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Different Types of FEL Seeding 
There are many different ways of starting the FEL process.  These can be 
divided into 3 general categories: 

Seeding an FEL with 
electromagnetic radiation: 

Seeding an FEL by pre-
bunching the electron beam: 

FEL starts through random 
noise (SASE): 
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Seeding 

( ) exp( )x j j
j

E z c zα=∑

Use eigenfunction expansion: 

Take first and second derivative… 

' ( ) exp( )x j j j
j

E z c zα α=∑ and 2''( ) exp( )x j j j
j

E z c zα α=∑

In matrix form, this is written as: 

1 1

1 2 3 2 2
2 2 2
1 2 3 3 3

( ) 1 1 1 exp( )
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'' exp( )( )

x

x

x

E z c z
E z c z

c zE z

α
α α α α
α α α α

          =            







A 
The A matrix is used to calculate the c’s 
from the initial conditions. 
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Seeding, 2 

At z=0, we have: 
1

2

3

(0)
' (0)
''(0)

x

x

x

E c
E c

cE

        =         

A







  

But we need to take the inverse in order to get c’s from initial conditions: 

1
1

2

3

(0)
' (0)
''(0)

x

x

x

Ec
c E
c E

−

       =         

A







  

Next we plug in FEL solution to get values of A-1. 
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Seeding, 3 
The eigenvalue solutions for an FEL on resonance (η=0), zero energy 
spread, and negligible space charge (kp ≈ 0) is: 

( )1 3 / 2iα = + Γ ( )2 3 / 2iα = − Γ 3 iα = − Γ

( ) ( )
( ) ( )2 22 2 2

1 1 1

3 / 2 3 / 2

3 / 4 3 / 4

i i i

i i

 
 
 

+ Γ − Γ − Γ 
 
 + Γ − Γ −Γ 

A = 

Insert values into A matrix: 

We need to take inverse of A so that we can solve for initial conditions: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2

1 2

2

1 3 / 2 3 1 / 2
1 1 3 / 2 3 1 / 2
3

1 / 1/

i i

i i

i

−

 − Γ − + Γ
 
 − − Γ + Γ 
 Γ − Γ 
 

A  =  

LA-UR-14-24262 



Seeding with electromagnetic radiation 
Simplest case: seed with 
electromagnetic radiation: (0)x seedE E=

1
1

2

3

0
0

seedc E
c
c

−

   
   =   
   
   

A   

1 2 3
1
3 seedc c c E= = =

Insert value for A-1 on 
resonance and with zero 
energy spread (previous page): 

( ) ( ) ( )( ) exp 3 / 2 exp 3 / 2 exp
3 3 3
seed seed seed

x
E E EE z z i z i i z   = + Γ + − Γ + − Γ   

Evolution of electric field is: 
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Dominance of First Term 

For large values of        , 
the first term in equation 
for Ex(z) dominates, 
because it is the only 
term with a positive, real 
component in the 
exponential.  Then we 
have a very simple 
expression for Ex(z):    

zΓ

( ) 3exp
3 2
seed

x

E zE z
 Γ

=  
 



Then use the FEL gain 
length, and square to 
get in terms of power: 

1
3gL =
Γ

( ) exp
9
seed

g

P zP z
L

 
=   
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Seeding with a pre-bunched electron beam 

What are the initial conditions (ie,                     

' ''(0), (0), (0)x x xE E E 
 
  

for an FEL with a pre-bunched electron 
beam? 

From 1D FEL theory, 
we know that: 

0
1

ˆ(0) (0)
4

x

r

dE cK j
dz

µ
γ

= −




Here μ0 is the vacuum permeability, c is the speed of light, K is the 
undulator parameter, γr is the average electron energy (in terms of 
the relativistic factor), and j1(0) is the oscillating current at the FEL 
wavelength: 

[ ]0
1

2( ) exp ( )
N

z n
n

j z j i z
N =

= − Ψ∑

Here j0 is the DC current density and N is the # of electrons. 
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Seeding with a pre-bunched electron beam, 2 

We still need the second derivative of the E field, '' (0)xE

2
0

12

ˆ(0) '(0)
4

x

r

d E cK j
dz

µ
γ

= −




Equation for second 
derivative of E field: 

