Storage Ring Dynamics: Longitudinal Motion
 John Byrd
 Lawrence Berkeley National Laboratory

Synchrotrons are based on Phase Stability

- Original concept of phase stability

 introduced independently by Veksler (1944) and MacMillan (1945)The Synchrotron-A Proposed High Energy Particle Accelerator

Edifin M. McMillan
University of California, Berkeley, California
September, 5, 1945

ONE of the most successful methods for accelerating charged particles to very high energies involves the repeated application of an oscillating electric field, as in the cyclotron. If a very large number of individual accelerations is required, there may be difficulty in keeping the particles in step with the electric field. In the case of the cyclotron this difficulty appears when the relativistic mass change causes an appreciable variation in the angular velocity of the particles.

The device proposed here makes use of a "phase stability" nnocesead hur martnin orhito in n mumintenn Comeidor

$$
\begin{gather*}
E_{0}=(300 c H) /(2 \pi f), \tag{1}\\
E=E_{0}[1-(d \phi) /(d \theta)], \tag{2}
\end{gather*}
$$

$$
\begin{align*}
& 2 \pi \frac{d}{d \theta}\left(E_{0} \frac{d \phi}{d \theta}\right)+V \sin \phi \\
& =\left[\frac{1}{f} \frac{d E_{0}}{d t}-\frac{300}{c} \frac{d F_{0}}{d t}+L\right]+\left[\frac{E_{0}}{f^{2}} \frac{d f}{d t}\right] \frac{d \phi}{d \theta^{\prime}}, \tag{3}\\
& \quad R=\left(E^{2}-E_{r}^{2}\right)^{\frac{1}{2}} / 300 H . \tag{4}
\end{align*}
$$

Particle Storage Rings

In a particle storage rings, charged particles circulate around the ring in bunches for a large number of turns.

Particle Storage Rings

The longitudinal coordinates are
Length and Momentum
Lo \rightarrow Revolution Length of the Reference Particle

Po \rightarrow Momentum of the Reference Particle

$\Delta L / L o, \Delta P / P o$

Path Length Depesjence on Velocity

Consider two particles with different momentum on parallel trajectories:

$$
p_{1}=p_{0}+\Delta p
$$

$\xrightarrow{L_{0}}$

At a given instant \boldsymbol{t} :

$$
L_{1}=\left(\beta_{0}+\Delta \beta\right)_{c t} \quad L_{0}=\beta_{0} c t
$$

$$
\Rightarrow \frac{\Delta L}{L_{0}}=\frac{L_{1}-L_{0}}{L_{0}}=\frac{\Delta \beta}{\beta_{0}}
$$

But:

$$
\begin{aligned}
& p=\beta \gamma m_{0} c \Rightarrow \Delta p=m_{0} c \Delta(\beta \gamma)=m_{0} c \gamma^{3} \Delta \beta \\
\Rightarrow & \frac{\Delta p}{p_{0}}=\gamma^{2} \frac{\Delta \beta}{\beta} \quad \frac{\Delta L}{L_{0}}=\frac{1}{\gamma^{2}} \frac{\Delta p}{p_{0}}
\end{aligned}
$$

- This path length dependence on momentum applies everywhere, also in straight trajectories.
- The effect quickly vanishes for relativistic particles.
- Higher momentum particles precede the ones with lower momentum.

Path Length Depenclence On Trajectory

$$
\rho=\frac{p}{q B_{z}}=\frac{\beta \gamma m_{0} c}{q B_{z}}
$$

$L_{0}=$ Trajectory length between A and B
$L=$ Trajectory length between A and C
$\frac{L-L_{0}}{L_{0}} \propto \frac{p-p_{0}}{p_{0}} \square \frac{\Delta L}{L_{0}}=\alpha \frac{\Delta p}{p_{0}} \quad$ where α is constant

$$
\text { For } \gamma \gg 1 \Rightarrow \frac{\Delta L}{L_{0}}=\alpha \frac{\Delta p}{p_{0}} \cong \alpha \frac{\Delta E}{E_{0}}
$$

In the example (sector bending magnet) $L>L_{0}$ so that $\alpha>0$ Higher energy particles will leave the magnet later.

