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L6: Phase Space

From Sing iCle to a Beam

F. Sannibale

- The number of particles per bunch in most accelerators can
range between 10° to 1073,

* Integrating the particle motion for such a large humber of
particles along accelerators with length ranging from few meters
up to tens of kilometers can be a tough (impossible) task.

 Fortunately, statistical mechanics gives us very developed
tools for representing and dealing with sets of large number
of particles.

 Quite often, the statistical approach give us elegant and

powerful insights on properties of the beam that could be

hard to extract by approaching the problem using single
particle techniques.

Fundamentals Accelerator Physics & Technology, Simulations & Mea L = University of New Mexico, Albuquerque, June 16-27, 2014 2




L6: Phase Space

ference Frame

& Emittgnce A Conveni “

F. Sannibale

* From Lecture 3:

 In accelerators we are interested in studying particles along their
trajectory. A natural choice is to refer all the particles relatively to a
reference trajectory .

» Such a trajectory is assumed to be the solution of the Lorentz equation
for the particle with the nominal parameters (reference particle).

* In each point of this trajectory we can define

. : . 2 s

a Cartesian frame (for example) moving with R L= EXY
the reference particle . I

* In this frame the reference particle is always Reference

at the origin and its momentum is always trajectory

parallel to the direction of the 7 axis.

* The coordinates {x, y, z} for an arbitrary particle represent its
displacement relatively to the reference particle along the three
directions.

* In the lab frame the particle moves on the curvilinear coordinate s
with speed ds/dt.
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L6: Phase Space

8 s Phase Sp 3presentation

In relativistic classical mechanics, the motion of a single
particle is totally defined when, at a given instant ¢, the
position r and the momentum p of the particle are given
together with the forces (fields) acting on the particle.

Fi:xi'£+yij\)+zi2 l_jszi'%-l_pyij\;_i_pziz

F=F X+F y+F,Z

It is quite convenient to use the so-called phase space
representation, a 6-D space where the it" particle assumes the
coordinates:

P, E{xi’pxi’yi’pyi’zi’pzi
In most accelerator physics calculations, the three planes can be
considered with very good approximation as decoupled.

In this situation, it is possible and convenient to study the particle
evolution independently in each of the planes:

{x,.p.} Wipyt {z.,p.}
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L6: Phase Space . {
& Emitance Particles S S & Ensembles E}

The phase space can how be used for representing particles:
P,

The set of possible states for a system of N particles
is referred as ensemble in statistical mechanics.

In the statistical approach, the particles lose their
W individuality. The properties of the whole system as
a new individual entity are now studied.

The system is now fully represented by the density of particles f,, and f, :

fool. Py, p, 2. p, )dxdp, dydp, dzdp. fiow.p,)awdp,,  w=x,y.z

The above expressions indicate the number of particles contained in the
elementary volume of phase space for the 6D and 2D cases respectively.

jf6Ddxdpxdydpdede=N jfZDdepw:N w=Xx,Yy,Z

Important properties of the density functions can now be derived.

Under particular circumstances, such properties allow to calculate the

time evolution of the particle system without going through the
integration of the motion for each single particle.
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L6: Phase Space

& Emitance Hamil Systems
A system of variables g (generalized position) and p (generalized
momentum) is Hamiltonian when exists a function
H(q, p, t) that allows to describe the evolution of the system by:

dg, OH dp, OH 9 ={a1. 450 qn 0}

dt  op. dt g, p={p, Py y )

The function H is called Hamiltonian and ¢ and p are referred as
canonical conjugate variables.

In the particular case that ¢ are the usual spatial coordinates {x, y, z} and
p their conjugate momentum components {p,, p, p.}, H coincides with the
total energy of the system:

H =U +T = Potential Energy + Kinetic Energy

Non-Hamiltonian Forces:
Stochastic processes (collisions, quantum emission, diffusion, ...)
‘Inelastic processes (ionization, fusion, fission, annihilation, ...)
Dissipative forces (viscosity, friction, ...)
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L6: Phase Space

& Emittance Th e Co 9 o 0

F. Sannibale

If there is a flow of matter going inside a given \ ./
volume, then the density inside the volume
must increase in order to conserve the mass.

