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Historical Overview 
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Perfect Conductivity 

Kamerlingh Onnes and van der Waals 

in Leiden with the helium 'liquefactor' 

(1908)  
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Perfect Conductivity  

Persistent current experiments on rings have measured 
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Perfect conductivity is not superconductivity 

 

Superconductivity is a phase transition 

A perfect conductor has an infinite relaxation time L/R 

Resistivity < 10-23 Ω.cm 

Decay time > 105 years 
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Perfect Diamagnetism (Meissner & Ochsenfeld 1933) 
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Perfect conductor Superconductor 
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Penetration Depth in Thin Films 

Very thin films 

Very thick films 
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Critical Field (Type I) 
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Superconductivity is destroyed by the application of a magnetic field 

Type I or “soft” superconductors 
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Critical Field (Type II or “hard” superconductors) 

Expulsion of the magnetic field is complete up to Hc1, and partial up to Hc2 

Between Hc1 and Hc2 the field penetrates in the form if quantized vortices 

or fluxoids 
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Thermodynamic Properties  

Entropy Specific Heat 

Energy Free Energy 
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Thermodynamic Properties  
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Thermodynamic Properties 
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superconducting state is more ordered than normal state 

 A better fit for the electron specific heat in superconducting state is 
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The quadratic dependence of critical field on T is 

related to the cubic dependence of specific heat 

Energy Difference Between Normal and 

Superconducting State 
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Isotope Effect (Maxwell 1950) 

The critical temperature and the critical field at 0K are dependent 

on the mass of the isotope 

(0) with  0.5c cT H M a a-
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Energy Gap (1950s) 

At very low temperature the specific heat exhibits an exponential behavior 

 

Electromagnetic absorption shows a threshold 

Tunneling between 2 superconductors separated by a thin oxide film 

shows the presence of a gap 
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Two Fundamental Lengths 

• London penetration depth λ 

– Distance over which magnetic fields decay in 

superconductors 

• Pippard coherence length ξ 

– Distance over which the superconducting state decays 
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Two Types of Superconductors 

• London superconductors (Type II) 

– λ>> ξ 

– Impure metals 

– Alloys 

– Local electrodynamics 

 

• Pippard superconductors (Type I) 

– ξ >> λ 

– Pure metals 

– Nonlocal electrodynamics 
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Material Parameters for Some Superconductors 
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Phenomenological Models (1930s to 1950s) 

Phenomenological model: 

Purely descriptive 

 Everything behaves as though….. 

 

 

 

A finite fraction of the electrons form some kind of condensate 

that behaves as a macroscopic system (similar to superfluidity) 

 

At 0K, condensation is complete 

 

At Tc the condensate disappears 
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Two Fluid Model – Gorter and Casimir  

( )

( )

( )

1/2

2

2

(1 ) :

( ) = ( ) (1 ) ( )

1

2

1

4

  gives

c

n s

n

s c

T T x

x

F T x f T x f T

f T T

f T T

F T

g

b g

< =

-

+ -

= -

= - =-

fractionof "normal"electrons

fractionof "condensed"electrons (zero entropy)

Assume: free energy

independent of temperature

Minimizationof

C

4

4

1/2

3

2

 =

( ) ( ) (1 ) ( ) 1

T
3

T

C

n s

C

es

T
x

T

T
F T x f T x f T

T

C

b

g

æ ö
ç ÷è ø

é ùæ ö
ê úÞ = + - = - + ç ÷è øê úë û

Þ =



Page 20 

Two Fluid Model – Gorter and Casimir 
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Superconducting state:

Normal state:

Recall   difference in free energy between normal and 

superconducting state
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The Gorter-Casimir model is an “ad hoc” model (there is no physical basis 

for the assumed expression for the free energy) but provides a fairly 

accurate representation of experimental results 
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Model of F & H London (1935) 

Proposed a 2-fluid model with a normal fluid and superfluid components 

 

ns : density of the superfluid component of velocity vs 

nn : density of the normal component of velocity vn 

2
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Model of F & H London (1935) 
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Model of F & H London (1935) 

combine with  0 sB = JmÑ´
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The magnetic field, and the current, decay 

exponentially over a distance λ (a few 10s of nm) 



Page 24 

1

2

2

0

4

1
4 2

1

1
( ) (0)

1

L

s

s

C

L L

C

m

n e

T
n

T

T

T

T

l
m

l l

é ù
= ê ú
ë û

é ùæ ö
ê úµ - ç ÷è øê úë û

=

é ùæ ö
-ê úç ÷è øê úë û

From Gorter and Casimir two-fluid model

Model of F & H London (1935) 
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Model of F & H London (1935) 
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Penetration Depth in Thin Films 