Momenturn Compaction

Momentum compaction, α, is the change in the closed orbit length as a function of momentum.

Energy Gajf and Loss

Lose energy in dipoles \rightarrow Synchrotron Radiation Gain Energy in the RF Cavity

Why do we need AC volitages to accelerate?

- Imagine a DC voltage across a gap.
- No way to maintain DC voltage through vacuum chamber!
- Add a DC power supply or insulating gap.
- Voltage cancelled for round trip around ring.
- Add switched DC voltage
- Switch at a time period that is a sub-harmonic of the revolution period T_{0}. (I.e. switching frequency is harmonic of revolution frequency.

Cyclotion concept

- Voltage on "Ds" must reverse every half orbit

Fundamentals Accelerator Physics \& Technology, Simulations \& Measurement Lab - University of New Mexico, Albuquerque, June 16-27, 2014

Energy Variation

- The energy gain for a particle that moves from A to B is given by:

$$
\Delta E=q \int_{0}^{L} \bar{E}_{F}(\bar{r}, t) \cdot d \bar{s}=q V
$$

- We define as V the voltage gain for the particle.
V depends only on the particle trajectory and includes the contribution of every electric field present in the area (RF fields, space charge fields, fields due to the interaction with the vacuum chamber, ...)
- The particle can also experience energy variations $U(E)$ that depend also on its energy, as for the case of the radiation emitted by a particle under acceleration (synchrotron radiation when the acceleration is transverse).
- The total energy variation will be given by the sum of the two terms:

$$
\Delta E_{T}=q V+U(E)
$$

Energy gain from RF voltage

Assuming a sinusoidal electric field $E_{z}=E_{0} \cos \left(\omega_{R F} t+\phi_{s}\right)$ where the synchronous particle passes at the middle of the gap g, at time $t=0$, the energy is

$$
W(r, t)=q \int E_{z} d z=q \int_{-g / 2}^{g / 2} E_{0} \cos \left(\omega_{R F} \frac{z}{v}+\phi_{s}\right) d z
$$

And the energy gain is $\Delta W=q E_{0} \int_{-q / 2}^{g / 2} \cos \left(\omega_{R F} \frac{z}{v}\right) d z$
and finally $\Delta W=q V \frac{\sin \Theta / 2}{\Theta / 2}=q V \mathrm{~T} \quad$ with the transit time factor defined as

$$
T=\frac{\sin (\omega g / 2 v)}{\omega g / 2 v} \int^{g / 2} E(0, z) \cos \omega t(z) d z
$$

It can be shown that in general

$$
\mathrm{T}=\frac{-\mathrm{g} / 2}{\int_{-8 / 2}^{8 / 2} E(0, z) d z}
$$

The Rate of Change of Energy

The energy variation for the reference particle is given by:

$$
\Delta E_{T}\left(s_{0}\right)=q V\left(s_{0}\right)+U\left(E_{0}\right)
$$

For particle with energy $E=E_{0}+\Delta E$ and orbit position $s=s_{0}+\Delta s$:

$$
\Delta E_{T}(s)=q V\left(s_{0}+\Delta s\right)+U\left(E_{0}+\Delta E\right) \cong q V\left(s_{0}\right)+\left.q \frac{d V}{d s}\right|_{s_{0}} \Delta s+U\left(E_{0}\right)+\left.\frac{d U}{d E}\right|_{E_{0}} \Delta E
$$

Where the last expression holds for the case where $\Delta s \ll L_{0}$ (reference orbit length) and $\Delta E \ll E_{0}$.
In this approximation we can express the average rate of change of the energy respect to the reference particle energy by:

$$
\begin{aligned}
& \frac{\Delta E}{T_{0}} \cong \frac{\Delta E_{T}(s)-\Delta E_{T}\left(s_{0}\right)}{T_{0}}=\frac{\Delta E}{T_{0}} \cong \frac{1}{T_{0}}\left(\left.q \frac{d V}{d s}\right|_{s_{0}} \Delta s+\left.\frac{d U}{d E}\right|_{E_{0}} \Delta E\right) \\
& T_{0}=\frac{L_{0}}{\beta_{0} c}
\end{aligned}
$$

