

USPAS June 2015

Rutgers

SRF MATERIALS OTHER THAN BULK NIOBIUM

Anne-Marie Valente-Feliciano

Thomas Jefferson National Accelerator Facility

Jefferson Science Associates LLC

Why looking beyond bulk Nb?

Breakdown fields close to the de-pairing limit of 50 MV/m for Nb have been achieved Best Nb cavities approaching their intrinsic limit at H_{max} = H_c For further improved cavity RF performance, innovation needed

Possibilities to use higher performance superconductors other than Nb?

Looking beyond Nb – Potential Benefits

Reduced material costs

 Use of inexpensive, highly formable materials with higher thermal conductivity such as Cu or Al

Simplified engineering, fabrication and assembly

- Separation of cavity structure from superconducting surface
- Maximum flexibility & largest variety of options in design of integrated cavity/cryostat structures

➢ Higher gradients

Increasing gradients reduces capital expense of cryomodules – potentially several \$100M savings & minimize conventional facilities

Lower RF losses

Low loss (high Q) cavities reduce He costs, >\$10M potential capital savings, and several \$M/year in operating costs

Potentially higher operating temperatures (>4.2K)

Nb Thin films

Thin Films for SRF - State of the Art

Thickness of interest for SRF applications = RF penetration depth, i.e. the very top 40 nm of the Nb surface.

CERN

High Q at low field BUT strong Q-slope

Nb/Cu Sputtered Films

Two Production Methods: standard and oxide-free coatings

Single cathode system

Jefferson Lab

Nb/Cu Sputtered Films:

Film structure – FIB cross sections

Columnar grains, size ~ 100 nm In plan diffraction pattern: powder diagram (110) fiber texture \perp substrate plane Equi-axed grains, size ~ 1-5μn_{Courtesy: P. Jacob - EMPA} In plan diffraction pattern: zone axis [110] Heteroepitaxy Nb (110) //Cu(010) , Nb (110) //Cu(111),Nb (100) //Cu(110)

Nb/Cu Sputtered Films: TEM cross-section & in-plane

cross-section

Nb/Cu Oxide

Grain size ~ 0.1 µm

Nb/Cu

Grain size ~ 1-5µm

Nb (110) //Cu(010)

Nb (110) //Cu(111)

In-plane

Grain size ~ 100 nm Fiber texture Diffraction pattern: powder diagram

Grain size ~ 1-5µm Heteroepitaxy Diffraction pattern: zone axis [110]

Nb/Cu Sputtered Films:

Intrinsic film roughness & incidence angle of the niobium atoms

Theoretical and experimental BCS resistance at zero RF field

Compilation of results from several Nb/Cu and Nb bulk 1.5 GHz RF cavities

Best RF performance measured on 1.5GHz Nb/Cu sputtered cavities

spun copper cavities(Santa Fe 1999)

RRR	11.5 ± 0.1	28.9 ± 0.9
C	9.51 ± 0.01 K	9.36 ± 0.04 K
r cont.	435 ± 70 ppm	286 ± 43 ppm
exture	(110)	(110), (211), (200)
lc1	85 ± 3 mT	31 ± 5 mT
lc ₂	1.150 ± 0.1 T	0.73 ± 0.05 T
0	3.3240(10)Å	3.3184(6) Å
a_{\perp}/a_{\perp}	0.636 ± 0.096 %	0.466 ± 0.093 %
tress	-706 ± 56 MPa	-565 ± 78 MPa
Grain size	110 ± 20 nm	> 1 µm

Oxide-free

Attaining even bulk-like performance with Nb film would enable major system simplifications.

Deposited films, once a production process is developed, may offer the highest level of quality assurance and thus reliable performance.

OWR Resonators for HIE-Isolde Upgrade

 $E_{acc} = 6MV/m$

A-M Valente-Feliciano - AVS 61- 11/12/2014

High-energy deposition techniques

- Crystalline defects, grains connectivity and grain size may be improved with an higher substrate temperature which provides higher surface mobility (important parameter is T_{substrate}/T_{melting_of_film})
- However the Cu substrate does not allow heating
- > The missing energy may be supplied by ion bombardment
 - In bias sputter deposition a third electron accelerates the noble gas ions, removing the most loosely bound atoms from the coating, while providing additional energy for higher surface mobility
 - Other techniques allow working without a noble gas, by ionising and accelerating directly the Nb that is going to make up the coating
 - These techniques allow also to obtain "conformal" coatings that follow the surface profile better filling voids.

Thornton's "Structure Zone Model"

Energetic Condensation

Condensing (film-forming) species : hyper-thermal & low energies (>10 eV).

A. Anders, Thin Solid Films **518** (2010) 4087

fferson Lab

As a result of these fundamental changes, energetic condensation allows the possibility of controlling the following film properties:

- Density of the film
- Film composition
- Crystal orientation may be controlled to give the possibility of low-temperature epitaxy

Next generation Nb films

ALL film properties are a direct consequence of the film structure, defect/impurity content... thus the technique, environment, substrate are key factors

Full control of the deposition process & tailored SRF performance UDDERSTANDING OF
The chemistry of the involved species
Reactivity
Stoichiometric sensitivity
Reaction process temperatures
I structure dependence on substrate structure
ne of deposition energy on resulting structure
ivity to the presence of contaminating species, defects
ation of desired film against subsequent degradation

Careful characterization of the attained composition and microstructure (RHEED, STM, XRD, EBSD, AFM, optical profilometry, XPS, SIMS, TEM, FIB).