Very thin films 

Very thick films 
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Quantum Mechanical Basis for London Equation  
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In zero field   

Assume   is "rigid", ie the field has no effect on wave function
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Pippard’s Extension of London’s Model  

Observations:  

-Penetration depth increased with reduced mean free path 

- Hc and Tc did not change 

-Need for a positive surface energy over 10-4 cm to explain 

existence of normal and superconducting phase in 

intermediate state  

Non-local modification of London equation  
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London and Pippard Kernels  

Apply Fourier transform to relationship between  
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London Electrodynamics 

Linear London equations 

 

 

 

together with Maxwell equations 

 

 

 

describe the electrodynamics of superconductors at all T if: 

– The superfluid density ns is spatially uniform 

– The current density Js is small 
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Ginzburg-Landau Theory 

• Many important phenomena in superconductivity occur 

because ns is not uniform 

– Interfaces between normal and superconductors 

– Trapped flux 

– Intermediate state 

 

• London model does not provide an explanation for the 

surface energy (which can be positive or negative) 

 

• GL is a generalization of the London model but it still 

retain the local approximation of the electrodynamics 
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Ginzburg-Landau Theory 

• Ginzburg-Landau theory is a particular case of 
Landau’s theory of second order phase transition 

 

• Formulated in 1950, before BCS 

 

• Masterpiece of physical intuition 

 

• Grounded in thermodynamics 

 

• Even after BCS it still is very fruitful in analyzing the 
behavior of superconductors and is still one of the 
most widely used theory of superconductivity 
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Ginzburg-Landau Theory 

• Theory of second order phase transition is based on 
an order parameter which is zero above the transition 
temperature and non-zero below 

 

• For superconductors, GL use a complex order 
parameter Ψ(r) such that |Ψ(r)|2 represents the 
density of superelectrons 

 

• The Ginzburg-Landau theory is valid close to Tc 
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Ginzburg-Landau Equation for Free Energy 

• Assume that Ψ(r) is small and varies slowly in 

space 

 

• Expand the free energy in powers of Ψ(r) and its 

derivative 
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Field-Free Uniform Case 

Near Tc  we must have  

 

At the minimum 
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Field-Free Uniform Case 

At the minimum 
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Field-Free Uniform Case 

Identify the order parameter with the density of superelectrons 
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Field-Free Nonuniform Case 

Equation of motion in the absence of electromagnetic 

field 
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Field-Free Nonuniform Case 
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2 Fundamental Lengths 

London penetration depth: length over which magnetic field decay 

Coherence length: scale of spatial variation of the order parameter 

(superconducting electron density) 
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 Surface Energy  
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Surface Energy 

2 2
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Magnetization Curves 
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Intermediate State 

Vortex lines in 

Pb.98In.02 At the center of each vortex is a 

normal region of flux h/2e 
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Critical Fields  
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Even though it is more energetically favorable for a type I superconductor 

to revert to the normal state at Hc, the surface energy is still positive up to 

a superheating field Hsh>Hc → metastable superheating region in which 

the material may remain superconducting for short times. 
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Superheating Field  
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The exact nature of the rf critical 

field of superconductors is still 

an open question 
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Material Parameters for Some Superconductors  
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BCS  

• What needed to be explained and what were the 

clues? 

 

– Energy gap  (exponential dependence of specific heat)  

 

– Isotope effect (the lattice is involved) 

 

– Meissner effect 
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Cooper Pairs 

 

Assumption:  Phonon-mediated attraction between   

electron of equal and opposite momenta located 

within          of   Fermi surface 

  

Moving electron distorts lattice and leaves behind a 

trail of positive charge that attracts another electron 

moving in opposite direction 

 

Fermi ground state is unstable 

 

Electron pairs can form bound  

states of lower energy 

 

Bose condensation of overlapping 

Cooper pairs into a coherent 

Superconducting state 

 

Dw
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Cooper Pairs 

One electron moving through the lattice attracts the positive ions. 