The Longitudinal Eguation of Motion

We obtain the equations of motion for the longitudinal plane:

$$
\begin{aligned}
& \frac{d^{2} \Delta s}{d t^{2}}+2 \alpha_{D} \frac{d \Delta s}{d t}+\Omega^{2} \Delta s=0 \\
& \frac{\Delta E}{T_{0}} \cong \frac{1}{T_{0}}\left(\left.q \frac{d V}{d s}\right|_{s_{0}} \Delta s+\left.\frac{d U}{d E}\right|_{E_{0}} \Delta E\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Delta s \ll L_{0} \\
& \Delta E \ll E_{0}
\end{aligned}
$$

Finally, by defining the quantities:

$$
\Omega^{2}=\left.\alpha \frac{1}{p_{0}} \frac{q}{T_{0}} \frac{d V}{d s}\right|_{s_{0}}
$$

$$
\alpha_{D}=-\left.\frac{1}{2 T_{0}} \frac{d U}{d E}\right|_{E_{0}}
$$

We will study the case of storage rings where dVlds is mainly due to the RF system used for restoring the energy lost per turn by the beam.

The Damped Oscillator

$$
\frac{d^{2} \Delta s}{d t^{2}}+2 \alpha_{D} \frac{d \Delta s}{d t}+\Omega^{2} \Delta s=0
$$

This expression is the well known damped harmonic oscillator equation, which has the general solution:

$$
\Delta s(t) \cong e^{-\alpha_{D} t}\left(A e^{i \Omega t}+B e^{-i \Omega t}\right)
$$

$$
\begin{aligned}
& \alpha_{D}>0 \Leftrightarrow \text { damped oscillation } \\
& \alpha_{D}<0 \Leftrightarrow \text { anti-damped oscillation }
\end{aligned}
$$

$$
\begin{aligned}
& \Omega^{2}>0 \Leftrightarrow \text { stable oscillation } \\
& \Omega^{2}<0 \Leftrightarrow \text { unstable motion }
\end{aligned}
$$

The stable solution represents an oscillation with frequency $2 \pi \Omega$ and with exponentially decreasing amplitude.

Damping in the $\mathrm{C} e \mathrm{c}_{\mathrm{s}}$ of Storage Rings

- The case of damped oscillations is exactly what we want for storing particles in a storage ring.

$$
\alpha_{D}>0
$$

$$
\alpha_{D}=-\left.\frac{1}{2 T_{0}} \frac{d U}{d E}\right|_{E_{0}}
$$

$$
\left|\frac{d U}{d E}\right|_{E_{0}}<0
$$

- The synchrotron radiation (SR) emitted when particles are on a curved trajectory satisfies the condition. The SR power scales as:

$$
d U / d t=-P_{S R} \propto-(\beta \gamma)^{4} / \rho^{2}=-\left(\gamma^{2}-1\right)^{2} / \rho^{2} \quad \rho \equiv \text { trajectory radius }
$$

- Typically, synchrotron radiation damping is very efficient in electron storage rings and negligible in proton machines.
- The damping time $1 / \alpha_{D}$ (\sim ms for $\mathrm{e}^{-}, \sim 13$ hours LHC at 7 TeV) is usually much larger than the period of the longitudinal oscillations $1 / 2 \pi \Omega(\sim \mu \mathrm{~s})$. This implies that the damping term can be neglected when calculating the particle motion for $t \ll 1 / \alpha_{D}$:

Synchronicify js Storage Rings

Let's consider a storage ring with reference trajectory of length L_{0} :

$$
V_{R F}(t)=\hat{V} \sin \left(\omega_{R F} t\right)
$$

$$
T_{0}=\frac{L_{0}}{\beta c}
$$

$$
T_{R F}=\frac{1}{f_{R F}}=\frac{2 \pi}{\omega_{R F}}
$$

$$
T_{0}=h T_{R F} \Rightarrow f_{0}=\frac{f_{R F}}{h}
$$

Synchronicity Condition
The integer h is called the harmonic number

The Synchrotron frequency and Tune

For our storage ring:

$$
\begin{gathered}
\Omega^{2}=\left.\left.\alpha \frac{1}{p_{0}} \frac{q}{T_{0}} \frac{d V}{d s}\right|_{s_{0}} \quad \begin{array}{l}
V_{R F}(t)=\hat{V} \sin \left(\omega_{R F} t\right)=\hat{V} \sin \left(h \omega_{0} t\right) \\
s=\beta_{0} c t
\end{array} \frac{d V}{d s}\right|_{s_{0}}=\left.\frac{1}{\beta_{0} c} \frac{d V}{d t}\right|_{t_{0}}=\frac{h \omega_{0} \hat{V}}{\beta_{0} c} \cos \left(\omega_{R F} t_{0}\right) \\
\Omega^{2}=\omega_{0}^{2} \frac{q}{p_{0}} \frac{\alpha h \hat{V}}{2 \pi \beta_{0} c} \cos \left(\varphi_{s}\right) \\
\text { synchrotron frequency } \quad \begin{array}{c}
v_{S}=\frac{\Omega}{\omega_{0}} \\
\text { synchrotron tune }
\end{array} \\
\varphi_{s}=\omega_{R F} t_{0} \equiv \text { synchronous phase }
\end{gathered}
$$

The Synchrotron fequency and Tune

If $\alpha_{D} \ll \Omega \quad \frac{d^{2} \Delta s}{d t^{2}}+\Omega^{2} \Delta s=0 \quad$ Additionally: $\Delta E(t)=-\frac{p_{0}}{\alpha} \frac{d \Delta s}{d t}$

$$
\Delta s=\Delta \hat{s} \cos (\Omega t+\psi)
$$

$$
\Delta E=\Delta \hat{s} \frac{p_{0} \Omega}{\alpha} \sin (\Omega t+\psi)
$$

A different set of variables:

$$
\begin{aligned}
& \begin{array}{l}
\text { Phase : } \varphi=\phi-\phi_{s} \quad \phi=\omega_{R F} t \quad s= \\
\text { Relative Momentum Deviation : } \delta=\frac{\Delta p}{p_{0}}
\end{array} \\
& \delta=\frac{\hat{\varphi} \Omega}{h \omega_{0} \eta_{C}} \sin (\Omega t+\psi) \begin{array}{l}
\text { Synchrotron Oscillations } \\
\text { For } \Delta s \ll L_{0} \text { and } \Delta E \ll E_{0} .
\end{array}
\end{aligned}
$$

The Longitudjis:al Phase space

We just found:

$$
\varphi=\hat{\varphi} \cos (\Omega t+\psi)
$$

This equation represents an ellipse in the longitudinal phase space $\{\varphi, \delta\}$

With damping:

$$
\begin{gathered}
\varphi=\hat{\varphi} e^{-\alpha_{D} t} \cos (\Omega t+\psi) \\
\delta=\frac{\hat{\varphi} \Omega}{h \omega_{0} \eta_{C}} e^{-\alpha_{D} t} \sin (\Omega t+\psi)
\end{gathered}
$$

In rings with negligible synchrotron radiation (or with negligible non-Hamiltonian forces, the longitudinal emittance is conserved.

This is the case for heavy ion and for most proton machines.

Phase Stability

Two synchronous phases \rightarrow one stable one unstable

$$
\sin \varphi_{S}=\frac{U_{0}}{q \hat{V}}
$$

But

$$
\frac{\Delta t}{T_{0}}=\frac{\Delta s}{L_{0}}=\alpha \frac{\Delta p}{p_{0}}
$$

For positive charge particles:

$$
\begin{aligned}
& \text { For } \alpha>0 \Rightarrow \varphi_{S}^{1} \text { stable, } \quad \varphi_{S}^{2} \text { unstable } \\
& \text { For } \alpha<0 \Rightarrow \varphi_{S}^{1} \text { unstable, } \quad \varphi_{S}^{2} \text { stable }
\end{aligned}
$$

For negative charge particles all the phases are shifted by π.