Close association with resulting RF surface impedance & superconducting properties (λ , Δ , T_c, H_c, RRR)

Plasma Arc (ARCO-INFN/Soltan Institute)

- •In the plasma arc an electric discharge is established directly onto the Nb target, producing a plasma plume from which ions are extracted and guided onto the substrate by a bias and/or magnetic guidance
- •Magnetic filtering (and/or arc pulsing) is also necessary to remove droplets
- •A trigger for the arc is necessary: either a third electrode, or a laser
- •Arc spot moves on the Nb cathode at about 10 m/s
- •Arc current is 100-200 A
- •Cathode voltage is ~ 35 V
- Ion current is 100-500 mA on the sample holder (2-10 mA/cm²)
- •Base vacuum ~ 10⁻¹⁰ mbar
- •Main gas during discharge is Hydrogen (~ 10⁻⁷ mbar)
- •Voltage bias on samples 20-100 V

Plasma Arc – Presence of macro-particles

Thin Film Cavity Production

Planar arc – RF measurements on samples

Figure 5: Q₀ versus peak magnetic field for different Nb/Cu end plates and a bulk Nb end plate.

Cu samples with Nb ARC-coating. Used as a base plate of 6 GHz cavity operating in the TE011 mode. At low field, the surface resistance is in the range 3-6 $\mu\Omega$ as compared to the BCS Rs of 0.22 $\mu\Omega$ at 2.2 K and small mean free path. The Q remained constant up to a field of 300 Oe.

A baseline of 2.2 $\mu\Omega$ is measured with this cavity with a solid Nb plate A. Romanenko and H. Padamsee, Proc. SRF2005, Cornell, USA, 2005

Coaxial Energetic Deposition[™] (CED)

Alameda Applied Science Corporation

- •Cathode: 60 cm conducting rod (1 cm dia).
- •Anode: 45 cm Mo mesh tube (4.5 cm ID)
- •Substrate: 5 cm ID minimum for this configuration
- •Solenoid: **B** ranges from 0-10 mT in z^+ or z^- direction.

Note: Anode does not collect all the arc current. Mesh spacing is much larger than Debye length. Current is measured between the power supply and cathode through known resistor.

Rotating arc moves down the axis of a $4^{\prime\prime}\phi$ tube

CED Films structure

Substrate Al_2O_3 (11-20) $T = 300^{\circ}$

 $T_{c} = 9.25K$ RRR=131

> CED Nb Thin Film on a Polycrystalline Cu substrate **Demonstrated Feature of Heteroepitaxy**

Working Distance: 15.000000

Number of points: 13094 Number of good points: 13093

150.00 microns x 74.48 microns Step: 1.00 microns

Average Confidence Index: 0.42 Average Image Quality: 2633.56 Average Fit [degrees]:

Gray Scale Map Type:«none» Color Coded Map Type: Inverse Pole Figure [001]

Energetic condensation with ECR Jefferson Lab

т No working gas Ions produced in vacuum Singly charged ions 64eV **Controllable deposition energy with Bias voltage Excellent** bonding No macro particles Good conformality

Nb⁺

eB

 $\omega = -$

Conformality of the ECR process:

the film thickness along a 3GHz half-cell profile varies from 4mm (equator) to 6mm (iris) Note: the substrate is very rough, was only grossly mechanically polished

Structure, interface and superconducting gap

for hetero-epitaxial ECR Nb films on polycrystalline Cu.

Tailored Nb films via energetic condensation

Tune thin film structure and quality with ion			Substrate	RRR _{max}
energy and substrate temperature on a			a-Al ₂ O ₃	488
variety of substrates (amorphous,			r-Al ₂ O ₃	641
polycrystalline and single crystal)		crystal	c-Al ₂ O ₃	247
Achieve film structures and properties only		ingle o	MgO (100)	188
achievable at higher temperature with	Iting	S	MgO (110)	424
classic coating methods	sula		MgO (111)	270
□ Tune RRR values from single digits to bulk Nb values →No intrinsic limitations	Ľ	talline 1ous	Al ₂ O ₃ ceramic	135
Lower impurity (H) content than bulk Nb		ycrys norpl	AIN ceramic	110
Good adhesion to the substrate		Polyar	Fused Silica	84
(delamination threshold determined as		tal	Cu (100)	181
function of ion energy and temperature)	G	le cryst	Cu (110)	275
Grain boundaries not necessarily detrimental	tallio	Sing	Cu (111)	245
(if dense) to R _s	Me	talline	Cu fine grains	193
subsequent growth at energy minimizing		Polycrys	Cu large grains	305

defect creation can contribute to lower R_s

Influence of ion energy on surface resistance

ECR Nb/Cu – surface resistance

If dense, grain boundaries not necessarily detrimental to RF performance

ECR Nb/Cu – Surface resistance

Approach: 3 sequential phases for film growth

Addressing the film deposition in 2 phases (nucleation @ high energy, subsequent growth @ 64 eV) shows some improvement in R_s

