

Fundamentals of Accelerators

Lecture 1 Motivations & policy

William A. Barletta

Director, United States Particle Accelerator School Dept. of Physics, MIT Faculty of Economics, University of Ljubljana

Energy & Momentum units

 When we talk about the energy or momentum of individual particles, the Joule is inconvenient

University of Liublian

CONOMIC

Instead we use the eV, the energy that a unit charge

 $e = 1.6 \times 10^{-19}$ Coulomb

gains when it falls through a potential, $\Delta \Phi = 1$ volt.

 $1 eV = 1.6 \times 10^{-19}$ Joule

For momentum we use the unit, eV/c, where c is the speed of light

Mass units

✤ We can use Einstein's relation,

 $E_o = mc^2$

University of Liubliana

FACULTY OF

to convert rest mass to energy units (m is the rest mass)

✤ For electrons,

$$E_{o,e} = 9.1 \times 10^{-31} \text{ kg} \times (3 \times 10^8 \text{ m/sec})^2 = 81.9 \times 10^{-15} \text{ J}$$

= 0.512 MeV

For protons,

 $E_{o,p} = 938 \text{ MeV}$

Accelerators are the hallmark PliT of highly technological societies

Major research machines are a tiny fraction of the total, but...

Research: How can we understand the underlying structure of things?

The first "light source"

Wilhelm Röntgen discovered X-rays in 1895 by accelerating electrons

Motivations: How it all began Paradigm 1: Fixed target experiments

University of Ljubljana FACULTY OF ECONOMICS

Fig1. Marsden-Geiger experiment.

Rutherford explains scattering of *alpha particles* on *gold* discovering the nucleus & urges ... *On to higher energy probes!*

Rutherford articulated Figure of Merit 1

Particle (or photon) energy on target

Why we use energetic beams for research?

> Wavelength of Particles (γ , e, p, ...) (de Broglie, 1923)

$$\lambda = h/p = 1.2 \text{ fm}/p [GeV/c]$$

University of Liublian

CONOMIC

Higher momentum => shorter wavelength => better resolution

Energy to Matter

Higher energy produces heavier particles

The advantage of the fixed target physics: Figure of Merit 2

$\frac{Events}{\text{second}} = \sigma_{process} \square Flux \square T \text{ arg et Number Density} \square Path Length$

Luminosity

Typical values:

Flux ~ $10^{12} - 10^{14} s^{-1}$ Number density ~ $\rho N_A Z/A \sim 5 \times 6 \times 10^{23}/2$ Path length ~ 10 cm

Luminosity ~ 15 x 10^{23} x 10^{14} ~ $10^{36} - 10^{38}$ cm⁻²s⁻¹

Ideal for precision & rare process physics, BUT how much energy is available for new physics

Fixed targets require high power beams

✤ For current < 5 mA, circular accelerators are economical</p>

University of Liubliana

ACULTY OF

- Current limit ~ 5 mA (space charge at injection) < Linac</p>
- Energy limit ~ 1 GeV << Linac potential</p>
- > \$\$ per MW ~ 1/4 of Linac of same beam parameters

US Particle Accelerator School

A great invention comes to the rescue (R. Wiederoe, 1943)

Collide beams !

If
$$m_1 = m_2$$
 and if $E_1 = E_2 = E$
 $E_{cm} = 2 E$

The full kinetic energy of both particles is now available to physical processes

The next big step was the ISR at CERN

- ✤ 30 GeV per beam with > 60 A circulating current
 - Required extraordinary vacuum (10⁻¹¹ Torr)
 - Great beam dynamics challenge more stable than the solar system
- ✤ Then on to the 200 GeV collider at Fermilab (1972) and ...
- The SppS at CERN
 - Nobel invention:
 Stochastic cooling
- Then the Tevatron
 - Required a major technological invention

First machine to exploit superconducting magnet technology

The largest research accelerator: CERN Accelerator Complex (LHC)

University of Ljubljana

ECONOMICS

The future of HEP runs through CERN "Après moi, le déluge"

LHC upgrades rely on advances in magnet technology
 Luminosity upgrade - very high gradient, Nb₃Sn quads
 Super LHC (energy upgrade) - very high field dipoles

What sets beam size ?