Equation for derivative 
of harmonic current: 

[ ]0
1

( ) 2 exp ( )
N

nz
n

n

dd j z ij i z
d z N d z=

Ψ−
= − Ψ∑



Next use the equation for the 
evolution of a single electron phase: 

2n
u n

d k
d z

ηΨ
=

In our simple case, electrons are initially monoenergetic 
with energy η0.  Then we have: 

( )
0

0
2n

u

d
k

d z
η

Ψ
=

All electrons have the 
same initial derivative 
with respect to phase. 
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Seeding with a pre-bunched electron beam, 3 

( ) [ ]1
0 0 0 1

1

(0) 22 exp ( ) 2 (0)
N

u n u
n

d j ik j i z ik j
d z N

η η
=

= − − Ψ = −∑




Now we can write a simple expression for the derivative 
of harmonic current at z=0:  

So now we have equations for both dE/dz and d2E/dz2.  
We can write this in vector form: 

( )0
1

(0) 0ˆ' (0) 0 1
4'' 2(0)

x

x
r

ux

E
cKE j

i kE

µ
γ

η

        = −        
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Seeding with a pre-bunched electron beam, 4 
Now we want to calculate the starting coefficients (c’s): 

1
10 1

2

3

0ˆ (0) 1
4

2r
u

c
cK jc

c ik

µ
γ

η

−

   
   = −   
   
   

A


  

Let’s just look at the c1 term, which represents the only 
eigenvalue that grows exponentially:  

( ) ( )
( )0

1 2

ˆ 30 1 32
12 2 2u

r

icK j ic ik
µ

η
γ

 − − − = +
 Γ Γ
 



For on resonance FEL, η=0 
Then, for after many gain 
lengths, we have: ( ) 0 1

ˆ (0) 3exp
12 2x

r

cK j zE z
µ

γ
 Γ

≈  Γ  
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Comparison of EM seeding and electron pre-bunching 

At large z, the E field for a 
seeded FEL is: 

At large z, the E field for an 
FEL with a pre-bunched 
electron beam is: 

( ) 0 1
ˆ (0) 3exp

12 2prebunched
r

cK j zE z
µ

γ
 Γ

≈  Γ  





( ) 3exp
3 2
seed

seeded

E zE z
 Γ

=  
 



So the seeding strength that gives equivalent 
strength to a pre-bunched FEL is: 

0 1
ˆ

4equivalent
r

cK j
E

µ
γ

=
Γ
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Example of self seeded FEL (LCLS) 

 SASE radiation is filtered through a 
crystal monochromator.  The 
narrowband radiation then seeds the 
electron beam in a 2nd undulator. 

 This is a promising scheme which is 
operational at SLAC.  
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Example of HHG FEL 

 High Harmonic Generation uses a gas, 
plasma, or solid to generate high harmonics 
from an intense laser pulse. 

 Experiments indicate that this method is 
currently impractical below 200 nm, because 
light becomes broadband with poor 
transverse coherence. 

 In addition, extremely high powers of the 
laser fundamental are needed, which would 
limits the rep rate. 

 

High Harmonic Generation 

sFLASH is a planned experiment in 
Hamburg, Germany to seed an FEL directly 
with 38 nm radiation that has been 
generated through HHG. 
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Wed. lecture part 2: SASE 
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0
ˆ

( , ) ( , ) ( )
4x

r

cKE z G z Jµω ω ω
γ

=

A SASE FEL is an FEL that is seeded from the random noise that comes from the discrete nature 
of electrons in an electron beam.  The seed signal can either be thought of as broadband 
electron bunching, or as broadband synchrotron radiation. 

The FEL amplifies a narrowband portion of the signal.  The amplified component is a 
complicated function of distance along the undulator and frequency: 

Intro to SASE 

The gain function of an FEL is 
complicated (see p. 214 of textbook).  
We will use the simple Gaussian 
approximation of the gain function: 

2

2
0 0

( , ) exp exp
9g FEL g

z zG z
L L

ηω
ρ

   
∝ −      

   



Discreteness of electrons leads to 
random fluctuations in current, 
as in the plot in top left.   