We define as transition energy the energy at which α changes sign.

Crossing the transition energy during energy ramping requires a phase jump of $\sim \pi$

Phase Stability: Example

- A is the synchronous particle and arrives at the right time to receive the right energy gain.
- B arrives early and gains too much energy. Next turn it arrives later (for $\alpha>0$.)

- C arrives late and gains too little energy arrives earlier on the next turn.

Large Amplifucle Oscillations

So far we have used the small oscillation approximation where:

$$
\Delta E_{T}(\psi)=q V\left(\varphi_{S}+\varphi\right)=q \hat{V} \sin \left(\varphi_{S}+\varphi\right) \cong q V\left(\varphi_{S}\right)+\left.q \frac{d V}{d \varphi}\right|_{\varphi_{S}} \varphi=q \hat{V} \varphi_{S}+q \hat{V} \varphi
$$

In the more general case of larger phase oscillations:
$\Delta E_{T}(\psi)=q V\left(\varphi_{S}+\varphi\right) \cong q \hat{V} \sin \left(\varphi_{S}+\varphi\right) \quad$ And by Numerical integration:

- For larger amplitudes, trajectories in the phase space are not ellipsis anymore.
- Stable and unstable orbits exist. The two regions are separated by a special trajectory called separatrix
- Larger amplitude orbits have smaller synchrotron frequencies

Momentujs Acceptance

The RF bucket is the area of the longitudinal phase space where a particle orbit is stable

The momentum acceptance is defined as the maximum momentum that a particle on a stable orbit can have.

$$
\begin{array}{lr}
\left(\frac{\Delta p}{p_{0}}\right)_{A C C}^{2}=\frac{2|q| \hat{V}}{\pi h\left|\eta_{C}\right| \beta c p_{0}} & \left(\frac{\Delta p}{p_{0}}\right)_{A C C}^{2}=\frac{F(Q)}{2 Q} \frac{2|q| \hat{V}}{\pi h\left|\eta_{C}\right| \beta c p_{0}} \\
F(Q)=2\left(\sqrt{Q^{2}-1}-\arccos \frac{1}{Q}\right) & Q=\frac{1}{\sin \varphi_{s}}=\frac{q \hat{V}}{U_{0}} \\
\text { Over voltage factor }
\end{array}
$$

Bunct Length

- In electron storage rings, the statistical emission of synchrotron radiation photons generates gaussian bunches.
- The over voltage Q is usually large so that the core of the bunch "lives" in the small oscillation region of the bucket. The equation of motion in the phase space are elliptical:

$$
\frac{\varphi^{2}}{\hat{\varphi}^{2}}+\delta^{2}\left(\frac{h \omega_{0} \eta_{C}}{\hat{\varphi} \Omega}\right)^{2}=1
$$

$$
\hat{\varphi}=\frac{h \omega_{0} \eta_{C}}{\Omega} \hat{\delta} \Rightarrow \Delta s=\frac{c \eta_{C}}{\Omega} \frac{\Delta p}{p_{0}}
$$

- If σ_{p} / p_{0} is the rms relative momentum spread of the gaussian distribution, then the rms bunch length is given by:

$$
\sigma_{\Delta S}=\frac{c \eta_{C}}{\Omega} \frac{\sigma_{p}}{p_{0}}=\sqrt{\frac{c^{3}}{2 \pi q} \frac{p_{0} \beta_{0} \eta_{C}}{h f_{0}^{2} \hat{V} \cos \left(\phi_{S}\right)}} \frac{\sigma_{p}}{p_{0}}
$$

- In the case of heavy ions and of most of protons machines, the whole RF bucket is usually filled with particles. The bunch length l is then proportional to the difference between the two extreme phases of the separatrix:

$$
l=\left(\varphi_{2}-\varphi_{1}\right) \lambda_{R F} / 2 \pi
$$

Effects of the Syncijotron Radiation

- A charged particle when accelerated radiates.
- In high energy storage rings transverse acceleration induces significant radiation (synchrotron radiation) while longitudinal acceleration generates negligible radiation ($1 / \gamma^{2}$).

