏𝒙𝜺𝒏𝒚𝜺𝒏𝒛

No.  particles/bunch

Normalized rms emittances in x,y, and z



Refresher on emittance
• The word “emittance” is sometimes a source of confusion because    

it can mean two different (although very much related) quantities
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𝒙𝟐 ≡ 

𝑖=1

𝑁
𝑥𝑖
2

𝑁
= ∫ 𝑥2𝑓 𝑥, 𝑥′ 𝑑𝑥𝑑𝑥′

𝜺𝒙
𝟐 = Det 𝝈 = Det

𝑥2 𝑥𝑥′

𝑥𝑥′ 𝑥′2
= 𝒙𝟐 𝒙′𝟐 − 𝒙𝒙′ 𝟐

Note: this notation assumes that the centroids vanish 𝑥 = 𝑥′ = 0. 
More in general, one should write 〈 𝑥 − 𝑥 2〉 instead of 〈𝑥2〉, etc.  
to obtain the commonly accepted  definition of rms emittance

• “single-particle emittance 𝝐𝒙”, a property of the orbit of a single particle in linear 
approximation (parametrization of orbit in terms of Twiss functions 𝛽𝑥 , 𝛼𝑥 = −𝛽𝑥

′ (𝑠)/2)

𝒙 𝒔 = 𝝐𝒙𝜷𝒙 𝒔 𝒄𝒐𝒔(𝝍 𝒔 + 𝝍𝟎)

– A better notation is 𝑱𝒙 = 𝝐𝒙/𝟐,  (𝜖𝑥 has the meaning of an action, as in action-angles 
variables, and measures the amplitude of the betatron oscillations) 

– Dynamical invariant of linear motion,
– i.e. 𝟐𝑱𝒙 = 𝜸𝒙(𝒔)𝒙

𝟐 + 𝟐𝜶𝒙(𝒔)𝒙 𝒙′ + 𝜷𝒙 𝒔 𝒙
′𝟐 is constant when  for 𝑥 and 𝑥′ we substitute the 

particle orbit 𝒙 𝒔 and 𝒙′(𝒔) in linear approximation (Courant-Snyder invariant).

• “rms emittance 𝜺𝒙”, a statistical property of the whole beam (dependent on the 2nd

moments of the beam distribution), the determinant of the covariance or “𝝈“-matrix:

For simplicity here we assume no acceleration



Courant-Snyder ellipse and concept of ‘matched beam’
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𝟐𝑱𝒙 = 𝝐𝒙 = 𝜸𝒙(𝒔)𝒙𝟐+𝟐𝜶𝒙(𝒔)𝒙 𝒙′ + 𝜷𝒙(𝒔)𝒙′𝟐

The equation for the Courant-Snyder
invariant  defines an ellipse in the 𝒙/𝒙′

plane

All particles on the border of the ellipse  have the  
same action.

Area of 
ellipse is 𝝅𝝐

𝒙

𝒙′

Formal definition: for a matched beam the 
phase-space particle distribution 𝑓 𝑥, 𝑥′ is a 1D 
function of 𝐽𝑥 = 𝐽𝑥 𝑥, 𝑥

′ :

𝒇 𝒙, 𝒙′ = 𝒇( 𝑱𝒙 𝒙, 𝒙
′ )

How to build a matched beam
(i.e. matched to the design

lattice functions)

If the motion is linear along  the linac,  the same 
particles will still be sitting on the border of  an 
ellipse (with different shape but same area 𝝅𝝐𝒙 )



A tale of two ellipses: the beam ‘rms ellipse’
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Two examples of beam distributions 

𝜷𝒙
∗ ≡
𝒙𝟐

𝜺𝒙
𝜸𝒙
∗ ≡
𝒙′𝟐

𝜺𝒙
𝜶𝒙
∗ ≡ −

𝒙𝒙′

𝜺𝒙

𝛾𝑥
∗𝛽𝑥
∗ − 𝛼𝑥

∗2 = 1

Note 2 : The rms beam parameters are not independent  

Fig. by P. Emma 

• Introduce the beam rms parameters 𝛽𝑥
∗, 𝛾𝑥
∗,

𝛼𝑥
∗ to represent the 2nd moments of the 

beam distribution 

Definition of  beam rms ellipse 𝜺𝒙 = 𝜸𝒙
∗𝒙𝟐 + 𝟐𝜶𝒙

∗𝒙 𝒙′ + 𝜷𝒙
∗𝒙′𝟐

In reality,  actual beams are never exactly matched  to the design Twiss lattice functions.
The beam ‘rms ellipse’ is  a useful concept  to describe them.