T Vi

By indicating the density by p: s

. N

/

olx, v, z,t)dxdy dz = massinthevolume dV = dxdydz

/

d L
dm=—pv dtdS=—pv-ndSd: wmp d—’?z—pv FdS ) —=—j 0V -7 dS

oM

But it is also true that:

M=[pdv == %jvpdvz—jspv-ﬁds. But [F-mdS=| V-Fav

=) [pvndS=|V-pvav = %jvpd\/=—jvv-pmv

=) Ip +V-pv =0 This expression, known as the continuity equation,
t iIs a consequence of the mass conservation law
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L6: Phase Space " |
& Emittance The LI ; Theorem E}

F. Sannibale

Let us now use the continuity equation with our phase space.
For simplicity we will use a 2D distribution, but the same exact results
apply to the more general 6D case.

a—p+Vp17 =0 Let ,OEfZD(x’px) and VE{x,px}

~

[

UWon . p 5o Yo O fop) 0P fop) _Urp | Wop ¢\ Wop o b, o O
dt at ox ap. dt  Ox ap, ap. ox
0°H 0°H
But if our system is Hamiltonian =) sz fw =fop=—=—=—fop —=—=0
i dxdp, oxap,
i, df af . Ofy, . df
+ V 2D 2D + J2D — 2D
o vERAAE il vah e W op. U di
Liouville Theorem: The phase space density for
df»p —0 a Hamiltonian system is an invariant of the

dt motion. Or equivalently, the phase space
volume occupied by the system is conserved.

1809-1882
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LGé(Pgr?]iSt?aigzce Deco e Problem: I E}
F. Sannibale the Longil Phase Space Q

 Quite often in accelerators the phase space planes are weakly coupled.
In particular, we can treat the longitudinal plane independently from the
transverse one in the large majority of the cases.
* The effects of the weak coupling can be then investigated as a
perturbation of the uncoupled solution.

* In the longitudinal plane we apply electric fields for accelerating the
particles and changing their energy.

- It becomes natural to use energy as one of the longitudinal plane
variable together with its canonical conjugate time.

* In accelerator physics, the relative energy variation ¢ and the relative
time ‘distance’ ¢ with respect to a reference particle are often used:
5_E—E

EO
» According to Liouville, in the presence of Hamiltonian forces, the area
occupied by the beam in the longitudinal phase space is conserved.

*The longitudinal phase space case has been already addressed in the
longitudinal dynamics lecture, we will now concentrate in ...

T=t—1,
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L6: Phase Space '
O Bt The Trans Phase Space E}

For the transverse planes {x, p.} and {y, p }, it is usually used a modified
phase space where the momentum components are replaced by:

— X = @ Sy =W
P ds pyi Yy ds
The physical meaning of the new variables: w
ﬁWS PROJECTION
x':gztanﬁx y':@:tané’y A
ds ds
The relation between this new variables and the N R
momentum (when B_ = 0) is: s
— m@_ym @—yﬂm cx
P, =rm, s 0¥ g 0

, where ,B=v—s and 7/=(1—,82)_1/2
p,=yBmycy c

Note that x and p_ are canonical conjugate variables while x and x * are
not, unless there is no acceleration (yand S constant)
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L6: Phase Space

& Emittance Defi N it - -

F. Sannibale

We will consider the decoupled case and use the
{w,w’} plane where w can be either x or y.

We define as emittance the phase space area
occupied by the system of particles, divided by =

X

As we previously shown, x “and y “are conjugate to x and y when B, =0

and in absence of acceleration. In this case, we can immediately apply

the Liouville theorem and state that for such a system the emittance is
an invariant of the motion.

This specific case is actually extremely important.
In fact, for most of the elements in a beam transferline, such as dipoles,
quadrupoles, sextupoles, ..., the above conditions apply and the
emittance is conserved.
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L6: Phase Space

& Emittance E m ittance = e o -0 )‘

F. Sannibale

 When the B, component of the magnetic field is present (solenoidal

lenses for example), the transverse planes become coupled and the

phase space area occupied by the system in each of the transverse
planes is not conserved anymore.

- Anyway in this situation, the Liouville theorem still applies to the 4D
transverse phase space where the ipervolume occupied by our system is
still a motion invariant.
 Actually, if we rotate the spatial reference frame around the z axis by the
Larmor frequency a; = B,/ 2ym,, then the transverse planes become
decoupled again and the phase space area in each of the planes is
conserved again.
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L6: Phase Space

«emiance  Emittance in th 2 of Acceleratic

F. Sannibale

When the particles in a beam undergo to acceleration, fand ychange
and the variables x and x * are not canonical anymore. Liouville theorem

does not apply and the emittance is not conserved.
= Pyo

B T?+2Tm,c’
P TO2 + 2T0m0c2 Pz

[

P.o T = kinetic energy
y(,):tane():pyo: py() y/:tanezpy: pyO y,=ﬁ070
P PoYomc p, Bymc Yo BV
8 /
0 thi Sy oY _
It can be shown that in this case ‘. = . '8 YE, = /Bo Yo€ 0

The last expression tells us that the quantity g y¢is a system invariant
during acceleration. By defining the normalized emittance:

£.=Pre, w=xy
We can say that the normalized emittance is conserved during acceleration.