- Synchrotron radiation plays a major role in the dynamics of an electron storage ring

Energy Lost per Turn

$$
U_{0}=\int_{\text {fnute } \rho} P_{S R} d t \quad \text { energy lost per turn } \quad \frac{d U}{d t}=-P_{S R}=-\frac{2 c r_{e}}{3\left(m_{0} c^{2}\right)^{3}} \frac{E^{4}}{\rho^{2}}
$$

- For relativistic electrons:

$$
s=\beta c t \cong c t \Rightarrow d t=\frac{d s}{c}
$$

$$
U_{0}=\frac{1}{c} \int_{\text {finite } \rho} P_{S R} d s=\frac{2 r_{e} E_{0}^{4}}{3\left(m_{0} c^{2}\right)^{3}} \int_{\text {finite } \rho} \frac{d s}{\rho^{2}}
$$

- In the case of dipole magnets with constant radius ρ (iso-magnetic case):

$$
U_{0}=\frac{4 \pi r_{e}}{3\left(m_{0} c^{2}\right)^{3}} \frac{E_{0}^{4}}{\rho}
$$

- The average radiated power is given by:

$$
\left\langle P_{S R}\right\rangle=\frac{U_{0}}{T_{0}}=\frac{4 \pi c r_{e}}{3\left(m_{0} c^{2}\right)^{3}} \frac{E_{0}^{4}}{\rho L} \quad L \equiv \text { ring circumference }
$$

Example: Bunch splitting (for the LHC)

motivation:

using existing accelerators, produce multiple high-current bunches produce ~ 40 bunch trains of 72 bunches with 10^{11} protons and 25 ns bunch spacing (LHC) history:
debunching of 6-7 high intensity bunches in the CERN PS + capture in higher-f rf system (microwave instability observed in the process leading to non-uniform beam distributions)
concept: application of higher-harmonic rf cavities
layout of the LHC including the preinjectors
one bunch from the PS booster gets split into twelve bunches in the CERN PS

Fundamentals Accelerator Physics \& Technology, Simulations \& Measurement Lab - University of New Mexico, Albuquerque, June 16-27, 2014

LHC Example: Split factor $1 \rightarrow 3$

example: simulation of bunch triple-splitting in the CERN PS (courtesy R. Garoby, 1999)

one of 6 bunches from the

example: measurement of bunch triple-splitting in the CERN PS (courtesy R. Garoby, 2001)

Issues:

preservation of longitudinal beam emittance stability of initial conditions complicated (then) by B-field drift requires careful synchronization
control of longitudinal coupled-bunch instabilities
bunch intensity fluctuations
stability of initial conditions
Fundamentals Accelerator Physics \& Technology, Simulations \& Measurement Lab - University of New Mexico, Albuquerque, June 16-27, 2014

Example: Bunch coalescing

motivation: combine many bunches into 1
bunch for high peak intensity (and luminosity)

concept:

1) initial condition with multiple bunches in different high frequency rf buckets
2) lower (vector sum) of cavity voltages

3) turn on a subharmonic rf system
bunches rotate with new synchrotron frequency
4) restore initial rf (with appropriate phase), turn off the lower frequency rf system

Fundamentals Accelerator Physics \& Technology, Simulations \& Measu ner La U UNersivy ol New Mexiso, AJuquzrque, June 16-27, 2014
example: bunch coalescing in the Fermilab Main Ring (courtesy P. Martin, 1999)
initial condition: 11 bunches captured in 53 MHzrf buckets
"paraphrasing" - adiabatic reduction of the vector sum rf voltage by shift of the relative phases between rf cavities
application of higher voltage 2.5 MHz rf system (in practice, a 5 MHz rf system was used to help linearize the rotation)
capture of bunches in a single 53 MHz rf bucket

peak intensity monitor with successive traces spaced by 6.8 ms intervals
"snap coalescing" - fast change in voltage amplitude applied (instead of adiabatic voltage reduction) observed advantage: avoidance of high-current beam instabilities during paraphrasing observed disadvantage: reduced capture efficiency ($\sim 10 \%$)
Fundamentals Accelerator Physics \& Technology, Simulations \& Measurement Lab - University of New Mexico, Albuquerque, June 16-27, 2014

Example: Harmonic RF System

- The main sinusoidal RF gives a linear restoring force. Synchrotron motion is a simple damped harmonic oscillator.
- For a Gaussian beam energy distribution, the longitudinal bunch shape is Gaussian.
- We manipulate the bunch shape if higher harmonic RF is added.