Taking FFT of current 
fluctuations, there is frequency 
dependent random bunching as a 
function of frequency.   

The FEL amplifies a narrow 
portion of the initial SASE seed.  
This portion grows up from noise.  
The randomness of the initial 
bunching is still apparent in the 
amplified FEL.   
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SASE simulations of proposed LANL FEL 

The top plot shows a scan of FEL 
saturation power vs. wavelength.  
This is a set of GENESIS simulations 
of the planned MaRIE XFEL at 
LANL.  This result looks like the 1D 
FEL gain curve shown previously.   
The bottom shows the results of a 
time-dependent GENESIS 
simulation, with the same FEL 
parameters.  The saturation power 
follows the gain curve, but there 
are random fluctuations in the 
power that reflect the initial 
random bunching of the SASE 
seed.    
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Slippage illustration 

Slippage allows different slices of the photon beam to communicate with each other via the 
electron beam.  This is what filters the wideband SASE input into the narrow FEL bandwidth.  



Calculation of SASE seed strength 
Define Fourier transform of the electron current: 

( )
/2

/2

( ) exp( )
T

T
T

i I t i t dtω ω
+

−

= ∫

Because I(t) is a real function, we have  ( ) ( )I Iω ω= − 

Then the total power in 
the signal can be written: 

2 2

0

1 1( ) ( )
2 T TP i d i d

T T
ω ω ω ω

π π

+∞ +∞

−∞

= =∫ ∫

Then let:  ( )
21( )S Iω ω

π
= 

But what is S(ω) for a SASE FEL?  To answer this, we need to look at shot noise, 
which is the AC current that exists because of discrete locations of electrons.    

where < > denotes an average over a large number of shots with similar 
experimental conditions.  The value S(ω)dω is the average amount of AC 
current within the frequency range [ω, ω + dω]. 
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We have been describing 
electron current as a smooth 
function I(t), where I(t) is 
something like a Gaussian.  A 
more accurate description of 
current, which accounts for 
the discrete location of 
electrons, is a sum of Dirac 
delta functions:   

( )
1

( )
N

j
j

I t e t tδ
=

= −∑

Take the FT of I(t): 

( ) ( ) ( ) ( )
1 1

exp exp
N N

T j j
j j

i e t t i t dt e i tω δ ω ω
+∞

= =−∞

 
= − = 

 
∑ ∑∫
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Calculation of SASE seed strength, 2 



We want the spectral density function, S(ω): 

( ) ( )

( ) ( )

2

2

1 1

2
0

1

exp exp

T

N N N

j j j k
j j k j

S i
T

e i t i t i t t
T

eIe N
T

ω ω
π

ω ω ω
π

π π

= = ≠

=

 = − + − 

= =

∑ ∑∑

An FEL has a sharply defined gain 
curve, Δω, where the power at 
saturation drops off very rapidly 
outside ωr ± Δω / 2.  (Here ωr is the 
resonant angular frequency).  We 
can determine the initial SASE 
current by calculating the total 
current from random noise in this 
FEL bandwidth. LA-UR-14-24262 

Calculation of SASE seed strength, 3 



The total AC current from shot noise 
that is in the FEL resonant bandwidth is: 

( )2 0
rms

eII S ω ω ω
π

= ∆ = ∆

The FEL equations are in terms of the 
current density, j1.  The total starting 
current density for a SASE FEL is: 

2
0

1
1rms

b b

I eIj
A A

ω
π
∆

= =
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Calculation of SASE seed strength, 4 



The LCLS output consists of several spikes in both temporal and spectral profiles. 
The full width of the spectral profile is the Fourier transform of individual 
temporal “spikes,” or coherence lengths. The width of each spectral “spikes” is the 
Fourier transform of the entire pulse length. 
 
LCLS recently demonstrated that self-seeding reduces the FEL spectral linewidth 

Temporal coherence in the LCLS SASE FEL 
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Evolution of Transverse Coherence in the LCLS SASE FEL 
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Fluctuations in SASE Energy 
A SASE FEL has a bandwidth Δω that is determined by the FEL gain, and a 
corresponding coherence time τc, with τc ~ 1 / Δω.   
We will estimate the random fluctuations in the SASE energy for 2 cases: 

1. Electron beam is shorter 
than coherence time, τb < 
τc.  Then SASE radiation 
will manifest itself as a 
single Gaussian pulse.   
 