Because of their inertia the maximum displacement will take place 

                                                  behind. 
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BCS 

The size of the Cooper pairs is much larger than their spacing 

They form a coherent state 
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BCS and BEC 
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BCS Theory 
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BCS 

• Hamiltonian 

 

 

 

 

 

• Ground state wave function 

  destroys an electron of momentum 

  creates an electron of momentum 

  number of electrons of momentum 
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BCS 

• The BCS model is an extremely simplified model of reality 

– The Coulomb interaction between single electrons is ignored 

– Only the term representing the scattering of pairs is retained 

– The interaction term is assumed to be constant over a thin 

layer at the Fermi surface and 0 everywhere else 

– The Fermi surface is assumed to be spherical 

 

• Nevertheless, the BCS results (which include only a very few 

adjustable parameters) are amazingly close to the real world 
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BCS 
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BCS 
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BCS Condensation Energy 
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BCS Energy Gap 

At finite temperature: 

  Implicit equation for the temperature dependence of the gap: 
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BCS Excited States 
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BCS Specific Heat 
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Electrodynamics and Surface Impedance  

in BCS Model 
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Penetration Depth  
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Surface Resistance  
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Surface Resistance  
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Surface Resistance  
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Surface Resistance 
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Surface Impedance - Definitions 

• The electromagnetic response of a metal, 

whether normal or superconducting, is described 

by a complex surface impedance,   Z=R+iX   

   

  R :  Surface resistance 

  X :  Surface reactance 

 

  Both R and X are real 
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Definitions 

For a semi- infinite slab: 
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Definitions 

The surface resistance is also related to the power flow 

into the conductor 

 

 

 

 

 

 

and to the power dissipated inside the conductor 
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Normal Conductors (local limit) 

Maxwell equations are not sufficient to model the 

behavior of electromagnetic fields in materials.  

Need an additional equation to describe material 

properties 

( ) 0
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Normal Conductors (local limit) 

In the local limit 

 

The fields decay with a characteristic 

length (skin depth) 
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Normal Conductors (anomalous limit) 

• At low temperature, experiments show that the surface 

resistance becomes independent of the conductivity 

 

• As the temperature decreases, the conductivity s increases 

– The skin depth decreases  

 

– The skin depth (the distance over which fields vary) can 

become less then the mean free path of the electrons (the 

distance they travel before being scattered) 

– The electrons do not experience a constant electric field 

over a mean free path 

– The local relationship between field and current is not 

valid ( ) ( )J z E zs¹
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Normal Conductors (anomalous limit) 

Introduce a new relationship where the current is related to 

the electric field over a volume of the size of the mean 

free path (l) 

 

 

 

 

 

Specular reflection: Boundaries act as perfect mirrors 

Diffuse reflection: Electrons forget everything 
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Normal Conductors (anomalous limit) 

In the extreme anomalous limit 
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1/3
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Surface Resistance of Superconductors 

Superconductors are free of power dissipation in static fields. 

In microwave fields, the time-dependent magnetic field in the 

penetration depth will generate an electric field.  

 

 

The electric field will induce oscillations in the normal 

electrons, which will lead to power dissipation 
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Surface Impedance in the Two-Fluid Model 

In a superconductor, a time-dependent current will be carried 

by the Copper pairs (superfluid component) and by the 

unpaired electrons (normal component) 
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Surface Impedance in the Two-Fluid Model 

For normal conductors 1
sR

sd
=

For superconductors 
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The superconducting state surface resistance is proportional to the 

normal state conductivity 
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Surface Impedance in the Two-Fluid Model 
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This assumes that the mean free path is much larger than the 

coherence length 
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Surface Impedance in the Two-Fluid Model 

For niobium we need to replace the London penetration depth with 

1 /L ll xL = +

As a result, the surface resistance shows a minimum when 

lx »
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Surface Resistance of Niobium 

Surface Resistance - Nb - 1500 MHz
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Electrodynamics and Surface Impedance  

in BCS Model 
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Surface Resistance of Superconductors 
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Surface Resistance of Superconductors 

• The surface resistance of superconductors depends on 

the frequency, the temperature, and a few material 

parameters 

– Transition temperature 

– Energy gap  

– Coherence length 

– Penetration depth 

– Mean free path 

 

• A good approximation for T<Tc/2 and ω<<Δ/h is  
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Surface Resistance of Superconductors 
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In the dirty limit 

 

In the clean limit 

 

Rres: 

Residual surface resistance 

No clear temperature dependence 

No clear frequency dependence 

Depends on trapped flux, impurities, grain boundaries, … 
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Surface Resistance of Superconductors 
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Surface Resistance of Niobium 
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Surface Resistance of Niobium 
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Super and Normal Conductors 

• Normal Conductors 

– Skin depth proportional to ω-1/2 

– Surface resistance proportional to ω1/2 → 2/3 

– Surface resistance independent of temperature (at low T) 

– For Cu at 300K and 1 GHz, Rs=8.3 mΩ 

 

• Superconductors 

– Penetration depth independent of ω 

– Surface resistance proportional to ω2 

– Surface resistance strongly dependent of temperature 

– For Nb at 2 K and 1 GHz, Rs≈7 nΩ 

 

However: do not forget Carnot 