32

Harmonic RF Systems

- The potential well can become substantially non-harmonic, with strong nonlinear detuning.
- Sometimes called "Landau" cavities because the synchrotron frequency spread provides "Landau damping" of coherent instabilities.

In this mode, the bunch is lengthened, and the peak current can be reduced by a factor of 2-4. This reduces the effect of Touschek scattering by the same factor. This is the primary means to improve beam lifetime in high brightness light sources.

Example: Longitudinal injection transients

- During injection, the injected bunch shape and offset can be mismatched to the bucket, resulting in filamentation of the distribution. For an electron ring, the distribution eventually damps to the equilibrium.

34

Example: Longitudinal injection transients

- For the mismatched bunch shape, the dependence of synchrotron tune on amplitude causes filamentation. For an electron ring, this eventually damps. For a hadron ring, the longitudinal phase space area is "increased".

Example: Injection Transients Measurements

- Use a streak camera to record the longitudinal profile vs. time.
- a) observe quadrupole oscillations from bunch shape mismatch.
- b) filamentation

Ballistic bunch compression

- Usually used at very low energy, typically downstream of DC-gun
- Can be viewed as thin lens limit of velocity bunching
- Buncher imparts an energy chirp large enough to yield compression in a downstream drift

Buncher cavity

Linac longitudinal dynamics: Bunch compressors

Magnetic bunch compression

E Energy modulator: rf-structure, laser, wake-field

- Non-isochronous section
- In practice: multi-stage compression

Chicane Bunch Compression

To compress a bunch longitudinally, trajectory in dispersive region must be shorter for tail of the bunch than it is for the head.
Fundamentals Accelerator Physics \& Technology, Simulations \& Measurement Lab - University of New Mexico, Albuquerque, June 16-27, 2014

Linear Effiects

- Energy time correlation:

$$
\begin{aligned}
& E(z)=E_{0}+e V_{0} \cos (k z+\varphi) \\
& \delta=\frac{e V_{0}}{E_{0}+e V_{0} \cos \varphi}[\cos (k z+\varphi)-\cos \varphi]=\kappa z+O\left(z^{2}\right) \\
& \text { chirp: } \kappa \equiv \frac{d \delta}{d z}=\frac{-k e V_{0}}{E_{0}+e V_{0} \cos \varphi} \sin \varphi
\end{aligned}
$$

- Bunch compressor

$$
z_{f}=z_{i}+R_{56} \delta_{i}
$$

- Final bunch length and energy spread ($1^{\text {st }}$ order):

Nonlinear effects

- Energy time correlation:

$$
\delta=\kappa z+\mu z^{2}+O\left(z^{3}\right)
$$

- Bunch compressor

$$
z_{f}=z_{i}+R_{56} \delta_{i}+T_{566} \delta_{i}^{2}
$$

- Final bunch length is minimized if

$$
0=z_{i}\left(1+\kappa R_{56}\right)+\underbrace{z_{i}^{2}\left(\mu R_{56}+\kappa^{2} T_{566}\right)}_{\substack{\text { Limit achievable minimum } \\ \text { Bunch length }}}
$$

Main issues

\square How short can the bunch be compressed?
\square Can low emittance be maintained?

How large are the effects of space charge and coherent synchrotron radiation in bunch compression?

Summary

- Phase stability is necessary to maintain electrons on a stable orbit in a ring.
- Synchrotron oscillations can be modeled as simple damped harmonic oscillators:
- Longitudinal focusing come from a time-varying accelerating field provided by an RF system.
- Electrons with higher energy take a longer path length around the ring ($\alpha>0$)
- Discrete photon emission excites oscillations
- Energy dependence of SR gives radiation damping.