- University of Ljubljana FACULTY OF ECONOMICS
- * Strength (depth of focus) of lens at interaction point, β^*
- Distribution of positions & transverse momenta of beam particles (emittance), ε

$$\sigma_{x,y} = \sqrt{\frac{*}{x,y}}$$

Luminosity = $\frac{N_1 \times N_2 \times f}{4\pi \sqrt{\frac{*}{x} \frac{*}{y} \frac{*}{x} \frac{y}{y}}}$ × Pinch effect × angle correction

• For simplicity say ε and β * are equal for x and y

Luminosity =
$$\frac{N_1 \times N_2 \times f}{4\pi \frac{*}{x \times x}} \times H_D \times angle \ correction$$

We want large charge/bunch, high collision frequency & small spot size

Luminosity ~ $10^{31} - 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

Energy frontier is extended by inventions in accelerator technology (in red)

University of Liubliana

CONOMICS

University of Liubliana

FACULTY OF

Example from High Energy Physics: Discovery space for future accelerators

University of Liubliana

ACULTY O CONOMIC

Limits of accelerator-based HEP

How far can we go with this approach?

How big is a PeV collider?

FoM 3: Resolution (Energy/\Delta Energy)

- Intertwined with detector & experiment design
 - ➢ In hadron colliders: production change, parton energy distribution

University of Ljubljana FACULTY OF ECONOMICS

In lepton colliders: energy spread of beams (synchrotron radiation)

The future of HEP runs through CERN "Après moi, le déluge"

□ LHC upgrades rely on advances in magnet technology

- □ Reliability upgrade (2013) replace IR Quads & collimators
- □ Luminosity upgrade very high gradient, Nb₃Sn quads
- □ Super LHC (energy upgrade) very high field dipoles

Nuclear Physics

|||;| High energy studies of QCD: Heavy ion collisions using synchrotrons

D - Au at RHIC ==> Nuclear superfluid

University of Liubliana ACULTY O

CONOMIC

Next ALICE @ LHC ==> Quark-gluon plasma

Nuclear Astrophysics - Nature of Hadronic Matter:Radioactive Beam Facilities

- University *of Ljubljana* FACULTY OF ECONOMICS
- a Explore nuclear structure & reactions involving nuclei far from the valley of stability
 - Ù These nuclei participate in explosive nucleo-synthesis in novae, x-ray bursts, and supernovae via rapid proton and neutron capture

Superconducting linac structures for radioactive beam accelerator (FRIB)

University of Ljubljana

FACULTY OF

FOM: Neutrons/proton, neutron beam brightness

Example: The Spallation Neutron Source at Oak Ridge National Laboratory

1 GeV, 35 mA of protons, 6% duty factor 1 MW liquid Hg target >10¹⁷ n/sec

Figures of Merit: Spectrum & time structure

O The measured (circles) neutron flux v. neutron energy

Ref: Paul E. Koehler, Nucl. Instrum. Meth. A292, 541 (1990)

Coaxial design increases target area in small volume source

University of Liubliana

CONOMICS

FOM: Flux, Joules per secondary particle

1MW SNS (1 GeV, 60 Hz)

Protons per pulse $\approx 10^{14}$

Neutrons per pulse $\approx 20 \text{ x } 10^{14} = 2 \text{ x } 10^{15}$

Rate = 60 Hz ==> yield $\approx 10^{17}$ n/s.

E/neutron = 1 MW/10¹⁷ n/s \approx 10⁻¹¹ J/n

Overall efficiency for accelerator system $\sim 2\%$

 $\implies ~ ~ 5x10^{-10} J/n$

D-T neutron tube (120kV, 1 A \Rightarrow 10¹⁴ n/s) E/neutron \approx 120 kW/10¹⁴ n/s \approx 10⁻⁹ J/n DC power supply efficiency > 85%

 $\implies \approx 10^{-9} \text{ J/n}$

Matter in extreme conditions can be driven by intense heavy ion beams

Beams can heat fusion plasmas in tokomaks

Example: neutral beams for TFTR at Princeton

Neutral beam injectors

✤ ITER will require 60 MW of neutral beam heaters

Thermonuclear reaction rates

University of Ljubljana

FACULTY OF

How accelerators can produce fusion power

input energy quickly heats surface of fuel capsule

~10mg DT ρ ~ 0.5 mg/cm³ (ρ-r 0.03-3 g/cm²)