Note 1 : 𝜺𝒙 is the rms emittance a defined earlier  

For a matched beam we have  𝜶𝒙
∗= 𝜶𝒙 , 𝜷𝒙

∗= 𝜷𝒙 , 𝜸𝒙
∗= 𝜸𝒙 , i.e. the Courant-Snyder ellipse is

concentric with the beam rms ellipse 



Design vs. actual (perturbed) beam  

• Several things can go ‘wrong’ 
causing emittance growth 
and/or mismatch
– the beam is not injected right; 

errors in various  linac components  
(magnets, rf structures); 
misalignments;  collective effects, 
radiation effects, etc

• The rms ellipses are a way to 
characterize how far from  the 
design beam the actual beam 
has gone 

• Geometrically, the rms ellipse 
of the actual beam can differ 
from that of the design beam 
because
– The area may have increased          

-> rms emittance growth
– There may be a deformation and/or 

a tilt  -> mismatch 
– Both of the above
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Note: mostly, we care about  emittance growth; but  a mismatch is not good either,  partly 
because a beam with large mismatch is more susceptible to emittance growth down the line 



More on beam mismatch: how to quantify the 
degree of mismatch with just one number 
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𝑩𝐦𝐚𝐠(𝒔) ≡
𝟏

𝟐
(𝜷𝒙
∗ 𝜸𝒙 − 𝟐𝜶𝒙

∗ 𝜶𝒙 + 𝜸𝒙
∗𝜷𝒙 )

Beam Twiss rms parameters at 𝒔

Design-lattice Twiss functions at 𝒔

• It is always 𝑩𝐦𝐚𝐠 ≥ 𝟏;   
– 𝑩𝐦𝐚𝐠 = 𝟏 → beam is matched (i.e. 𝜶𝒙

∗= 𝜶𝒙 , 𝜷𝒙∗= 𝜷𝒙 , 𝜸𝒙∗= 𝜸𝒙 ). 

• 𝑩𝒎𝒂𝒈 is  an invariant of linear motion
– the Twiss functions (𝜶𝒙, 𝜷𝒙, 𝜸𝒙) and rms parameters (𝜶𝒙

∗ , 𝜷𝒙
∗ , 𝜸𝒙
∗) vary along the lattice from 

point to point so it’s not trivial that 𝐵𝑚𝑎𝑔 should be invariant.

• 𝑩𝐦𝐚𝐠 is a measure of how far 
the design and unperturbed 
beam rms ellipses are from 
being concentric with one 
another



Formalism to describe emittance growth 

• A perturbation to a particle orbit  results  into space and/or angular offsets 𝚫𝒙 and 
𝚫𝒙′ at some observation point downstream of the  perturbation. 

• Q:  How do we calculate the rms emittance for the perturbed beam? 
• A:   Take determinant of covariance matrix:
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𝜀𝑥
2 = 𝐷𝑒𝑡

(𝑥 + Δ𝑥)2 (𝑥 + Δ𝑥)(𝑥′ + Δ𝑥)

(𝑥 + Δ𝑥)(𝑥′ + Δ𝑥) (𝑥′ + Δ𝑥′)2

• Consider the special (but relevant) case of vanishing  correlations  𝑥Δ𝑥 = 𝑥Δ𝑥′ =
𝑥′Δ𝑥 = 𝑥′Δ𝑥′ = 0

