UPAS MATLAB - IV

- Reprise some topics - repetition is good. Readunderstand the scripts rather than just executing them.
- Grid based solutions of pde's.
- A few new topics

GUI_DEMO

- Look at script. Run through a palatte. This has only pushbuttons

Construct a GUI

- Suggest a script to be wrapped
- Project?

Callbacks

- e.g. pushbutton
- Look at other GUI for menu, executable text, pb, sliders, etc.

```
% --- Executes on button press in pushbutton1.
\square \mp@code { f u n c t i o n ~ p u s h b u t t o n 1 ~ C a l l b a c k ( h o b j e c t , ~ e v e n t d a t a , ~ h a n d l e s ) }
\square \% \text { hobject handle to pushbutton1 (see GCBO)}
    % eventdata reserved - to be defined in a future version of MATLAB
    % handles structure with handles and user data (see GUIDATA)
    -%
    [X,Y] = meshgrid(-2:0.2:2);
    Z = X .* }\operatorname{exp(-X .^2 - Y .^2);
    mesh(Z)
    title('mesh plot')
    %
```


Perihelion Advance

- Use to explore callbacks for sliders; 2.1,1.0,1.33,0
- $\mathbf{1 / r} \mathbf{r}^{\wedge} \mathbf{n}$ is attractive

But $L^{\wedge} 2 / \mathbf{r}^{\wedge} 3$
Repulsive - minimum?

- Stable orbits?
- re-entrant?
- Generalized cm_kepl3

- tools/edit plot/ - insert; x,y, title, etc.

- View - dropdown menu
- Tools - rotate 3d
- Edit plot dynamically using tools for figures

ode45

- Look at ode_demo
- odedemofun
- Simplest first order RK - gets started
- Many script example can be used (e.g. cm_kepl3)

Symbolic ode wrapper - use it

```
>> SM_ODE3
    Program to symbolically solve ODE
Enter Single Differential Eq to Solve y(t); e.g., D2y+a*y=0
: D2y+a*y=0
Symbolic Solution, y(t) and v(t)
y =
C2*}\operatorname{exp}((-a)^(1/2)*t) + C3* exp(-(-a)^(1/2)*t
```

Suggest an ODE to solve completely general

Project?

```
\(\mathrm{v}=\)
\(\mathrm{C} 2^{\star}(-\mathrm{a})^{\wedge}(1 / 2)^{\star} \exp \left((-\mathrm{a})^{\wedge}(1 / 2)^{\star} \mathrm{t}\right)-\mathrm{C} 3^{\star}(-\mathrm{a})^{\wedge}(1 / 2)^{\star} \exp \left(-(-\mathrm{a})^{\wedge}(1 / 2) \star \mathrm{t}\right)\)
```


Thin Lense Doublet

```
function[fpttpl,fpltpt,fpttpt,x1,x2,x3,x4,x5,y1,y2,y3,y4,y5] = ....
    Thin_Lense(L,l,Lo,itype)
* thin lense values for }D\mathrm{ and }F\mathrm{ focal length
% X is DF, y is FD,f(1) is first quad focal length, f(2) is second
8
fpttpl(1) = L .*sqrt(1 ./(L + 1)) ;
fpttpl(2) = (1 .*L) ./fpttpl(1);
fpltpt(1) = sqrt(1 .*(1 + Lo));
fpltpt(2) = (1 .*LO) ./fpltpt(1);
c = L + l + Lo;
fpttpt(1) = L .*sqrt((1 .*(1+Lo)) ./((1+L) .*c));
```

fpttpt(2) $=(1 . * L . * L o)$./(c .*fpttpt(1));
\%
if itype == 1
f1 $=$ fpttpl(1);
$\mathrm{f} 2=\mathrm{fpttpl}(2)$;
$\mathrm{xo}=[0 . ; 1$.$] ;$
end;
if itype $==2$
f1 = fpltpt(1);
$\mathrm{f} 2=\mathrm{fpltpt}(2)$;
$\mathrm{x} \circ=[1 . ; 0$.$] ;$
end;
if itype $==3$
f1 $=$ fpttpt(1);
f2 $=$ fpttpt(2);
$\mathrm{xo}=[0 ; 1]$;
end;