In other words, the acceleration couples the longitudinal plane with the transverse
ones: the 6D emittance is still conserved but the transverse ones are not.
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L6: Phase Space

«emitae  The Real Bea 3: r.m.s Emittance I

F. Sannibale

For the case of a real beam composed by N particles, we start calculating
the second order statistical moments of its phase space distribution:

< 2> sz Ixsz (x, x')dxdx' < ,2> Z:;x; J.x'sz(x, x')dxdx'
— n=l1 = X _ ~
) N .[fw (0, x")dx dx’ N N JfZD (x, x')dxdx'
X, Ixx' fop (2, x")dx dx’
(xx') =21 =
N I Fon (x, x')dx dx’
We then define the rms emittance as the ~ —
quantity: £ =\/ ) (¥ = (x x)
This Is equivalent to associate to the real x4
beam an equivalent ellipse in the phase (x)

space with area z¢,,, and equation:

e ;
@ , <x2> no o AxX) C// (¥) x

X' +-—=x"=2—="xXx=E,
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L6: Phase Space

«cmice  Nonlinear FO d Filamentatic

F. Sannibale

* In the case of a Hamiltonian system, as a consequence of the Liouville

Theorem the emittance is conserved

 This is true even when the forces acting on the system are nonlinear

(space charge, nonlinear magnetic and/or electric fields, ...)

* This is not true in the case of the rms emittance.

*In the presence of nonlinear forces the rms emittance is not conserved

- Example: filamentation. Particles with different phase space coordinates,

because of the nonlinear forces, move with different phase space velocity
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* The emittance according to Liouville is still conserved.

But the rms emittance calculated at later times increases.
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L6: Phase Space

& Emittance C rameters

F. Sannibale

We saw that a beam with arbitrary phase space
distribution can be represented by an equivalent
ellipse with area equal to the rms emittance divided
by 7. and with equation:

) e ), )

—w A+ —w
E £ £

w rms w w

ww =€ w=ux,y

w

A convenient representation for this ellipse, often used in accelerator
physics, is the one by the so-called Twiss Parameters f,, - and «; :

B W+, w20, ww' =€, w=x,y |with B, 7 —a> =1

w

In this representation, the beam status at a given moment is totally
defined when the emittance and two of the Twiss parameters are known.

By comparing the two ellipse equations, we can derive:

<w2> = b€, <w’2> =¥,E  (wwh=-a,e, w=xy
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L6: Phase Space

e Propagating Paramete
When the beam propagates along the beamline, the eccentricity and the
orientation of the equivalent ellipse change while the area remains
constant (Liouville theorem). In other words, the Twiss parameters
change along the line according to the action of the line elements.

"y “ v g
- %-+

The single particle matrix formalism can now be extended to the Twiss
parameters. For example for a drift of length L in the horizontal plane:

<x2> = <(x0 + Lx, )2> = <x§> + L2<x(')2> +2L(x,x; )

x 1 LYx x=x, + Lx; o\
e -

(xx’) = ((x, + Lx) )x) ) = L <x(')2> +(x)xg )

pr#= Bro&+ Ly~ 2La & B, 1 L' =-2L\p,
= V€' = VroZ =7 =10 1 0 V1o
— 0 2= LY, 2 — & o 0 —-L 1 Oy,
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L6: Phase Space

& Emittance
F. Sannibale

Getting Fami

A couple of examples:

Propagation of beams with
different emittance through a

10x10°

) w0

-—

Beam rms size [m]

-’.
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drift space
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3 [Same lens slumght] =1 jun enuttance
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Propagation of beams with
different emittance through a
FODO lattice

rms Beam size [m]
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L6: Phase Space

& Emittance The Con A

F. Sannibale

Example: Acceptance of a slit

Acceptance at
the slit entrance

/ ,

Electron /

Trajectories \ h
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-hld

Unmatched

beam emittance
hld

\

Matched beam

emittance
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L6: Phase Space

sEmiance  Thae Emittance RC 2lerator Applicatic

F. Sannibale

The emittance is a motion invariant in Hamiltonian systems: transferlines,
linear accelerators (6D-emittance), heavy particles rings, ....
It is an equilibrium quantity (as it will be shown later) defined by the lattice
and the synchrotron radiation emission in electron and positron rings.

It is an important quantity that plays a fundamental role in most
accelerator systems:

 Electron microscopes: High resolution requires low emittances

* Free electron lasers (FEL): performance of the FEL and size of the
radiating undulator strongly depends on emittance. The smaller the better.

- Synchrotron light sources: smaller emittances gives higher
brightness

« Colliders: higher emittances give higher luminosity
(in beam-beam limited regime)
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L6: Phase Space '
& Emittance a k
F. Sannibale - WO r

1) Demonstrate the validity of the relation g¢g,=y’/y’, in slide 13,
where £ and g are the vertical emittances after and before
acceleration by a “thin” cavity (assume that the energy in rest
mass units goes from y, to y), and y’ and y’, are the particle
divergences after and before acceleration.

Tip: use the definition of rms emittance in slide 14.

2) Calculate the Twiss parameter transport matrix for both planes
of a focusing quadrupole in the thin lens approximation.
(similarly to what done in slide 17 for the case of a drift)
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