𝜀𝑥
2 = Det

𝑥2〉 + 〈(Δ𝑥)2 𝑥𝑥′〉 + 〈Δ𝑥Δ𝑥′

𝑥𝑥′〉 + 〈Δ𝑥Δ𝑥′ 𝑥′2〉 + 〈Δ𝑥′)2
=

= 𝑥2 𝑥′2 − 𝑥𝑥′ 2 + 𝒙𝟐 𝚫𝒙′𝟐 + 𝒙′𝟐 𝚫𝒙𝟐 − 𝟐〈𝒙𝒙′〉〈𝚫𝒙𝚫𝒙′〉 + Δ𝑥2 Δ𝑥′2 − Δ𝑥Δ𝑥′ 2

𝜀𝑥0
2 𝜀Δ

2
𝜺𝒙𝟎( 𝜷𝒙 𝚫𝒙

′𝟐 + 𝜸𝒙 𝚫𝒙
𝟐 + 𝟐𝜶𝒙 𝚫𝒙𝚫𝒙

′ )
This would be the emittance

if 𝜀𝑥0 were negligible
Emittance of 
unpertubed

beam 
Recall 〈𝒙𝟐〉 = 𝜺𝒙𝟎 𝜷𝒙 , 〈𝒙𝒙′〉 = −𝜺𝒙𝟎 𝒂𝒙



Last word on formalism for describing 
emittance growth (for today …) 

• Consider class of small perturbations involving only angular kicks, 
i.e.  𝚫𝒙𝟐 = 𝟎 and 𝚫𝒙𝚫𝒙′ = 𝟎 (and therefore also, 𝜺𝚫

𝟐 = 𝟎)
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𝜺𝒙
𝟐 = 𝜺𝒙𝟎

𝟐 + 𝜺𝒙𝟎( 𝜷𝒙 𝚫𝒙
′𝟐 + 𝟐𝜶𝒙 𝚫𝒙𝚫𝒙

′ + 𝜸𝒙 𝜟𝒙
𝟐 ) + 𝜺𝚫

𝟐

𝜺𝒙
𝟐 = 𝜺𝒙𝟎

𝟐 + 𝜺𝒙𝟎 𝜷𝒙 𝜟𝒙
′𝟐 (𝜺𝒙 −𝜺𝒙𝟎)𝟐𝜺𝒙𝟎 ≃ 𝜺𝒙𝟎 𝜷𝒙 𝜟𝒙

′𝟐

𝚫𝜺𝒙
𝜺𝒙𝟎
≃
𝜷𝒙
𝟐𝜺𝒙𝟎
𝜟𝒙′𝟐

Valid for 𝚫𝜺𝒙 ≪ 𝜺𝒙𝟎

Small perturbation

approx.

Useful to 
study e.g. 

CSR effects

Note: It turns out that this formula (derived in the special case of vanishing 
correlations, previous slide)  has   more general  validity and can be applied  e.g. to 

describe  chromatic effects in quads;  multipole errors in magnets, etc.  

𝚫𝜺𝒙

Note that in the general case when  Δ𝑥′ ≠ 0 one should use 〈 Δ𝑥′ − Δ𝑥′ 2〉 in place of  〈𝛥𝑥′2〉 to obtain
the growth for the central rms emittance



Back to Brightness 

• Brightness is best expressed in terms of “normalized” emittances (linearly 
invariant in the presence of acceleration): i.e.  𝜺𝒏𝒙 = 𝜸𝜷𝜺𝒙 ≃ 𝜸𝜺𝒙
– → Brightness is a linear invariant though a transport/accelerator line

• Invariant longitudinal rms emittance (no correlations) 𝜺𝒏𝒛 = 𝝈𝒛
𝝈𝑬

𝒎𝒄𝟐

• To function effectively, FELs need beams that meet minimum brightness 
requirements
– Below that minimum the performance of the FEL may not be affected (e.g. if  

𝜎𝐸

𝐸
≪ 𝜌 already, 

further reduction of 𝜎𝐸 won’t improve FEL much, although the beam has larger 𝐵6 brightness) 
– A concept of  4D (or 5D) brightness can then be  more useful:

• Slice vs. projected transverse emittance: 
– For lasing what counts primarily is the rms emittance of the particles within a longitudinal 

beam slice on the order of the cooperation length (where the electrons ‘talk’ to each other) 
– However we should not let the  projected emittance grow too much or else individual slices will 

not be all properly matched to the intended e-beam optics in the undulator.   
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𝑩𝟔 =
𝑵

𝜺𝒏𝒙𝜺𝒏𝒚𝜺𝒏𝒛

𝑩𝟒 =
𝑸

𝜺𝒏𝒙𝜺𝒏𝒚

Beam peak current 

x

z 𝒙

𝒙′

Individual slices may have the 
same (slice) emittance but  if 
the slice rms ellipses are not 
concentric the emittance of the 
whole beam is larger 
(projected emittance)  

𝑩𝟓 =
𝑰

𝜺𝒏𝒙𝜺𝒏𝒚
or

Snapshot of  beam in x/z plane
(various slices highlighted)



Last word on Brightness: “What the injector 
giveth the Linac shall not take away” 
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• FELs targeting  X-rays  were made possible only by the invention of high-
brightness sources (e.g. photo-guns).

• Example:  LCLS photo—cathode  injector
∗

– 𝑸 = 𝟏𝒏𝑪, 𝜺𝒏𝒙 = 𝟏𝝁𝒎, 𝑩𝟒 =
𝑸

𝜺𝒏𝒙𝜺𝒏𝒚
= 𝟏𝒏𝑪 𝝁𝒎−𝟐

– Longitudinal emittance is small but not very well known (bordering measurement resolution) ; if 
𝜎𝐸~2𝑘𝑒𝑉, then  𝜺𝒏𝒛~𝟑. 𝟓𝝁𝒎 (for 𝜎𝑡 = 2.8𝑝𝑠)

• Ideally a Linac would accelerate and transport beams into FELs with minimal 
degradation of beam brightness, while performing the needed beam manipulations 
(i.e. compression).  

– Keeping transverse emittance growth under control is an important task of Linac
design/operation [offensive effects are Coherent and Incoherent Synchrotron radiation (CSR, 
ISR), chromaticities,  magnet errors, misalignments, wakefields, etc.)]

– The longitudinal phase space of the beam injected into the Linac tends to be ‘colder’ (i.e. small  
energy spread) than needed for lasing; we can afford wasting some longitudinal brightness and 
be OK. In fact, because of instabilities, we are better off giving up some brightness by actively 
heating the beam longitudinally  (Laser Heater). 

– More desirable: increase the longitudinal emittance while decreasing the transverse emittance
so that the 6D brightness stays the same (concept of emittance exchange; not yet 
implemented in user facilities)

*Y. Ding et al. PRL 102 254801 (2009)



Beyond SASE: more on beam quality requirements 

• To overcome the limitations in the degree of longitudinal coherence from SASE 
FEL and other undesirable SASE  features (e.g. pulse-to-pulse fluctuations in 
pulse energy and spectrum) do  “external” seeding 
– i.e. use a fully (longitudinally) coherent radiation pulse to initiate the FEL process  

• Because suitable coherent conventional sources do not exist in the x-ray 
spectrum (yet) ingenious schemes have been proposed that use 
– conventional laser radiation pulses (say 𝜆~200𝑛𝑚)
– various beam manipulations  (among these, High Gain Harmonic Generation has been 

demonstrated, down to few 𝑛𝑚. It is the mode of operation in FERMI@Elettra)

• Self-seeding
– demonstrated for both hard  and soft x-rays; still inherits some of SASE  defects e.g. 

pulse energy fluctuations.  
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• Seeding poses additional demands on beam quality:
– Longitudinal coherence of radiation is spoiled by non-uniformity 

of e-beam energy profile (e.g. a quadratic energy chirp).  
– Seeding also favors a beam that has a long core with uniform 

profile (i.e. we want “flat-flat” beams); 
– Uncorrelated energy spread should be low to minimize laser 

power needed for external seeding, maximize max. order of 
harmonic



Undulators
23



How do we get short 𝝀? 
How do we get tuning range?  