ECR Nb/Cu– Surface resistance

Bake & coating temperature: 360 °C

Coating with dual ion energy: 184 eV for nucleation/early growth 64 eV for subsequent growth

Hetero-epitaxial film Nb on OFHC Cu

Tc= 9.36 ± 0.12 K

RRR = 99 (witness sample, 179 for Nb/a-Al₂O₃) EBSD IPF map and XRD pole figure show very good crystallinity and grain sizes in the range of the typical Cu substrate

	R _{res} [nΩ]	λ(0K) [nm]			
400 MHz	46.6 ± 0.8	40 ± 2			
800 MHz	79 <u>+</u> 2	38 ± 1			
1200 MHz	156 <u>+</u> 11	38 ± 1			
ℓ* [nm]	RRR	Nb film			
144 ± 20	53 ± 7	in the clean limi			
* with $\lambda_{L} = 32$	nm and $\xi_0 = 39 \text{ nm}$				

Comparison with Sputtered Nb/Cu and bulk Nb

HiPIMS

High power impulse magnetron sputtering (HiPIMS) is an emerging technology

Use of High Power Impulse Magnetron Sputtering (HiPIMS) for Nb coating with enhanced properties

The target material is partly ionized such that the ions will reach the substrate with a higher energy and, in case of an applied bias voltage to the substrate, always normal to the surface.

better adhesion

very high purity

better (normal) conductivity, Large crystal grains, low defect density dense & smooth films Homogeneous coating even on non-flat surfaces

NEW METHODS FOR THIN FILM DEPOSITION AND FIRST INVESTIGATIONS OF THE USE OF HIGH TEMPERATURE SUPERCONDUCTORS FOR THIN FILM CAVITIES

A. Gustafsson et al., CERN (WEPEC047)

Nb films – Energetic condensation with HiPIMS

Thomas Jafferson National Accelerator Facility A-M Valente-Feliciano - AVS 61- 11/12/2014

Nb films – Energetic condensation with HiPIMS

Thomas Jefferson National Accelerator Facility

Nb films – Energetic condensation with HiPIMS

HiPIMS cylindrical coating system for single cell under commissioning

HiPIMS dual magnetron system Most effective for Biasing & influencing Ion Energies & Trajectories

- high power mode (above runaway threshold)
- Dominated by niobium emission

Thomas Jefferson National Accelerator Facility

Which materials are suitable for SRF cavities?

Highest T_c=164 K (under GPa)

Critical Field

The superheating field H_{sh} is the field up to which the Meissner state metastably persists above H_{c1}

For type-II superconductors, at T = O in the clean limit with a Gindzburg-Landau parameter $\kappa = \lambda/\xi \gg 1$, H_{sh} has been calculated to be ~ 0.75H_c.

H_{RFcrit} ≈H_{sh}

Surface Resistance

The power dissipated per unit area of SC in RF regime

$$P = R_{\rm s} \cdot \frac{H^2}{2}$$

Surface Resistance

and

$$\boldsymbol{R}_{S} = \boldsymbol{R}_{BCS}(\boldsymbol{T}) + \boldsymbol{R}_{res}$$

V. Palmieri, 10th Workshop on RF Superconductivity Proceedings, Tsukuba 2001 (Noguchi) "New materials for superconducting radiofrequency cavities"

BCS Surface Resistance R_{BCS}

If T < T_c / 2, for dirty limit superconductors

$$R_{BCS} \cong \frac{R_n}{\sqrt{2}} \left(\frac{\eta\omega}{\pi\Delta}\right)^{\frac{3}{2}} \frac{\sigma_1}{\sigma_n} = A\sqrt{\rho_n} e^{-\frac{\Delta}{K_B T}} \left(1 + O(\Delta, \omega, T)\right)$$

- A constant weakly dependent on material
- ω = RF frequency
- $\rho_n\,$ = Normal State conductivity
- Δ = Superconducting gap
- T_c = Transition Temperature

dependence on ρ_n and T_c represents an immediate criterion for selecting the most favorable candidates for cavities

The higher Tc (= 0.57Δ), the smaller the BCS surface resistance

Material with high normal state conductivity and high Tc (high superconducting gap Δ)should be selected

Residual Resistance R_{res}

Temperature independent

Contributions to residual losses:

Intrinsic:

Inhomogeneties, Metallic Inclusions within I, Grain Boundaries, Oxides Extrinsic:

Trapped Flux during cooling (can be avoided)

Variety of phenomena involved

Not one formula predicting R_{res}

From literature

Empirically, ${\sf R}_{\sf res}$ found proportional to at least $\sqrt{\rho_{\sf n}}$

For two materials with the same R_{BCS} and different T_c and ρ_n , the one with the smallest ρ_n should have the smallest R_{res}