Doublet - II

```
%
% x position and angle matrices
%
m1 = [1., L; 0., 1.];
m2 = [1., L;1.0 ./f1 ,1.0+L ./f1];
m3 = [1.0 + l ./f1 , L + 1 + (L .*1) ./f1;1.0 ./f1, 1.0 + L ./f1];
m4(1,1) = m3(1,1);
m4(1,2) = m3(1,2);
m4(2,1) = -1 ./(f1 .*f2) + 1.0 ./f1 - 1.0 ./f2;
m4(2,2) = 1.0 + L ./f1 - (L + 1) ./f2 - (L .*1) ./(f1 .*f2);
m5 (2,1) = m4 (2,1);
m5 (2,2) = m4 (2,2);
m5(1,1) = 1.0 + l ./f1 - Lo ./f2 -(Lo .*1) ./(f1 .*f2) + Lo ./f1;
m5 (1,2)= 1+L+Lo +(L .*(Lo+1)) ./f1 - (1 .*L .*Lo) ./(f1 .*f2)-(Lo .*(L + 1)) ./f2;
%
x1 = m1 * xo;
x2 = m2 * x0;
x3 = m3 * x0;
x4 = m4 * xo;
x5 = m5 * xo;
%
Solutions arise from imposing focal constraints on the M5 matrix elements. Two Unknowns, f1 and f2. Two conditions on The matrix element in the \(x\) and \(y\) planes
```


Spherical_Lens2

- Aperture abberations - 40 and 10 degrees - fill the spherical lense
- Useful aperture!

```
>> Spherical Lens2
    Ray tracing for a thick shperical lense
Lens Radius = 10, Index of Refraction = 1.5
    Lens Makers Equation - 1/f = (n-1)/R
    Enter The Angular Size of the Lense in Degrees, < 60: 20
Lense Thickness = 0.151922 and 1/2 Height = 1.73648
```


SR_Time_Dilate

- Demo - proper time and interval - subplot = see also Damped_Driven_SHO

```
>> SR_Time_Dilate
    Program to Illustrate Time Dilation With a Gedanken Clock
```

- 4 subplots there

```
Clock is a Light Source and a Mirror
Input the Velocity of the Clock w.r.t. c: 0.9
Clock Ticks in Rest Frame = 20, in Moving Frame = 45
```


> Geometrically prove That t is dilated by gamma

Solving pde

- MATLAB has pde solver for 1 x and 1 d dimensions. Use in 1-d quantum mech.
- Other methods include representing the pde on a grid and solving numerically.
- 1-d grid - Gen_Eigen2 - use MATLAB eig
- Laplace eq. solution using complex variables
- 2-d grid - Laplace using BC and grid
- 2-d grid - Poisson using grid, FFT

Eigenfunctions

- 1-d grid

The time independent Schrödinger equation canbesoked numerically for any potential configuration. Examp les are shown in the script "Gen_E igen2" for a single well, two wells, the simp le harmonic oscillator and a hyperbolic sin confining potential

The Schrödinger equation on a numerical grid with x labeled by index j becomes:

$$
\begin{align*}
& d^{2} \psi / d x^{2}=\left[(V(x)-E) 2 m / \hbar^{2}\right] \psi \\
& \psi_{j+1}-2 \psi_{j}+\psi_{j-1}=\left[\left(V_{j}-E\right) 2 m / \dot{\hbar}^{2} \Delta x^{2}\right] \psi_{j}
\end{align*}
$$

Potential Geomety?
1 wel
2 wel
SHO
sinh

```
>>Gen_Eigen2
    solve general time independent Schroedinger Eq
    for eigenvalues and eigenvectors - numerical solutions
x limits (0,50) A
Number of V x Samples = 1000:
Enter SHO k (- 0.01): 0.01
Energy Eigenvalues = 0.990148, 0.594093 , 0.198032
```


Hamiltonian Matrix

- Eigenvalue problem for the Hamiltonian matrix - 1 d here.
- Use MATLAB matrix utilities, diag, ones, zeros, eigs
- Matrix is very sparse - only derivative is off diagonal

$$
\begin{aligned}
& H \sim\left(\begin{array}{ccc}
V-2 T & T & 0 \\
T & V-2 T & T \\
0 & T & V-2 T
\end{array}\right) \\
& T=\hbar^{2} / 2 m L^{2}
\end{aligned}
$$

QM - Gen_Eigen2

- Use MATLAB to find eigenvalues and eigenfunctions (time independent eq) for a very large $(1000,1000)$ but sparse matrix. Grid for second derivative in \mathbf{x}


```
x limits (0,50) A
Number of V x Samples = 1000:
Enter Well Depth (~ 2 eV): 3
Energy Eigenvalues = 2.13239,0.991361,0.252515
```


Need 3 grid points $\sim \mathbf{d} 2 / d x 2$

Laplace_z - Complex

>> Laplace_z
Laplace_z - Laplace Electrostatics - BV, Laplace Eq. Potential, E Field Use Complex Variables

Complex Potential - Modulus of psi is the Potential V , grad $(\mathrm{V})=$ Electric Field Enter a Number for an Electrostatic Example- 1 to 5: 2
Two Charges - Image Charge for Conducting Plane

Iterative Grid

- Use the approximate grid for Poisson and Laplace Eq. To solve by iteration.
- For (x,y) space - not implemented in MATLAB.

$$
u_{j, l}^{n+1}=1 / 4\left[u_{j ; 1, l}^{n}+u_{j: 1, l}^{n}+u_{j, l+1}^{n}+u_{j, k, 1}^{n}\right] \cdot d^{2} \rho_{j, l}
$$