• Generally the challenge is to reach short radiation wavelength 𝝀.
• Two ways to generate short 𝝀

– Shorter undulator period 𝜆𝑢 (min. value set by available technology and FEL 
performance)

– Larger e-beam energy 𝛾 (max. value set by $$$)
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• Tuning range (i.e. range of radiation spectrum that can be generated 
once the undulator is installed and 𝜆𝑢 is fixed) 

– Vary beam energy (can pose operational nuisances; not practical if same linac
feeds  multiple FELs, operating at the same time and targeting different 
radiation wavelengths)

– Vary undulator parameter K by changing B0 in  undulator. Tuning range depends 
on undulator technology and requirements on the minimun undulator aperture (or 
‘gap’)

𝝀 =
𝝀𝒖
𝟐𝜸𝟐
𝟏 +
𝑲𝟐

𝟐



Desired undulator features

• Short period
– achieve short wavelength radiation with  lower e-beam energy)

• High B field 
– FEL efficiency depends on K ∝ 𝐵0
– wide range of B-field allows for correspondingly wide tunability

range)

• Sufficiently wide gap 
– to accommodate the e-beam and keep losses to a minimum 

• Variable configurations for polarization control

• Low cost 
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unfortunately 
these tend to
fight each other



Undulator technology options

• Electromagnetic undulators/wigglers 
– Not good for x-rays radiation, period is too long

• Permanent magnet undulators (pure or hybdrid) 
– Technology of choice for existing x-ray FELs

• Superconducting undulators
– So far used only in storage-ring light sources. Emerging  technology     

for FELs.  Capable of shorter period, larger fields

• RF undulators (use interaction of e-beam with RF fields instead 
of static B-field to wiggle the electron trajectory) 
– At early R&D stage 

• Conventional-laser undulator (e-beam interacting with laser 
pulse)
– Period could be very small (~1um), meaning required e-energy would be 

very low (10s MeV) and very attractive;  but this doesn’t work as an FEL 
unless e-beam is of exceedingly high quality
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Permanent Magnets (PM) Undulators:
simple law for peak B-field
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• Useful equation for FEL design 

• Equation valid for pure PM 
(PPM) undulators:  

𝑩𝟎 = 𝒃𝒆
−𝒂
𝒈
𝝀𝒖

Gap g

u-gap 

u-period 

Typical values for coefficients*
• 𝑏~2.1𝑇
• 𝑎~𝜋, why? – see Homework Exercise

A wide open undulator

*NdFeB allow, P. Elleaume et al. 
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Putting the FEL formulas to 
work

A first rough stab at scoping out choice of parameters for the beam/linac design;
Emphasis  on  radiation wavelength tuning range  



How do we choose beam/machine parameters  
to achieve the desired FEL performance?

• A representative of the x-rays radiation user community (with $$ 
in his pockets) comes to you and says:

– “I want a SASE FEL generating up to 1.2keV photon energy (1nm)  and 
tunable so that I can go as low as 250eV to reach the C K-edge. Also, I’d like 
multiple beamlines that can be operated independently and simultaneously. 
And by the way, 1012 photons/pulse @ 1nm would be good”.

• What kind of machine/beam would do the job? 
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• Step 1:  Rough assessment of e-beam energy requirement.

– Shortest radiation wavelength target: 𝝀 = 𝟏𝐧𝐦.

– Take 𝝀𝒖 = 𝟐𝒄𝒎 (a guess for starters) 

– Undulator parameter on the order of unity: 𝑲~𝟏.

– Use u-radiation resonance condition  𝝀 =
𝝀𝒖

𝟐𝜸𝟐
𝟏 +
𝑲𝟐

𝟐

– find 𝒎𝒄𝟐𝜸 = 𝒎𝒄𝟐
𝝀𝒖

𝟐𝝀
(𝟏 +

𝑲𝟐

𝟐
) = 𝟎. 𝟓𝟏

𝟎.𝟎𝟐

𝟐×𝟏𝟎−𝟗
𝟑

𝟐
~ 𝟐 𝑮𝒆𝑽

– Independent beamline tunability -> we cannot vary e-energy to vary 𝜆. We have to                 
adjust the u-gap  



Step 2: Choose undulator technology and min. gap
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𝑩𝟎[𝒈, 𝝀𝒖] = 𝟒. 𝟐𝟐 𝑻 𝐞𝐱𝐩(−𝟓. 𝟎𝟖 ×
𝒈

𝝀𝒖
+ 𝟏. 𝟓𝟒 ×

𝒈

𝝀𝒖

𝟐
)

Solve this Eq.