Metallic behaviour is favored

Criteria of choice

THERE IS NO IDEAL SUPERCONDUCTOR FOR CAVITY CHOICE IS BASED ON COMPROMISE

Possible Choices among Superconducting Materials

Material	Т _с [К]	ρ _n (μΩcm)	H _c (0) [T]	H _{c1} (0) [mT]	H _{c2} (0) [T]	λ (0) [nm]	Δ [meV]	Туре
Nb	9.22	2	0.2	180	0.28	40	1.55	II
Pb	7.2		0.08	N/A	N/A	48		I
NbN	16.2	70	0.23	20	15	200	2.6	II, B1 comp.
NbTiN	17.5	35		30	15	151		II, B1 comp.
Nb ₃ Sn	18	20	0.54	50	30	85	3.1	II, A15
V ₃ Si	17				24.5	179		II, A15
Mo ₃ Re	15		0.43	30	3.5	140		II, A15
MgB ₂	40	0.1-10	0.43	30	3.5-60	140	2.3; 7.2	II- 2 gaps
Pnictides	30-55		0.5-0.9	30	>100	200	10-20	
YBCO	93		1.4	0.01	>100	150	20	d-wave

Large gap Δ (good for SRF) is usually accompanied by low H_{c1} (bad for SRF)

$$R_s = \mu_0^2 \sigma_n \lambda^3 \omega^2 \frac{\Delta}{kT} \ln\left(\frac{9kT}{4\hbar\omega}\right) e^{-\Delta/kT}$$

d-wave high-T_c cuprates with nodal gap and $R_s \propto T^s$, $s \simeq 2-3$ are not useful for SRF

B1 compounds – NaCl structure

Metallic atoms A form an fcc lattice Non-metallic atoms B occupy all the octahedral interstices.

NB COMPOUNDS

Jefferson Lab

NbN phase diagram

Nb Compounds - NbN

G.Gemme et al., J.Appl.Phys. 77(1), Jan. 1995

Reactive Sputtering:

Sputtering from high purity Nb target in Ar+ N₂ in DC triode magnetron sputtering system Highest Tc for substrate temp. > 500°C, P_{Ar} =8.10⁻³mbar, P_{N2} =1.10⁻³mbar

A. Nigro et al., Physica Scripta Vol. 38, 483-485, 1988

Nb Compounds - NbTiN

Ternary Nitride Nb_{1-x}Ti_xN

Presence of Ti found to reduce significantly the resistivity And facilitate formation of a pure cubic structure. The δ -phase remains thermodynamically stable even at RT. T_c as high as for good quality NbN, for Nb fraction (1-x)>0.5

extreme hardness, excellent adherence on various substrates, very good corrosion and erosion resistance, high-sublimation temperature, and relative inertness

More metallic nature and better surface properties than NbN should result in better RF performance

Nb Compounds - NbTiN

INFN : reactive sputtering with Ar/N₂ in DC Triode Magnetron Sputtering **@** 600°C and 200°C

(Nb_{1-x}Ti_x)N films with 1-x<0.5 present a lower calculated surface impedance, lower critical fields and better surface properties than NbN, especially when deposited at low temperatures.

R. Di Leo et al. J. of Low Temp. Phys, vol 78, n1/2, pp41-50, 1990

Fig. 3. Calculated BCS surface impedance $R_s(BCS)$ as a function of the titanium composition (x) for the $(Nb_{1-x}Ti_x)N$ films deposited at $T_s = 600^{\circ}C$ (circles) and at $T_s = 200^{\circ}C$ (squares). The continuous lines correspond to the values of the lines through the data in Figs. 1 and 2.

Nb Compounds - NbTiN

Reactive Magnetron Sputtering:

CEA Saclay :

NbTiN films deposited on 12 cm copper disks by magnetron sputtering and tested in a cylindrical TE₀₁₁ cavity reached RF field levels of 35 mT

low residual surface resistance (< 100 n Ω at 4 GHz) with a very small BCS resistance

4 cavities deposited but no RF measurement due to film blistering on large area of the cavity.

Rs slope significantly decreased when coating with bias ranging from -50V to -100V

- P. Bosland et al.
- S. Cantacuzène et al.

CERN:

Samples and six 1.5 GHz Cu cavities coated by reactive cylindrical magnetron sputtering Best cavity result for thicker film (4.3 μ m) and lower deposition temperature (265°C) Rs = 330n Ω @ 4.2K

Q₀ at zero field is higher than the Q-value of Niobium cavities but Eacc limited under 10 MV/m As for NbN, N stoichiometry critical to obtain the right SC phase

M. Marino, Proceedings of the 8th Workshop on RF Superconductivity, October 1997, Abano Terme (Padua), (Rep) 133/98, vol.IV, p.1076

Figure 3 Surface resistance vs temperature for a NbTiN sample, at 4 GHz.

A15 COMPOUNDS

Anne-Marie Valente-Feliciano - New SRF Materials - USPAS June 2015- Rutgers

A15 Compounds - Structure

A atoms = Transition elements of group IV, V or VI B atoms = Non transition or transition elements

B atoms occupy corners and centre of BCC structure A atoms form orthogonal chains bisecting the faces of the BCC unit cell. Linear Chain Integrity is crucial for Tc (long-range order required)

A15 Compounds – Potential candidates for RF Cavities

Nb₃Sn, Nb₃Al, Nb₃Ge, Nb₃Ga, V₃Si, Mo₃Re

- □ Among the Nb and V based high Tc (15 20 K)
- **Nb**₃Ga and Nb₃Ge do not exist as stable bulk materials at 3:1 stoichiometry
- **Nb**₃Al exists only at high temperature causing excessive atomic disorder
- **Production of above materials need non equilibrium processes**
- \Box V₃Ga, V₃Si & Nb₃Sn are stable bulk material and have high T_c
- □ Another A-15 compound holding promise is Mo₃Re (Tc=15K)