 

2. Electron beam is longer 
than coherence time, τb < 
τc .  Then there will be 
many spikes of SASE 
power. 
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Fluctuations in SASE Energy, 2 

Electron Beam Undulator E-beam 
Diverter 

Photon Beam 
Photon Detector 

In a real FEL, you measure the total energy from each shot, and you can 
measure the average energy over a large number of shots.   
 
We want to calculate the statistics that determine how the photon energy 
fluctuates from shot to shot. 
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Fluctuations in SASE Energy, case #1 

Let’s look at case #1, with τb < τc .  In this case, all of the electrons 
communicate with each other through slippage, so the total SASE seeding 
source is the signal that exists when all phases are added up.   

Coherence length, or slippage length 

Electron beam length 

0( ) exp( )exp( )j l jE t E i t iω φ= −1 electron: 

0( ) exp( )exp( )j l jE t E i t iω φ= −many electrons: 

We care about seeding 
energy: 

2

2
0 exp( )j

j
U E iφ∝ ∑
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Random Walk 

real 

imaginary 

2 21 ( )( , ) exp x yp x y dxdy
N Nπ

 − +
=  

 

22( ) expr rp r dr dr
N N

 −
=  

 

The addition of phases is a random walk process.  
The probability distribution of such a process is 
given by: 

Or, in cylindrical coordinates: 

The RMS value of this distribution is given by: 

2 2

0

( )r r p r dr N
∞

= =∫
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Convert to dimensionless energy 
Now we want to relate r from the random 
walk process to the electric field E and 
the pulse energy U.  The electric field is 
proportional to r, while the pulse energy 
is proportional to r2: 

2,r E U r∝ ∝
Make U dimensionless by 
dividing by the average 
energy over a large number 
of fluctuations: 

Uu
U

=

Transform: 
2

2

ru
r

= 2rdrdu
N

=

Get: ( ) exp( )p u du u du= −

A SASE FEL with a short time 
duration will have energy 
fluctuations that follow 
these statistics. 

LA-UR-14-24262 



Fluctuations in SASE Energy, case #2 
Let’s look at case #2, which is a SASE FEL with τb >> τc .  In this case, electrons 
in one part of the electron beam do not communicate with another part 
through slippage, so the output SASE signal consists of many independent 
coherent bunches.   

Many SASE spikes will form in this case.  Some of the spikes will overlap.  For 
simplicity, let’s assume the spikes do not overlap: 

Now there are M statistically independent SASE spikes in the FEL.  Each spike 
is coherent with itself, but is not coherent with the other SASE spikes.  We 
have: 

b

c

M τ
τ

=
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Fluctuations in SASE Energy, case #2 
Let: 

1

totUu uM
U

= = Average power of 1 
longitudinal mode. 

We know that: 1( ) exp( )p u du u du= −   

Correct solution for fluctuations 
in power must satisfy:  1 1

0

( ) ( )* ( )
u

M Mp u p v p u v dv+ = −∫


    

1

( ) exp( )
( )

M

M
uP u du u du

M

−

= −
Γ


   

This will be satisfied for the 
following function: 

Or, convert back to u: 
1

( ) exp( )
( )

M M

M
M uP u du uM du

M

−

= −
Γ

tot

tot

Uu
U

=
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Thursday lecture part 1: HGHG 
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Introduction to HGHG 

 High Gain Harmonic Generation uses a 
single modulator and a single chicane to 
generate harmonics in the electron current 
profile. 

 The “bunching factor” at higher harmonics 
is severely limited by the electron beam 
energy spread.  We will derive the formula 
for the induced harmonic content as a 
function of the harmonic number, the 
random energy spread, the induced 
modulation, and the strength of the 
chicane. 
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Bunching Factor from HGHG, 1 
We will use dimensionless variables to simplify this calculation.  
To describe longitudinal position, we will use ξ, with: 

2 sπξ
λ

=

Here s is the longitudinal position in meters, and λ is the wavelength of the 
fundamental (i.e., the laser used to modulate the beam). 