• For a given u-period (still to be 
determined) 𝒈𝒎𝒊𝒏 gap corresponds to the 
maximum 𝑲 = 𝑲𝒎𝒂𝒙

• Choose min. undulator gap (corresponds to max B-field): e.g. 𝒈𝒎𝒊𝒏 = 𝟔𝒎𝒎
– Somewhat aggressive (e.g. LCLS  𝒈𝒎𝒊𝒏 = 𝟕. 𝟓 𝒎𝒎; X-FEL has 10mm  )
– Determined by fear of beam losses.  To be revisited depending on choice of rep. rate; study 

of beam losses, dark currents, collimation, etc. 

𝑲𝒎𝒂𝒙 as a function of u-period 
for a set minimum gap

𝐾𝑚𝑎𝑥 =
𝑒𝐵0 𝑔𝑚𝑖𝑛, 𝜆𝑢 𝜆𝑢
2𝜋𝑚𝑐

• 𝑲𝒎𝒂𝒙 corresponds to the longest  
radiation wavelength 

Use this equation to find 𝛾 as a function 
of  𝜆𝑢, having set 𝜆𝑚𝑎𝑥 = 4.8 𝑛𝑚

𝝀𝒎𝒂𝒙 =
𝝀𝒖
𝟐𝜸𝟐
𝟏 +
𝑲𝒎𝒂𝒙
𝟐 (𝝀𝒖)

𝟐

𝑲 =
𝒆𝑩𝟎𝝀𝒖
𝟐𝝅𝒎𝒄

• Select technology 
– E.g. choose well tested  Hybrid PM undulators
– Ask the magnet designer for magnetic field model 



Step 3: Determine undulator period, e-energy

31

𝝀𝒎𝒊𝒏 = 𝟏𝒏𝒎

• Setting 𝝀𝒎𝒊𝒏 = 𝟏 𝒏𝒎 identifies the 
the u-period 𝝀𝒖 and e-energy

𝝀𝒎𝒂𝒙 =
𝝀𝒖
𝟐𝜸𝟐
𝟏 +
𝑲𝒎𝒂𝒙
𝟐 (𝝀𝒖)

𝟐

• Plot 𝝀𝒎𝒊𝒏 as a function of  𝝀𝒖

• Set desired 𝑲 = 𝑲𝒎𝒊𝒏 ≃ 𝟏. 𝟓
corresponding  to 𝜆 = 𝜆𝑚𝑖𝑛

𝝀𝒎𝒊𝒏 =
𝝀𝒖

𝟐𝜸(𝝀𝒖 )
𝟐
𝟏 +
𝑲𝒎𝒊𝒏
𝟐

𝟐

𝝀𝒖 = 𝟐𝟗𝒎𝒎

𝑬 = 𝟐. 𝟖𝟓𝑮𝒆𝑽

Electron energy as a function of 𝝀𝒖
for set choice of 𝒈𝒎𝒊𝒏 and 𝝀𝒎𝒂𝒙



Step 4: Now we have the e-energy requirement:            
What about beam emittance, charge? 

• Match e-beam  geometric rms emittance to radiation 
emittance at 1nm    (most demanding wavelength) 
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This is the bunch 
charge we need

𝑸~𝟐𝟓𝟎𝒑𝑪

𝜺𝒏𝒙 = 𝜸
𝝀

𝟒𝝅
= 𝟓𝟓𝟔𝟎 ×

𝟏𝟎−𝟗𝒎

𝟒𝝅
= 𝟎. 𝟒𝟓𝝁𝒎

This is the emittance
we want  𝜺𝒏𝒙 = 𝟎. 𝟓𝝁𝒎

Scaling of normalized emittance vs. bunch charge 

Normalized 
rms emittance

• Call it  𝜀𝑛𝑥 = 0.5𝜇𝑚 (slightly larger emittance is OK).