Sharma, International Workshop on Thin Films and New Ideas for Pushing The Limits Of RF Superconductivity, LNL-INFN, Oct.2006

Extreme brittleness so A-15 bulk structure cannot be formed The A-15 should be produced as thin layer on the interior of the already formed structure Such a layer need to be only 1 or 2 microns thick λ_L (Nb3Sn) = 65 nm

Thin film route ideal

A15 Compounds – Preparation Methods III

Chemical Vapor Deposition (CVD)

- MOCVD (Metal Organic Chemical Vapour Deposition) is a particular case of CVD in which the precursor is a metallorganic compound
- Process in which one or more precursors, present in vapor phase, chemically react on an appropriate warm substrate, giving rise to a solid film
- Deposition rate and structure of the film depend upon temperature and reagent concentration
 - ⇒ Uniformity of temperature and flow of gaseous over entire cavity surface may be difficult with complex geometry

Diffusion Reaction

- Technique proved successful for magnet conductor application
- Simple equipment compared to sputtering and CVD

Co-Sputtering

- Considerable success achieved in synthesizing difficult materials like Nb₃Ge with highest Tc(~23k) or V₃Si
- Typically two constituents are sputtered simultaneously onto a temperature controlled substrate
- Stoichiometry dependent on relative positions of target and substrate (can be manipulated to get perfect stoichiometry)
- Stoichiometry control difficult over large areas like accelerating system and if stoichiometry range for A-15 phase is narrow.

Sputtering

- To sputter from a single target of correct stoichiometry (prepared by powder sintering)
- Stoichiometry, Substrate Temperature, Deposition Rate, Deposition Thickness Can be varied independently

Nb₃Sn SRF History

Wuppertal, end '80s :

5-cell 1.5GHz cavity also coated: $Q_0 \sim 10^9$, $E_{acc} = 7$ MV/m with Q=8.10⁸

G. Müller et al., M. Peiniger & H. Piel , IEEETrans. On Nucl. Sc. Vol NS-32, nº5, Oct. 1985

Anne-Marie Valente-Feliciano - New SRF Materials - USPAS June 2015- Rutgers

A15 Compounds – Nb₃Sn through liquid diffusion

S. Deambrosis, Sharma, International Workshop on Thin Films and New Ideas for Pushing The Limits Of RF Superconductivity, LNL-INFN, Oct.2006 S. Deambrosis et al., Physica C 441 (2006) 108-113

Diffusion temperature to be kept above 930°C to avoid formation of low Tc phases like Nb₆Sn₅ (2.6 K) and NbSn2 (2.1 K) Diffusion time optimize to obtain desired Nb3Sn thickness Post diffusion heat reaction important to get rid of the outer Sn layer Post diffusion annealing to have enlarged grains and perfect ordering

Nb₃Sn Coating via Vapor Diffusion

Anne-Marie Valente-Feliciano - New SRF Materials - USPAS June 2015- Rutgers

Nb₃Sn

W crucible holding Sn

Heater to raise

vapor pressure of

Nb substrate to

be coated

Thomas Jefferson National Additionation

S. Posen, M. Lieppe, Cornell G. Eremeev, JLab

Dedicated furnace systems at Cornell University and Jlab for Nb₃Sn synthetization via Sn diffusion

Nb₃Sn Cavity Result

Anne-Marie Valente-Feliciano - New SRF Materials - USPAS June 2015- Rutgers

A15 Compounds – V₃Si

S. Deambrosis et al., Physica C 441 (2006) 108-113

14

12

Highly ordered compound, RRR~80 achievable, max Tc (17.1K) when stoichiometric composition (25at.% Si)

Ľ V₃Si layers by silanization of V substrate and Thermal Diffusion

V substrate heated to get SiH₄ decomposition and Silicon diffusion Film grown by silanization with p (SiH₄) ~ 10^{-3} - 10^{-4} mbar Annealing in vacuum to get rid of hydrogen

825°C, 4h+8h

* Diffusion parameters and silane flow rate have been optimized

P 300K/P17

* Tc ~ 16 K is routinely obtained

Jefferson Lab

A15 Compounds – Mo₃Re

$Mo_{3}Re$ thin films by DC magnetron deposition: $Mo_{75}Re_{25}$, $Mo_{60}Re_{40}$

Solid solution , free of bulk and surface inhomogeneities, low intersticials solubility compared to Nb, low κ , high H_{c1} (500G)

Bulk in σ phase, tetragonal low T_c (6K)

but $\rm T_{c}$ up to 18K reported in literature with bcc structure

Fig. 4. A $Mo_{75}Re_{25}$ film deposited on Cu transition curve: deposition T = 680 °C, $T_c = 11.18$, $\Delta T_c = 0.08$ K.

MgB₂

Magnesium Diboride (MgB₂)

Graphite-type boron layers separated by hexagonal close-packed layers of magnesium

Superconductivity comes from the phonon-mediated Cooper pair production similar to the low-temperature superconductors except for the **two-gap nature**.