Laplace Eq in 2d - grid

```
>> EM_Laplace_Test2
    Solve static Laplace Eq. using Gauss Seidel, Cartesian, Boundary Voltages
Solve Finite Difference Eq: 4Vi,j = Vi,j+1 + Vi,j-1 +Vi+1,j + Vi-1,j
Input the Square Grid Number of Points, 0<x<1,0<y<1: 50
Input the Voltage Function on the Left Boundary,f(y)
: sin(y)
Input the Voltage Function on the Right Boundary, f(y)
: cos(y)
Input the Voltage Function on the Top Boundary, f(x)
: sinh(x)
Input the Voltage Function on the Bottom Boundary, f(x)
: cosh(x)
```


> Fix BC arbitrary Solve interior as No sources - second order Partials in \mathbf{x} and $\mathbf{y}=0$. Need 5 grid points

Example

- Use EM_Laplace_Test2
- Specify BC on a rectangular boundary
- Flexible boundary values - symbolic

```
>> EM_Laplace_Test2
    Solve static Laplace Eq. using Gauss Seidel, Cartesian, Boundary Voltages
Solve Finite Difference Eq: 4Vi,j = Vi,j+1 + Vi,j-1 + Vi+1,j + Vi-1,j
Input the Square Grid Number of Points, 0<x<1,0<y<1: 50
Input the Voltage Function on the Left Boundary,f(y)
: sin(pi*y)
Input the Voltage Function on the Right Boundary, f(y)
: -sin(pi*y)
Input the Voltage Function on the Top Boundary, f(x)
: sin(pi*x)
Input the Voltage Function on the Bottom Boundary, f(x)
: -sin(pi*x)
```


Example - II

- 10 Iterations - start from mean voltage.
- Fairly slow - Gauss-Seidel

Laplace_Series

- Do effectively a Fourier series to match BC,

EM Poisson Test

- Solve for point and rectangular charges (e.g. parallel plate capacitor). Grid solution. Boundaries = 0 (note CMS magnet !)
- Uses MATLAB package for FFT; round, zeros,fft2, ifft2

```
>> EM_Poisson_Test
    Solve static Poisson Eq. using FFT for Periodic BC, Cartesian - MATLAB
Solve Finite Difference Eq: 4Vi,j = vi,j+1 + Vi,j-1 + Vi+1,j + Vi-1,j - rhoi,j*del*del
Input the Square Grid Number of Points, 0<x<1,0<y<1: 50
Input Number of Point Charges: 0
Input Number of Charged Rectangles: 1
    For Rectangle 1
Enter Top Right [x,y] Position: [0.6 0.6]
Enter Bottom Left [x,y] Position: [0.3 0.3]
Input Voltage on Rectangular Charge: 100
    FT of Diff eq for vij is rhoij*del*del/[2(cos(2*pi*i/N) + cos(2*pi*j/N) - 2)]

\section*{1 rectangle}
- E fields \(\quad u_{j l}^{n+1}=1 / 4\left[u_{j+1, l}^{n}+u_{j-1 / 4}^{n}+u_{j, 1+1}^{n}+u_{j,-1}^{n}\right]-\Delta^{2} \rho_{j, 1}\)


\section*{Poisson - II}
- Make FT of sources. Then solve for FT of potential analytically. Use inverse FT, ifft2 to put potential back into ( \(\mathbf{x}, \mathrm{y}\) ). MATLAB tools.


\section*{- Ey and quiver - example for parallel plate capacitor model.}



\section*{Coupled SHO}
- Coupled objects - normal modes and eigenvalues, "cm_2sho"


\section*{cm_triatomic}

\section*{- Can setup eigenvectors as initial conditions}


\section*{Drum Oscillations}
- Drum_Modes, series solutions vanish at \(\mathbf{r}=1\)
- Wave equation - 2-d + time, Bessel functions


Binary System
```

>> Binary2
Binary - Program to compute binary orbits - ode45, RK
Planetary wobble to equal mass binaries

```
Enter Initial Distance Between the 2 Masses ro(AU): 1
Enter Mass of Body1 in Solar Units: 1
Enter Mass of Body2 in Solar Units: 0.1
Velocity of circular orbit, \(v=29921.6 \mathrm{~m} / \mathrm{sec}\)
For circular orbit, period \(=3.12883 \mathrm{e}+07 \mathrm{sec}\)
Enter initial tangential velocity Body1 (AU/Yr), 2pi for circle: 6
Enter initial radial velocity Bodyl (AU/Yr): 0
Enter initial tangential velocity Body2 (AU/Yr), 2pi for Circle: 0
Enter initial radial velocity Body2 (AU/Yr): 0

> RK in ode 45 . Look for wobble of sun for planet at 0.1 solar mass at 1 AU


\section*{That all folks}
- Thanks for being an attentive and active group
- This was a fun week
- We look forward to see your projects.```