• The minimum emittance is set by gun.  Use ∼ √𝑸 scaling law for 
emittance, (roughly fitting measurements of SLAC gun):

𝜺⊥ ≤
𝝀

𝟒𝝅



Step 5: Estimate FEL performance using 1D              
and 3D (Ming-Xie’s formulas) theory

• Assume peak current I~1kA 

– Somewhat arbitrary but not unreasonable 

– Refinement of this choice is part of Linac
design optimization

– If peak current at exit of injector I~40A 
(SLAC gun) the  compression factor in 
Linac will be C~1000/40=25 
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Not optimized 

Somewhat arbitrary 

Can tolerate up to 
𝚫𝑬 ~𝟎. 𝟓 × 𝝆𝑬~𝟏𝑴𝒆𝑽
energy spread

20% degradation
in gain length because
of 3D effects

No. photons 
per pulse at 

1nm 

Beam/Machine Parameters 
(shortest wavelength)

1D Gain
Length

• This only a first (rough) pass.
• Complete optimization should include 𝐾𝑚𝑖𝑛 , betatron function, and exploration of  various trade-offs (e.g. tuning range vs. no. 

photons  per pulse) and will require many iterations. 
• Selected working points then need to be checked against detailed numerical simulations
• Ultimately cost and other (e.g. rep rate) considerations should also be factored in  (undulators, RF structure technology, RF power, 

etc).



Summary & highlights
• Undulator radiation /FEL resonance equation; undulator parameter”
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𝝀 =
𝝀𝒖
𝟐𝜸𝟐
𝟏 +
𝑲𝟐

𝟐

• FEL 𝝆 (Pierce) parameter, 1D Theory FEL gainlength

𝐿𝑔 ~
1

4𝜋 √3

𝜆𝑢
𝜌

𝜺⊥ ≲
𝝀

𝟒𝝅
𝝈𝜹 < 𝝆

• Requirements for beam relative-energy spread and transverse rms emittance 

𝑩𝟔 =
𝑵

𝜺𝒏𝒙𝜺𝒏𝒚𝜺𝒏𝒛

• E-beam brightness

𝚫𝜺𝒙
𝜺𝒙𝟎
≃
𝜷𝒙
𝟐𝜺𝒙𝟎
𝜟𝒙′𝟐

• Emittance growth due to angular kick perturbation

𝑲 =
𝒆𝑩𝟎𝝀𝒖
𝟐𝝅𝒎𝒄

≃ 𝟎. 𝟗𝟑𝟒𝝀𝒖 𝒄𝒎 𝑩[𝑻]

𝑩𝟓 =
𝑰

𝜺𝒏𝒙𝜺𝒏𝒚
𝑩𝟒 =

𝑸

𝜺𝒏𝒙𝜺𝒏𝒚

𝝆 =
𝑰

𝜸𝟑𝑰𝑨

𝝀𝒖
𝟐

𝟐𝝅𝝈𝒙𝝈𝒚

𝑲× [𝑱𝑱] 𝟐

𝟑𝟐𝝅

𝟏/𝟑
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How mismatch can lead to emittance growth by 
filamentation (1)
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Matched beam 

Rms ellipse

Mismatched beam

rms ellipse of
mismatched beam

In this example, mismatched and matched 
seams have the same initial rms emittance 𝜺𝒙

We use normalized coordinates
so that the ellipse is, in fact, a circle
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Because on anharmonicities the mismatched
beam will fill a larger region of phase space 

as it is transported along the accelerator 

The rms emittance of the filamented beam
has become larger than that of the matched 

beam (interestingly, the fully filamented beam
is ~matched: the green and yellow ellipses become 

concentric)   

How mismatch can lead to emittance growth by 
filamentation (2)

Interesting fact: the rms emittance of the 
filamented beam 𝜺𝒙𝒇 is

(mismatch before filamentation) 