T_c~40 K

Compared to cuprates:

- Cheaper
- Lower anisotropy
- Larger coherence length
- Transparency of grain boundaries to current flows

C. Buzea and T. Yamashita, Superconductor Sci. Technol. 14 (2001) R115.

MgB₂: Two Energy Gaps

R_s is dominated by the smaller gap, so MgB₂may not be better than Nb₃Sn because Δ_{π}^{MgB2} = 2.3 meV < Δ^{Nb₃Sn}= 3.1 meV, but better than Nb (Δ^{Nb}= 1.5 meV)

RF response has shown lower energy gap behavior. This must be compared to $\Delta \approx 1.5$ meV for Nb. There is room for better performance than Nb, since the resistivity can also be made quite low (best values are $\leq 1 \ \mu\Omega$ cm).

MgB₂-Thin films growth

At P=10⁻⁶ Torr and T> 250°C no accumulation of Mg will take place on the substrate and the growth of the superconducting phase is very slow due to a large kinetic energy barrier.

At low Mg pressure only extremely low deposition temperatures can be used

Jefferson Lab

Anne-Marie Valente-Feliciano - New SRF Materials - USPAS June 2015- Rutgers

MgB₂ – HPCVD on metal substrates

Hybrid Physical Chemical Vapor Deposition

High T_c has been obtained in polycrystalline MgB₂ films on stainless steel, Nb, TiN, and other substrates.

Clean HPCVD MgB2 thin films with excellent properties:

•RRR>80

low resistivity (<0.1 $\mu\Omega$) and long mean free path

• high *Tc* ~ 42 K (due to tensile strain), high *Jc* (10% depairing current)

• low surface resistance, short penetration depth

• smooth surface (RMS roughness < 10 Å with N_2 addition)

• good thermal conductivity (free from dendritic magnetic instability)

Critical engineering considerations:

generate high Mg pressure at substrate (cold surface is Mg trap) deliver di-borane to the substrate (the first hot surface di-borane sees should be the substrate)

Hybrid Physical Chemical Vapor Deposition (HPCVD) at Temple University

2" MgB₂ Films Grown by HPCVD

Surface Resistance Compared to Large Grain Nb

Surface resistance of 2" dia. 350 nm MgB_2 film on sapphire comparable to the best large grain Nb at 4 K.

MgB₂ - Reactive Evaporation

Anne-Marie Valente-Feliciano - New SRF Materials - USPAS June 2015- Rutgers

MgB₂ – An Idea for SRF Cavity Coating

R_s for MgB₂

Results at MIT in 2006 showed R_s comparable to Nb even at 20 K! and the field at which the Rs start to increase rapidly was higher than Nb!!

MgB₂ – Challenges

Keys to high quality MgB2 thin films:

- High Mg pressure for thermodynamic stability of MgB₂
- oxygen-free or reducing environment
- clean Mg and B sources

Challenges

Film properties degrade with exposure to moisture: resistance goes up, T_c goes down Clean cavity surface leads to degradation in water and moisture ... need of a cap layer? Diffusion of Mg into substrate (Cu...), need of a buffer layer

Safety ... procedures for use of diborane

OXYPNICTIDES

Anne-Marie Valente-Feliciano - New SRF Materials - USPAS June 2015- Rutgers

A new superconducting family

Oxypnictide base

ReOMP_n

M = Fe, Co, Ni
Pn = As or P
Re = La, Nd, Sm, Pr

Layered as HTS –superconducting AsFe layers and T_c from <10K to 55K

Superconductivity occurs on the FeAs layer with magnetic pair-breaking Fe²⁺ions

Another families:Ba_{1-x}K_xFe₂As₂

Up to a few thousand compounds

Materials usually brittle

Iron-Based Layered Superconductor La[O_{1-x}F_x]FeAs (x = 0.05-0.12) with $T_c = 26$ K

Yoichi Kamihara,** Takumi Watanabe,* Masahiro Hirano,*§ and Hideo Hosono***

ERATO-SORST, JST, Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-1, and Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Received January 9, 2008; E-mail: hosono@msl.titech.ac.jp

Tests in magnetic fields up to 45 T suggest the H_{c2} of LaFeAsO_{0.89} $F_{0.11}$ may be ~64 T. A different La-based material ($La_{0.8}K_{0.2}FeAsO_{0.8}F_{0.2}$) tested at 6 K predicts H_{c2} ~122 T.

Can pnictides be useful for TFSRF?

For s-wave members of the pnictide family, one can expect a much lower R_s at 2K because

 Δ_{oxy} = 5-10 meV > Δ_{Nb3Sn} = 3 meV

Normal skin effect($I << \lambda$): multiple impurity scattering in the λ -belt:

```
Rs{\sim}({\mu_0}^2\omega^2\lambda^3\sigma_n\Delta/T)exp(-\Delta/T)
```

Anomalous skin effect ($l >> \lambda$)in the clean limit: Effective $\sigma_{eff} \sim e^2 n \lambda / p_F$ High $\rho_n \sim 1 m \Omega cm \sim 10 \rho_n MgB_2$, big λ = 180-250 nm, low $H_{c1} \sim 10 \text{ mT}$

R_s can be much lower than R_sof Nb₃Sn, but TF multilayer coating is necessary First high quality epitaxial films have been grown by C.-B. Eom (UW)

Pnictides Films Deposition

a)

Coating Methods: Pulse Laser Deposition from stoichiometric target

Ion Beam Assisted - MBE

First high quality epitaxial films have been grown by C.-B. Eom (UW)

100 µm Anne-Marie Valente-Feliciano - New SRF Materials - USPAS June 2015- Rutgers

SIS MULITLAYERS

Anne-Marie Valente-Feliciano - New SRF Materials - USPAS June 2015- Rutgers

Beyond Nb: SIS Multilayers

Taking advantage of the high –Tc superconductors with much higher H_c without being penalized by their lower Hc1...