The energy of the electrons are described using p, with: 
Here        is the RMS energy spread in the electron beam,  
Before the beam is modulated.  

p
γ

γ
σ

=
γσ

We will assume that the initial electron distribution is Gaussian in energy, 
and is independent of longitudinal direction.  In our dimensionless units, the 
initial distribution is: 

( ) 2 /20
0 e

2
pNf p

π
−=
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Bunching Factor from HGHG, 2 
The electron beam passes through a wiggler and interacts with a laser.  
This gives the electrons a modulation in phase space: 

( )' sinp p A ξ= +
The prime denotes the phase space after modulation, 
while the unprimed coordinates are the phase space 
before modulation.  The dimensionless parameter A 
represents the strength of modulation, and is given by: 

A
γ

γ
σ
∆

=

The modulation strength         depends on the laser power, the laser transverse 
size, the wiggler length, and the wiggler strength.  (More on this later). 

γ∆
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Bunching Factor from HGHG, 3 
Next the electron beam passes through a chicane, which causes more energetic 
electrons to move forward with respect to less energetic electrons.  The new 
phase space is: 

( )
' '
' sin

B p
B p A

ξ ξ
ξ ξ ξ

= +

= + +
The dimensionless parameter B describes the 
strength of the chicane, and is given by: 

56

0

2 R
B γπ σ

λγ
=
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Phase Space and Current Before and After HGHG 
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Bunching Factor from HGHG, 4 
We want to calculate the harmonic 
current that will be generated from 
the HGHG process.  We can 
characterize the harmonic current 
by calculating the bunching factor 
at a certain harmonic n of the 
seeding laser:  

( ) ( )'

0

1 'inb n e I
I

ξ ξ−=

The brackets ( < > ) denote averaging in 
ξ.  We will switch from describing the 
electron current I to describing the 
electron line density N, with I = ecN.  
Then we have: 

( ) ( )'

0

1 'inb n e N
N

ξ ξ−= with ( ) ( )' ', ' 'fN f p dpξ ξ
+∞

−∞
= ∫
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Bunching Factor from HGHG, 5 
For simplicity, assume an infinitely long laser and electron beam (this will be 
a good approximation when Lbeam >> λ).  Then the averaging ( < > ) can be 
mathematically described as: 

1... lim ...
L

d
L

ξ
+∞

→∞
−∞

= ∫
Then the calculation of bunching factor can be written: 

( ) ( )'

0

1lim ' ' ', '
L

in
fL

L

b n dp d e f p
N L

ξξ ξ
∞

−

→∞
− −∞

= ∫ ∫
To simplify, use the fact that phase space is constant along particle 
trajectories.  Mathematically, this means that: 

( ) ( ) 2 /20
0', ' ,

2
p

f
Nf p f p eξ ξ
π

−= =

Along trajectories, we also have ' 'd dp d dpξ ξ=
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Bunching Factor from HGHG, 6 
We can use this fact that phase space is conserved along particle trajectories to 
calculate the bunching factor in terms of the initial phase space distribution:  

( ) ( ) ( )' ,
0

0

1lim
2

L
in p

L
L

b n dp d e f p
N L

ξ ξξ
∞

−

→∞
− −∞

= ∫ ∫
Switch order of integration: 

( ) ( ) ( )' ,
0

0

1 1lim
2

L
in p

L
L

b n dp f p d e
N L

ξ ξξ
∞

−

→∞
−∞ −

 
=  

 
∫ ∫

Plugging in the value for ξ’(ξ,p), the integral over ξ becomes:  

( ) ( ){ }1exp ' , lim exp sin
L

L
L

in p d in B p A
L

ξ ξ ξ ξ ξ
→∞

−

   − = − + +   ∫
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Bessel Generating Function 
Break up exponential into 2 parts: 

( ) ( )sin sinin B p A in Bp in ABe e eξ ξ ξ ξ−  + +  − + −  =

To simplify the second exponential, we make use of the Bessel 
generating function (for more on this, see Arfken, p. 628): 