Compression ratio up to 30:1

fuel is compressed isentropically by rocket-like blowoff of hot surface material

compressed fuel core ("hotspot") reaches density and temperature needed for ignition

ρ ~100 g/cm³ (hotspot) T ~ 5-12 keV (ρ-r ~ 0.2-0.5 g/cm²)

ρ ~400-800 g/cm³ (fuel) T << 5 keV

thermonuclear burn spreads quickly through compressed fuel

University of Liublian

ONOMIC

Indirect drive: Target design is a variation of the distributed radiator target (DRT)

New design allows beams to come in from larger angle, ~ 24° off axis. Yield = 400 MJ, Gain = 57 at $E_{driver} = 7 MJ$

The inertial fusion power plant

University of Liubliana

FACULTY OF

Beam requirements for HIF

Representative set of parameters for indirect-drive targets

University of Liublian

CONOMIC

- ➤ ~ 5 Megajoules of beam energy
- $> \sim 500$ Terawatts of beam power ==> tens of kA
- \succ beam pulse length ~ 10 ns
- > range $0.02 0.2 \text{ g/cm}^2$
- \succ focus such a large beam to a spot of ~1-5 mm radius
- \blacktriangleright desired focal length ~6 m (maximum chamber size
- Basic requirements ==> certain design choices
 - parallel acceleration of multiple beams
 - ➤ acceleration of needed charge in a single beam is uneconomical
 - > emittance required to focus single large beam extremely difficult

Requires a new class of accelerator

The new radiation science: The Ultra-fast & Ultra-bright

"Big Questions"

Can we image single molecules? Can we make molecular movies of chemical reactions? Can we "stop electrons in their tracks"?

Synchrotron radiation science (~ 70 facilities world-wide)

Synchrotron light source

Calculated electric field lines from 4 bunches in circular orbit

In practice the vacuum chamber cuts out all but the $1/\gamma$ cone

FOM: Brilliance v. λ

 $B = ph/s/mm^2/mrad^2/0.1\%BW$

These facilities enable fixed target experiments with photons

University of Ljubljana

ECONOMICS

Coherent Imaging: TwinMic on BACH-ELETTRA

Figure . Optical scheme of TwinMic.

Figure 3. Scanning mode

University of Ljubljana

ECONOMICS

What Keeps Bugs from Being Bigger?

Does the tracheal system limit the size of insects?

Research* at the Argonne Advanced Photon Source (APS) explains what limits size in beetles: the constriction of tracheal tubes leading to legs.

 * Alexander Kaiser, C. Jaco Klok, John J. Socha, Wah-Keat Lee, Michael C. Quinlan, and Jon F. Harrison, " Increase in tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism," <u>Proc. Nat. Acad. Sci. USA 104(32), 13198 (August 7, 2007)</u>.

Brightness of a Light Source

- Brightness is a principal characteristic of a particle source
 - Density of particle in the 6-D phase space
- Same definition applies to photon beams
 - Photons are bosons & the Pauli exclusion principle does not apply

University of Liublian

ONOMIC

Quantum mechanics does not limit achievable photon brightness

Progress in X-ray source brightness

University of Ljubljana

FACULTY OF E**CONOMICS**

Studying ultra-fast processes requires another great invention: FEL

Grand challenge science with X-rays Two general modes of experiments

- Image molecular structures with *atomic resolution* * "Diffract before destroy"
- Unprecedented studies of dynamics parameters combining spectroscopy & diffraction using X-rays
 - > Typically "pump-probe"

Figures of Merit:

Brilliance v. λ (B = ph/s/mm²/mrad²/0.1%BW)

Time structure of x-ray pulses

Diffract before destroy: Ultra-fast imaging => Sub-100 fs & >10 GW pulses

Simple calculation of molecular imaging

Updated from "SLAC-lite" calculations (Barletta, 1993)

(Solem model)

University of Ljubljana

FACULTY OF

- Pulses can be x-rays, VUV, electrons or ions
- •Control/measure Δt with a resolution << x-ray pulse duration
 - Possibly as small as 300 attoseconds

Repetition rate vs. pulse energy

MHz-GHz, nJs

Limited by acoustic velocities in samples, good for counting expt's, photoemission imaging

Repetition rate

Pulse energy

1 kHz-1 MHz, μ**Js** Ideal match to ultrafast lasers & sample considerations, single photon regime