Higher-T_cSC: NbN, Nb₃Sn, etc 0. 0 B/B a B_i/B_a 0 Bulk 0. S S 3 4 5 x/λ_b Insulating layers

Alex Gurevich, Appl. Phys. Lett. 88, 012511 (2006)

Multilayer coating of SC cavities: alternating SC and insulating layers with $d < \lambda$

Higher T_c thin layers provide magnetic screening of the Nb SC cavity (bulk or thick film) without vortex penetration

No thermodynamically stable parallel vortices due to the enhancement of H_{c1} in thin films with d < λ (Abrikosov, 1964)

$$H_{c1} = \frac{2\phi_0}{\pi d^2} \left(\ln \frac{d}{\xi} - 0.07 \right)$$

The breakdown field could be increased up to the superheating field Hs of the coating: 450 mT for Nb3Sn

• Strong reduction of BCS resistance because of using SC layers with higher Δ (Nb₃Sn, NbN, etc)

Pushes the accelerating gradient above 100 mV/m

• Possibility to move operation from 2K to 4.2K

Screening field in a multilayer

• Solutions of London equation for a layer with the penetration depth λ on a substrate with the penetration depth λ_0

$$h_1(x) = H[(1-c)e^{-x/\lambda} + ce^{x/\lambda}], \qquad 0 < x < h_2(x) = Hbe^{(d-x)/\lambda_0}, \qquad x > d$$

where c and b are given by:

$$c = \frac{k}{k+g^2},$$
 $b = \frac{(1+k)g}{k+g^2}$

Important parameters

$$k = rac{\lambda - \lambda_0}{\lambda + \lambda_0}, \qquad \qquad g = \exp(d/\lambda)$$

T. Kubo, Y. Iwashita, and T. Saeki, APL 104, 032603 (2014); A. Gurevich, AIP Advances, 5, 017112 (2015)

Meissner state breaks down at the surface of either ML or Nb where the current densities J(0) = h'(0) and J(d) = h'(d) are maximum for the SC substrate (Nb) with

 $\lambda_0 < \lambda$, both c and k are positive

Current counterflow induced by the Nb substrate

Current density in the layer J(x) = - h'(x):

$$J(x) = [(1-c)e^{-x/\lambda} - ce^{x/\lambda}]H/\lambda$$

• Current density at the surface J(0) is reduced by the substrate with $\lambda_0 < \lambda$:

$$J(0) = \left[1 - \frac{2k}{k + \exp(2d/\lambda)}\right] \frac{H}{\lambda} < J_d = \frac{H_s}{\lambda}$$

Counterflow induced by the substrate reduces the current density at the ML surface, allowing the Meissner state in the ML to survive up to fields exceeding the bulk superheating field H_s

For a thick ML with d >> λ , the maximum field H_m is limited by H_s: at optimum thickness d_m the field H_m exceeds both H_s and H_{s0}

Optimum thickness

The Meissner state is stable if the screening current density at the surface of both the ML and the substrate is smaller than the depairing limit:

 $J(0) < J_d$ = H_s/λ and $J(d) < J_{d0}$ = H_{s0}/λ_0

$$\frac{(e^{2d/\lambda} - k)H}{e^{2d/\lambda} + k} \le H_s, \qquad \frac{H(1+k)e^{d/\lambda}}{e^{2d/\lambda} + k} \le H_{s0}$$

The Meissner state is below both blue and red lines.

The crossing point defines the optimum thickness d_m for maximum H_m which exceeds the superheating fields of both the layers and the substrate

$$\mu_n = \lambda \ln(\mu + \sqrt{\mu^2 + k}), \qquad \mu = \frac{H_s \lambda}{(\lambda + \lambda_0) H_{s0}}$$

$$d/\lambda$$

for
$$H_s = 2H_{s0}$$
 and $k = \frac{1}{2}$,
 $d_c = \ln[\mu + (\mu^2 - k)^{1/2}]$

Maximum screening field

The maximum screening field H_m corresponds to d = d_m for which

$$H_m = \left[H_s^2 + \left(1 - \frac{\lambda_0^2}{\lambda^2} \right) H_{s0}^2 \right]^{1/2}$$

 H_m at the optimum thickness exceeds the bulk superheating fields of both Nb and the layer material. For $\lambda >> \lambda_0$, practically for $\lambda > 160$ nm for a SC layer on the Nb cavity with $\lambda_0 = 40$ nm, H_m approaches the limit

$$H_m \rightarrow \sqrt{H_s^2 + H_{s0}^2}$$

Let us evaluate H_m for a ML on clean Nb with $\lambda_0 = 40$ nm and $H_{s0} = 1.2H_c = 240$ mT (the GL result for clean Nb) and different layer materials, such as Nb₃Sn, NbN, pnictides, and also dirty Nb