The second exponential 
simplifies to: ( )sin JinAB i m

me nAB eξ ξ
∞

−

−∞

= −∑

Then we get: 
( ) ( ) ( )

( ) ( )

sin J

J

in B p A in Bp i m
m

i m ninBp
m

e e nAB e

nAB e e

ξ ξ ξ ξ

ξ

∞
−  + +  − + 

−∞

∞
−−

−∞

= −

= −

∑

∑

sin ( )i x i n
n

n
e J x eθ θ

∞

=−∞

= ∑ We will leave it to HW to modify 
this to be in a usable form. 
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Formula for HGHG 
Going back to the formula for bunching factor: 

( ) ( ) ( )

( ) ( ) ( )

' ,
0

0

0
0

1 1lim
2

1 1lim J
2

L
in p

L
L

L
i m ninBp

mL
L

b n dp f p d e
N L

dp f p nAB e d e
N L

ξ ξ

ξ

ξ

ξ

∞
−

→∞
−∞ −

∞ ∞
−−

→∞
−∞−∞ −

 
=  

 

 
= − 

 

∫ ∫

∑∫ ∫

This last integral will be zero (in the limit L → infinity) if m≠n, because the 1/L will 
dominate over the oscillating term in the integral.  On the other hand, if m=n, the 
exponential becomes = 1, and the integral becomes 1/2L * (2L) = 1.  Then we have: 

( ) ( ) ( )0
0

1 J

0

inBp
mb n dp f p nAB e

N

∞
−

−∞

= −

=

∫ if m=n 

otherwise 
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Formula for HGHG, 2 

Insert value for f0(p): ( ) ( ) ( )2 /21 J e
2

p inBp
nb n nAB dp

π

∞
− +

−∞

= − ∫

You can look up this 
integral in an integral table: 

( )2 2 2/2 /22p inBp n Bdpe eπ
∞

− + −

−∞

=∫
A

γ

γ
σ
∆

= 56

0

2 R
B γπ σ

λγ
=Plug in values for A and B: 

Then you get Yu’s formula for HGHG bunching: 

( )
2

2 21J exp
2n E

d db n n n
d d
θ θγ σ
γ γ

    
= ∆ −    

     
LA-UR-14-24262 

( ) ( ) 2 21J exp
2nb n nAB n B = −  

Or: 



Formula for HGHG, 3 

( )
2

2 21J exp
2n E

d db n n n
d d
θ θγ σ
γ γ

    
= ∆ −    

     

A=3, B=0.15 A=3, B=0.325 

A=3, B=0.5 
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Limits of HGHG 

Bessel functions reach a peak 
at x > n+1, so in order to 
optimize the Bessel function, 
we have: 

dn n
d
θγ
γ

∆ >

or: 
1d

d
θ
γ γ
>
∆

This gives an upper bound on 
the bunching vs. harmonic 
number: 

( )
2

21exp
2

Eb n n σ
γ

  
< −  ∆   

LA-UR-14-24262 



Limits of HGHG – Effect of laser chirp 

A small change in the phase at a low harmonic can transfer to a 
large change in the phase at a high harmonic.  

LA-UR-14-24262 



Effect of laser chirp – mathematical description 

A Gaussian laser pulse with a 
frequency chirp can be described as: 

2 2

0 2 2( ) exp
2 2in

L L

E E i αξ ξξ ξ
σ σ

  
= + −  

  
Take Fourier transform: 

( )

( ) ( )

2 2
0

2 2

2 2 2 2
10

1/4 2 22

exp
2 2 2

1 exp tan exp
2 12 2 11

L L

pL L

Ee d i

E i

αξ ξω ξ ωξ
π σ σ

αω τσ ω σα
απ αα

∞

−∞

−

  
= + −  

  
   
 = − −   + +  +     

∫

The Fourier transform is a Gaussian with    
2

2

1

L
ω

ασ
σ
+

=

If there is no chirp you get Fourier transform limit,  1Lωσ σ =

If there is a chirp, you get: 21Lωσ σ α= +
LA-UR-14-24262 
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Effect of laser chirp – mathematical description 2 

After harmonic 
generation, you get: 

2 2

0 2 2( ) exp
2 2out

L L

NE E i αξ ξξ ξ
σ σ

  
= + −  

  