University of Liubliana

ACULTY O

10-100Hz, **mJs**, Limited by sample damage, many high field effects

Approach 1: Diffraction limited storage rings

- ✤ 100 x brighter than existing rings
 - Ideal for structural studies
 - Extremely stable, Many simultaneous users *The U.S. needs a diffraction limited, hard X-ray source to remain competitive BUT cannot access ultra-fast processes*
- Pulse length in rings (2p 50 ps) is set by
 - Natural energy spread
 - Coherent synchrotron radiation
 - Instabilities

These effects take many revolutions to spoil the beam

==> Discard the beam after using

Approach 2: Energy Recovery Linacs (Hard X-rays ==> ~ 5 GeV electrons)

⇒ Superconducting RF optimized for CW operation Pulse duration & ΔE limited (> 50 fs at 0.1% bandwidth) by coherent synchrotron radiation in the arcs

High rep rate FEL meets the challenge of the "Big Questions" IF we know how to seed the FEL

First X-ray diffraction image of a live picoplankton (FLASH FEL in Hamburg)

March 2007 FLASH soft X-ray laser Hamburg, Germany

FLASH pulse length: 10 fs Wavelength: 13.5 nm

RECONSTRUCTED CELL STRUCTURE

Filipe Maia, Uppsala

J. Hajdu, I. Andersson, F. Maia, M. Bogan, H. Chapman, and the imaging collaboration

30 _{Thanks}	60	0	60	30
I Haidu and H. Chanman	Resolution length on the detector (nm)			

FOM: Signal/noise ==> Dose at 1 m & resolution (x,t)

University of Liubliand

CONOMIC

Debris cloud produced by an AI sphere impacting a thin AL shield at hypervelocity.

Source:. http://www.udri.udayton.edu/NR/exeres/9E82E5F2-AC29-4467-8F15-0E5A7FEA48F3.htm

Alter matter, induce chemistry

FOM: process time process efficiency

Ion implantation is essential in semi-conductor production

- Ions prepare Si wafers for further processing finally yielding integrated circuit chips
 - > > 1 B\$/year business in semi-conductor "machine tools"

University of Ljubljana FACULTY OF

- Emerging areas
 - Flat-panel video displays
 - Ultra-high density electronics

Ion Projection Lithography

a In conventional optical lithography the ion beam is replaced with a bright light source

University of Ljubljand

CONOMIC

a The Si wafer is coated with a photo-sensitive material (resist)

Future industrial applications: Ion beam lithography

Writing with a million beams: University of Ljubljana 1467 FACULTY OF CONOMICS **Maskless** Micro-Beam Reduction Lithography Ion Source **Universal Pattern Generator** 34 cm **Electrode Layout** XY Stage Beam forming electrode Switching electrode (conductor) (conductor)/ Electrode Wafer Lenses Insulator Insulator Projection **Direct projection** and scanning Electrical connections **US Particle Accelerator School**

Therapy

FOM: treatment time tumor control probability precision beam control

Example: Conformal therapy

Challenge: Kill the tumor cells w/o killing healthy tissue

Gamma rays from electron linac

FOM - Tumor control probability

University of Liubliand

ACULTY O CONOMIC

Control of gliobastoma multiformae with neutron capture therapy

Hadron therapy allows for the best treatment of deep tumors with minimized dose to healthy tissue

Extracts from Comments from the Office of Science

BESAC 27 February 2014

Patricia M. Dehmer Acting Director, Office of Science

U.S. Departimentation Energy

- Reflections on prioritization of science & scientific facilities
- Reflections on the impact of the BESAC Report on "Future X-Ray Light Sources"

Scientific User Facilities of the Office of Science

Support for Researchers

- ~22,000 Ph.D. scientists, graduate students, undergraduates, engineers, & support staff at >300 institutions.
- 47% of Federal support of basic research in the physical sciences & key components of the Nation's basic research in biology and computing.
- Research that led to > 100 Nobel
 Prizes during the past 6 decades —
 >20 in the past 10 years.

Support for Scientific User Facilities

 World's largest collection of scientific user facilities to ~28,000 users each year.

Distribution of Users at the SC Facilities 2007

Distribution of Users at the ~30 SC Facilities 2013 University of Liubliana Nearly ³/₄ of users do their work at ASCR or BES facilities FACULTY OF ECONOMICS

Fiscal Year

79