𝜺𝒙𝒇 = 𝑩𝒎𝒂𝒈𝜺𝒙

rms ellipse of
filamented beam

a
n

im
a

ti
o

n



One last concept: the ‘equivalent’ emittance

• Because we care about how much the emittance has grown to 
𝜺𝒙 𝒔 > 𝜺𝒙𝟎 as well as the mismatch 𝑩𝒎𝒂𝒈 𝒔 accrued by the beam 
up to a certain point 𝒔 in the lattice,  a sensible measure of ‘how 
bad’’ a beam is the product of the two:
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𝑩𝒎𝒂𝒈 𝒔 × 𝜺𝒙 (𝒔) ≡ 𝜺𝒆𝒒,𝒙(𝒔)

• We call this product the ‘equivalent’ emittance 𝜺𝒆𝒒. 

– Physical interpretation: this is the rms emittance that the beam eventually will exhibit 
at the end of a very long transport line as a result of anharmonicities downstream of 𝑠
(see previous slide)

– In a Linac, complete filamentation may never happen (too few betatron oscillations) but  
𝜺𝒆𝒒 remains a useful figure of merit to gauge beam quality.



Desired radiation properties drive e-beam requirements 
and technology/design choices (e-source/Linac/undulators)
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Radiation

Wavelength
Tuning range

No. photons/pulse
No. photons/sec

Pulse length
Long. coherence

..

e-beam
Energy
Charge

Energy spread
Transverse emittance

Peak-current
…

Undulators

period
Gap

Peak field
length

…

Linac/Source
Acc. Power

Repetition rate
Injector technology

rf structure technology
…



In actual design process the arrows will turn around: 
available technology sets limits to achievable radiation  
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Radiation

Wavelength
Tuning range

No. photons/pulse
No. photons/sec

Pulse length
Long. coherence

..

e-beam
Energy
charge

Energy spread
Transverse emittance

Peak-current
…

Undulators

period
Gap

Peak field
length

…

Linac/Source
Acc. Power

Repetition rate
Injector technology

rf structure technology
…



In this Lecture we have shown a stripped-down (but not unrealistic) 
example of how  radiation requirements  may drive choice of e-beam, 

undulator parameters 

• How we 
generate and 
deliver the      
e-beam to the 
FEL is the topic 
for the rest of 
this Course  
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Radiation

Wavelength
Tuning range

No. photons/pulse
No. photons/sec

Pulse length
Long. coherence

..

e-beam
Energy
charge

Energy spread
Transverse emittance

Peak-current
…

Undulators

period
Gap

Peak field
length

…



The undulator radiation formula derived (kind of)

𝑣~𝑐
but 𝑣𝑧 <
𝑐
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Electron orbit

planar undulator poles

𝜆𝑢 𝝀

𝚫𝒛

Radiation wavelength 

𝜃 = 𝐾/𝛾

𝜆 = 𝚫𝒛 − 𝜆𝑢 = 𝑐Δ𝑡 − 𝜆𝑢

Distance  travelled by 
light by the time electron
goes through 1 period

Δ𝑡 = 𝜆𝑢/  𝑣𝑧

 𝑣𝑧 = 𝑐 1 −
1

2𝛾2
1 +
𝐾2

2
< 𝑐

e-orbit in undulator: 𝑥 =
𝐾𝜆𝑢

2𝜋𝛾
sin
2𝜋

𝜆𝑢
z

𝒙

𝒛

=
𝑐𝜆𝑢
 𝑣𝑧
−𝜆𝑢 ≃

𝝀𝒖
𝟐𝜸𝟐
𝟏 +
𝑲𝟐

𝟐



Sensitivity of 3D gain-length to main beam 
parameters (Ming-Xie’s model)

• Vary current, emittance, energy 
spread (independently) around 
working point defined in previus
slides
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𝟑𝑫 𝑳𝒈 vs. current

𝟑𝑫 𝑳𝒈 vs. rms emittance 𝟑𝑫 𝑳𝒈 vs. relative rms energy spread

Shorter 𝑳𝒈
is better