Fourier transforming this 
gives a Gaussian with: 

2 2

2

1

L

N
ω

ασ
σ

+
= or: 2 21L Nωσ σ α= +

What is α for lasers used in HGHG 
seeding?  Usually, a Ti-Sa laser is used, 
because it can produce the high powers 
needed at short wavelength (800 nm).  
Usually, laser quality is defined as: 

2
0 LM ωσ σ=

For a TiSa laser,  
2
0 1 0.01M − ≈



Example of HGHG FEL 

For more information, see: www.elettra.trieste.it/FERMI/ 
Pictures of hardware taken from this page. 

Fermi@Elettra is an FEL user facility in Trieste, Italy that uses the HGHG 
mechanism to produce coherent FEL pulses at wavelengths down to 43 nm.  
The electron beam is seeded with a 258 nm laser, and then a single HGHG 
stage produces radiation at the 6th harmonic.  A delay line is used so that a 
“fresh” part of the electron bunch is seeded with the 43 nm radiation (more 
on this later).   

LA-UR-14-24262 
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Thursday lecture part 2: EEHG 
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Introduction to EEHG 

200 nm 
Modula
tor 

12 Å Undulator 200 nm 
Modulator 200 

nm 
Laser 

1.8 
GeV E-
Beam 

200 
nm 
Laser 

 Echo-Enabled 
Harmonic Generation1 
uses 2 modulators and 
2 chicanes.  The 1st 
chicane is large, and 
breaks the modulated 
beam into energy 
bands. 

 Theory shows that 
EEHG has a very 
favorable scaling with 
harmonic number1: 

1/3

0.39
nb

m
≈
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Dimensionless variables for EEHG: 
We will use the same dimensionless variables to do this 
calculation as the ones we used to calculate bunching factors 
from HGHG: 2 sπξ

λ
=

( ) 2 /20
0 e

2
pNf p

π
−=

p
γ

γ
σ

=and 

The initial phase space distribution 
will once again be a Gaussian, 
which, in our dimensionless 
variables is given by: 

56

0

2 R
B γπ σ

λγ
=A

γ

γ
σ
∆

=We will also use the 
dimensionless variables A and B: 

A for the strength of the modulation, and B for the strength of the chicane.  
LA-UR-14-24262 



Increasing B to get energy ladder: 
The trick of EEHG is to use the first modulation and chicane combination to create 
an “energy ladder” in phase space, and then apply HGHG to the rungs of the 
energy ladder.  Because each rung has a very small random energy spread, the 
limitations of HGHG are overcome. 
Here is a picture showing how B can be increased to create this energy ladder: 

B = 0.34 B = 0.6 B = 1.0 

B = 2.0 B = 5.0 B = 10.0 

LA-UR-14-24262 



Calculation of bunching in EEHG, 1 

The first modulator imparts a 
sinusoidal oscillation on the 
particles, identical to what is done 
in HGHG.  Typical values of the 
modulation are A1~3. 

( )1' sinp p A ξ= +
The first modulator modifies 
phase space according to: 

200 nm 
Modula
tor 

12 Å Undulator 200 nm 
Modulator 200 

nm 
Laser 

1.8 
GeV E-
Beam 

200 
nm 
Laser LA-UR-14-24262 



Calculation of bunching in EEHG, 2 

( )
1

1 1

' '
' sin

B p
B p A

ξ ξ
ξ ξ ξ

= +

= + +

The first chicane modifies 
phase space according to: 

The first modulator-chicane 
combination produces the energy 
stripes.  The larger the chicane, 
the thinner each energy stripe will 
be.  This is ultimately how EEHG 
overcomes the exponential limit 
of HGHG. 

200 nm 
Modulator 

12 Å Undulator 200 nm 
Modulator 200 nm 

Laser 

1.8 GeV 
E-Beam 200 nm 

Laser 

Note: the chicane is also used to displace the electron beam so that the 
2nd laser can overlap with the electrons. LA-UR-14-24262 



Calculation of bunching in EEHG, 3 

The second modulator gives 
each of the energy stripes a 
sinusoidal modulation. 