A. Gurevich, AIP Advances, 5, 017112 (2015)

Estimates of H_m and d_m

• Nb₃Sn: $H_s = 0.84H_c = 454$ mT and $\lambda = 120$ nm (moderately dirty):

 $H_m = 507 \text{ mT}, \qquad d_m = 1.1\lambda = 132 \text{ nm}$ doubles the superheating field of clean Nb

Ba_{0.6}K_{0.4}Fe₂As₂, T_c = 38 K, H_c = 0.9T, H_s = 756 mT, λ = 200 nm

 $H_m = 930 \text{ mT}, \quad d_m = 1.78\lambda = 356 \text{ nm}.$ almost quadruples the superheating field of clean Nb

• dirty Nb layer: $H_c = 200 \text{ mT}$, $H_s = 170 \text{ mT}$, I = 2 nm, and $\lambda = \lambda (\xi_0 / I)^{1/2} = 180 \text{ nm}$

 $H_m = 288 \text{ mT}, \quad d_m = 0.44\lambda = 79 \text{ nm}.$ 20% gain as compared to $H_s = 240 \text{ mT}$ of clean Nb

SIS Multilayers – The Benefits

- Multilayer S-I-S-I-S coating could make it possible to take advantage of superconductors with much higher H_c, than those for Nb without the penalty of lower H_{c1}
- Strong increase of H_{c1}in films allows using rf fields > H_c of Nb, but lower than those at which flux penetration in grain boundaries may become a problem
- Strong reduction of BCS resistance because of using SC layers with higher $\Delta(Nb_3Sn, NbN, ...)$

The significant performance gain may justify the extra cost.

... but ...

...

Technical challenges, influence of composition on Hc1 and Hc, influence of the morphology and composition at grain boundaries,

Supercond. 23, 8600203 (2013).

Jefferson Lab

MgB₂-MgO Multilayer Films

Epitaxial and Polycrystalline Films: *H*_{c1} vs Thickness

References

- Experimental evidences of the enhancement of the parallel H_{c1} in thin films
- L. Civale, T.K. WoA. Gupta, Phys. Rev. B 48, 7576 (1993).
- C. Antoine, et al Phys. Rev. ST-AB 13, 121001 (2010).
- T. Tajima, et al. J. Phys. Conf. Ser. 234, 012043 (2010); AIP Conf. Proc. 1435, 297 (2012).

DB Beringer, C Clavero, T Tan, XX Xi, WM Roach, RA Lukaszew IEEE Trans. Appl. Supercond. 23, (2013)

Increasing the high-field performance and reduction of R_s by a NbN overlayer
C.Z. Antoine, J.-C. Villegier, G. Martinet, APL 102, 102603 (2013).
WM Roach, DB Beringer, Z Li, C Clavero, RA Lukaszew, IEEE Trans. Appl. Supercond.
23 (2013)

CONCLUDING REMARKS

✓ Progress in energetic condensation deposition techniques opens the way to high quality Nb/Cu films and the reduction of the Qslope of Nb/Cu cavities may be in sight.

✓ Over the years, some attempts have been made to study alternative materials to Nb for applications to SRF cavities.

✓ Most of the sample/cavities using alternative materials have been produced by reactive magnetron sputtering or thermal diffusion.
✓ Use of Energetic Condensation Techniques like Vacuum Arc Deposition, ECR, or ALD? (production of very dense films with nm-scale roughness...Some trials with Vacuum Arc @ INFN-Rome, non conclusive)

✓ The multilayer approach opens the door to further potential improvement for SRF cavities, taking benefits from the advantages of higher T_c superconductors without the penalty of lower field onset for vortex penetration and increase the accelerating gradient and Q.

✓ Strong reduction of the BCS resistance for superconducting layers with higher Δ (Nb₃Sn, MgB₂, BKBO, NbN ... s-wave, fully gapped superconductors)

✓ New non-magnetic members of the oxypnictide family with 15K < T_c < 55K or BaO_{0.6}K_{0.4}BiO₃ with T_c ≈30K: a possibility to greatly increase Q if TF coating can be developed.

CONCLUDING REMARKS cont.

✓ Possibility to move from 2K to 4.2K: huge cost saving on refrigeration in LINACS

✓ Higher –T_c s-wave materials are often multi-gap superconductors, which do not always have better SRF performance despite higher H_c and T_c

✓ First experimental evidence of field enhancement with NbN/MgO/.../Nb, NbTiN/AlN/Nb/Cu samples with SQUID measurement with H // sample plane. Field penetration delayed for NbN , NbTiN layered samples compared to Nb sample.

✓ Many long-standing problems of condensed matter physics and non-equilibrium superconductivity will have to be addressed to understand nonlinear surface resistance under strong rf fields

✓ Multi-parameter materials optimization is required to unravel the full SRF performance potential.

✓ The effort for new materials research for SRF cavities application has been very limited so far...but interest has been regained. There is still a lot of work ahead!