The second modulator modifies 
phase space according to: ( )2'' ' sin 'p p A κξ= +

( ){ }1 2 1 1'' sin sin sinp p A A B p Aξ κ ξ ξ= + + + +  or: 

200 nm 
Modulator 

12 Å Undulator 200 nm 
Modulator 200 nm 

Laser 

1.8 GeV 
E-Beam 200 nm 

Laser LA-UR-14-24262 



Calculation of bunching in EEHG, 4 

The second chicane modifies 
phase space according to: 

( )1 1'' sinB p Aξ ξ ξ= + +

( ) ( )
( )

1 2 1 1 2

2 2 1 1 1

'' sin

sin sin

B B p A B B

A B B p A B

ξ ξ ξ

κξ κ κ ξ φ

= + + + + +

+ + +
After doing some 
algebra, you get: 

200 nm 
Modulator 

12 Å Undulator 200 nm 
Modulator 200 nm 

Laser 

1.8 GeV 
E-Beam 200 nm 

Laser 

The final chicane rotates each of 
the stretched out energy bands 
in phase space, and produces 
bunching at a very high 
harmonic. 
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Calculation of bunching in EEHG, 5 

( ) ( ) ( )'' ,
0

0

1 1lim
2

L
in p

L
L

b n dp f p d e
N L

ξ ξξ
∞

−

→∞
−∞ −

 
=  

 
∫ ∫

Use same trick we used before to calculate bunching for HGHG.  The 
definition of bunching factor is: 

Use the fact that phase space is conserved, and do some algebra to get a 
formula for bunching factor that can be calculated: 

( ) ( )''

0

1lim '' '' '', ''
L

in
fL

L

b n dp d e f p
N L

ξξ ξ
∞

−

→∞
− −∞

= ∫ ∫

We will leave it as a HW assignment to derive the formula for the 
bunching factor in EEHG: 

( ) ( ) ( ) ( ){ }
2

1 21/2
, 2 2 1 1 2J JnB m n B

n m m nb e m n A B A nB m n Bκ κ κ− + +  = − + − + +      
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Look at results of bunching factor for EEHG 

( ) ( ) ( ) ( ){ }
2

1 21/2
, 2 2 1 1 2J JnB m n B

n m m nb e m n A B A nB m n Bκ κ κ− + +  = − + − + +      

Write bunching formula again: 

There are a lot of options.  Let’s look at n=-1, m>0:  

( ) ( ){ } ( ) ( ) 2
1 21/2 1

1, 2 2 1 1 1 2J 1 J 1 B m B
m mb m A B A B m B e κκ κ − − −  

− = − − −      

This plot shows the final phase space and the bunching factor at different 
harmonics when A1=3.0, A2=1.0, B1=32.5, and B2=1.098 LA-UR-14-24262 



Getting approximate values for EEHG 

The Bessel function Jm is maximum 
when x =  m + 0.81m1/3.  So to maximize 
this term (term #1) we need to set:  

( ) 1/3
2 21 0.81m A B m mκ − = +

To get some values of A1, A2, B1, B2 
that are close to optimal, let k = 1, m 
>> 1, then we have: 

2 2mA B m≈ or 2
2

1A
B

≈

( ) ( ){ } ( ) ( ) 2
1 21/2 1

1, 2 2 1 1 1 2J 1 J 1 B m B
m mb m A B A B m B e κκ κ − − −  

− = − − −      

Term #1 Term #2 
Term #2 

Term #2, which is in the J1 function 
and the exponential function, 
needs to be small, but slightly 
greater than zero.  For this, we set: 

( )1 2
1

11B m B Aκ− − ≈

Or, if k=1: 

1 2
1

1B mB A− ≈
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Other properties of EEHG 

These plots are from a paper by Xiang (Phys. Rev. STAB 12, 030702 (2009).  The 
plot on the left shows how the bunching in EEHG is degraded if the laser 
transverse size is too small.  The plot on the right shows how increasing the size 
of the initial modulation (A1) increases the final bunching factor. 
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Example of EEHG FEL 

Shanghai FEL has experiment that has produced an FEL seeded with EEHG and 
HGHG.  There is also an experiment on EEHG at SLAC. 

LA-UR-14-24262 
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