LA-UR-14-23753

High Intensity RF Linear
Accelerators

2-1. Preliminaries of high-intensity
beam dynamics

Yuri Batygin

Los Alamos National Laboratory

U.S. Particle Accelerator School

Albuquerque, New Mexico, 23 — 27 June 2014



Content

Maxwell’s Equations

Fields in Focusing Channels
Hamiltonian Dynamics
Canonical Transformations

Averaged Method for Particle Trajectories

Root-Mean-Square Beam Emittance
Particle Distributions in Phase Space
Self-Consistent Particle Dynamics

Applicability of Vlasov's equation to particle dynamics



Maxwell’s Equations

Electromagnetic field created by external sources, and by particle beam is described by
set of Maxwell’s equations:

rotE——a—B rotljlza—D+7
ot ot

where E isthe electric field, D is the electric displacement field, B is the magnetic
field, H is the magnetic field strength. In vacuum, D=¢ E, B=u H , where g =
8.85 x 10"* F/m is the electric permittivity, and u, = 4m 107 H/m is the magnetic
permeabﬂlty of free space.

Electric, E, and magnetic, B fields are expressed through vector potential A and scalar
potential U

—

-grad U | B=r()tz.

Substitution into Maxwell’s equations together with Lorenz gauge

divA+ LB_U =0
¢’ ot
gives equations for potentials of the field:
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Fields in Focusing Channels
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Focusing magnets used in acceleratior facilities:
dipole, quadrupole, sextupole.



Magnetostatic and Electrostatic Fields

Equations describing magnetostatic field are obtained from Maxwell
equations assuming d/dt =0 in equations for magnetic field:

rotH =]

divB=0

—

B=uH

Inside aperture, in the absense of currents, j:O, magnetic field can be

equally determined using magnetic scalar potential, U or vector potential,

magn 2

—

magn *

—

B=—-grad U B=rotA

magn > magn

Magnetic scalar potential is convenient to determine ideal pole contour, while
vector potential is convenient to determine magnetic field shape. Electrostatic

field is expressed through electrostatic potential:

E=-grad U,



Formally, both magnetic and electrostatic multipole fields are derived from
Laplace equation with appropriate boundary conditions:
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and similar for A, component of vector — potential:
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General solution of 3-dimensional Laplace equation in cylindrical coordinates is
[W.Glazer, Grundlagen Der Electronenoptik, Wien, Springer-Verlag, p.102
(1952).]
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where @, (z)and ¥
order of multipole:

(z) are functions of longitudinal coordinate z and m is the

m

m = 0 for axial-symmetric filed, m =1 for dipole, m =2 for quadrupole, m =3
for sextupole, m = 4 for octupole, m =5 for decapole , m = 6 for dodecapole.

Here solution I(r,0,z) stands for either 4,, or U, or U,



Number of poles to excite the multipole lens of the order m is N . =2m

poles

In most of cases, it is possible to substitute actual z-dependence of the field by “step” function. For such representation,
solution of Laplace equation is

(r,0)=Y, r"(®, cosmf+¥, sinmb)

m=0

Field is periodic determined by condition mO =27z . Solutions for magnetic field can be represented as a combination of
multipoles with field:

A = —ﬂr’" cos[m(6—-6,)]
m

magn

= —ﬂr’" sin[m(60—0,)]
m
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where G, 1s the strength of the multipole of order m: G

and B(r,) 1s the absolute value of magnetic field at certain radius r,.



Normal and Skew Magnets

“Normal” multipole corresponds to 8, =0, while skew multipole is achieved by rotating multipole at the

angle 0 = %
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Fig. 2 Pole configurations for a regular sextupole and a skew sextupole



Field Components

Components of magnetic field are determined by

A
B =— agrm _ % aae =G, " sin[m(0—,)]
10U 0A
B :———m:——Z:G m—1 9_6
°  r 06 or it costmt o)l

Absolute value of the field is azimuth-independent:

B(r)=+/B*+B: =G, r""

Components of electric field are:

Er _ aUe[ _ _Gmrm—l COS[m(O _ 90 )]
or
By =% G sinlm©-6,)

o r 90



Expressions for Multipole Fields

Expressions for magnetic vector potential —A_ and electrostatic potential U, of “normal” multipole:

=1  Dipole G,r cos0=Gx
=2 Quadrupole %r2 cos20 = %(Xz -y?)
m=3  Sextupole %r3 cos 360 = %(X3 -3xy%)
=4  Octupole %r4 cos46 = %(X4-6x2}’2 +y)

m=5  Decapole %rs c0s50 = %(x5 —10x°y* +5xy")

m=6 Dodecapole %I’6 cos60 = %(x6 —y°=15x*y* +15x%y*)



Quadrupole Pole Shapes and Higher Order Harmonics

Pole contours are determined by lines of equal values of scalar potentials y
A

U iaen (1,0) = const , U, (r,0)=const .
For example, shape of “normal” quadrupole poles are described by infinite 4 s
hyperbolas:

x*—y>=za” for electrostatic quadrupole ® =

2xy=*ta’ for magnetostatic quadruple
In practice, actual pole shapes are different from that determined above. Solution of
Laplace equation for multipole is antysymmetric after angle 7 /m because of & N
separation of neighbour poles with alternative polarity:

T1(r,0) = —TI(r,0+ 1)
m

It results in the following equations to determine numbers of higher harmonics &k
with respect to fundamental harmonic with number m:

cosk(6+ l) =—cosk0, sink(6 + £) = —sink6
m m

which are satisfied when cos(k E) =-1, sin(k E) =0
m m

Both equations are valid for k=m(1+2[), 1=0,1,2,3,..... Particularly, field of
quadrupole lens contains the following multipole harmonics:

A (r,0)= —(%r/2 cos20+ %r6 cos60 + %rlo cos100+...)



Hamiltonian dynamics

Hamiltonian of charged particle with charge ¢ and mass m

H=cN m2c? + (Py- gAyY + (Py- gAY + (P - gAY + q U

X, y, Z position in real space
P, P, P. components of canonical momentum
A, A, A, components of the vector — potential
Ux,y,z) scalar potential of the electromagnetic field
Eetations of mog dx - H dp __0H
uations of motion: g DS
1 d op dt ox

Canonical momentum P = (Px, Py, P;) and mechanical momentum ; = (px, Py, Pz) are related:

p=P-gA

Element of phase space: dV =dxdy dz dPx dPy dP;

Phase space density (beam distribution function):

f(x,y,2, Px, Py, P;)= dN
dx dy dz dPy dPy dP;



Liouville’s Theorem

Conservation of phase space volume occupied by particles in Hamiltonian systems.

Liouville’s theorem: if the motion of a system of mechanical particles obeys Hamilton’s
equations, then phase space density remains constant along phase space trajectories and
phase space volume occupied by the particles is invariant (Liouville's Equation):

d ot grd ap d



Hamiltonian equations of motion

Motion of a charged classical particle in an electromagnetic field is described by
Hamiltonian dynamics. The three corresponding canonical conjugate variable pairs
are (x, P,), (v, P,), (z. P.). The equations of motion then follow from Hamilton’s

equations:

d P> & 0P, & oP,” (1.27)
dP. _ oH dPy _ dH P, _ oH
dt ox ’ dt dy ’ dt 0z -’ (1.28)

As an example, taking a partial derivative of the Hamiltonian with respect to P,
yields the equation for the rate of change of the particle’s x-position

dx _ ¢ (Px-qAx)

(1.29)



Canonical momentum P = (Py, Py, P;) is related to mechanical momentum
p = (px, py, pz) via the expression:

p=P-qA (1.30)

Note that the denominator in Eq.(1.29) is actually mc?y, where the relativistic
factor y is:

(Pr-qAy) + (Py-qAy) + (P.-qA,)
y=\/1+ e S (13D

m-cC

Analogously, the equations for the rates of change of the y- and z - positions
of the particle can be derived. So, the set of equations for the rate of change
of the particle’s position is

de _ (Px-qAy)  dy _(Py-qAy) & _(Pz-qAy)
dt my ° dt my g At my )

(1.32)



Taking partial derivatives of the Hamiltonian with respect to the particle’s
positions, the equations for the rate of change of the canonical momentum vector
are:

@:L[(px Ax) +(P Ay)— 94y Y+ (P;- Az) g%
AP 0A
@y_ 9 -gAy) =+ (P, -qA (1.34)
&t my dy dy dy dy
Po_ 4 _(p,qa) A 4 (P-qa) oA 4 (.- gan Aoy U (1.35)

a my 0z 0z 0z 0z



It 1s more common to 1ntegrate the equatlons of motion for mechanical

momentum, and use electric, E, and magnetic, B fields instead of vector potential A
and scalar potential U:

E:—aa—?—gmdU B=rotA. (1.36)

The left-hand side of the equation for the rate of change of the x-component of the
canonical momentum, P, = p, + gA,, can be represented as follows:

&:@.pq(anq_ an@.paﬂd_y.p aﬂ@)

& d 9t ox & 9y & 9z di - (1.37)
A combination of this equation with Eq. (1.33), gives:
dpx _ 0A, JU dAy A, dA; O0Ax
“==q(-——-—")+qlv - )+ vz -l (1.38)

dt Jar  0x dx  dy dx 0z



Applying the same derivations for p, and p., the final set of equations in Cartesian

coordinates 1s:

dx _ Px_
a my?”’
dy _ Py
a my?’
dz — Pz
a my”’
d px Py Pz
=q (Ex + B; - B
& q( my z my y)’
d py Px Pz
= =g (E, - B, + Bx
& Q( y my z my ),
dp; Px Py
=g(E,+ ~—=-B, - B
& q (E; my y my ),
or
dx D dp = o
=L L= g{E+[vB]}

dt my dt

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)



Canonical Transformations

In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates (q,p,t) —
(Q,P,?) that preserves the form of Hamilton's equations. Hamiltonian equations of motions are

dgq. oH dp, oH

1 —_———

dt  dp. dt g,

New variables also obey canonical equations of motion

dQ _9H dP; _ 9H G5.1)
dt — oP;’ dt — aQ '

where H' is a new Hamiltonian. New v ariables can be considered as functions of old
variables and time Q; = Q; (p;,q; ), Pi = Pj (p;,q; ) . Transformations from old variables
to new variables, which keep canonical structure of the equation of motion (5.1) are
called canonical transformations.




From classical mechanics it follows, that both new and old variables obey principle of

least action :

d

J

(

(

(> p;jdq; -Hdt)=0

(> PidQ -Hdt)=0

(5.2)

(5.3)

That means, that integrands in eqgs. (5.2), (5.3) are different as total differential of
arbitrary function F of coordinates, momentum and time:

S pidg-Hdt=3 P;dQ -H dt + dF, or

dF=) pidg; - P;dQ + (H'-H)dt

Function F is called generating function of transformation.

(5.4)

(5.5)



Type 1 generating function

To be a total differential, equation (5.5) has to have the following form:

aF=F o g +5 qu + 90 (5.6)

From comparison of equations (5.5) and (5.6) it is clear, that the variables and the new
Hamiltonian have to obey the following equatons:

oF oF oF
L= P: =- -H dt——dt 5.7

Therefore new Hamiltonian is connected with the old one via relationship

dF
H=H+ - 5.8
o (5.8)

Equations (5.7) provide canonical transformation from old variables to new variables, if
generating function depends on old and new coordinates:

oF oF;
.= P; =-
Pi= 9 BRFTe:

Fi1 =F1(q,Q,1) (5.9)




Type 2 generating function

Let us rewrite eq. (5.5) as follow:
dF= ) pidg -D> PidQ +> QdP; -> QdP; +(H' -H)dt (5.11)
Let us introduce new generating function F;
Fp=F+)» PiQ, dF;=dF+) P;dQ +» Qdp; (5.12)
For new generting function the following equation is valid:
dF2=) p;jdq + > Q dP; + (H'-H)dt (5.13)

Equation (5.13) indicates, that generating function of the second type is a function of old
coordinates and new momentum F, = F; (q, P.t) . Relationship between new Hamiltonian
and the old one is given by equation (5.8). Again, to be a total differential, the following
eqautions have to be valid, which form the second canonical transformation:

_db ) )
- dq; %= JP;

Fr =F»(q,P)) (5.14)

Pi




Type 3 generating function

To find third canonical transformation, let us add and subtract Z q; dp; from eq. (5.5):

dF =) pidgi - > PidQ + q;dp; - > q;dp; +(H - H)dt

Introducing generating function of the 3rd type

F3=F-) p;ai dF3=dF-> p;dqi- > q;dp;

the eqution for total differential of the generating function is as follow:

dF3=-> P;dQ -> qdp; +(H -H)dt

Last equation forms the canonical transformation of the 3rd type:

i 0F3 g =- 0F3
9Q; ' op;

P; =

F3=F3(@Q,p,!)

(5.16)

(5.17)

(5.18)

(5.19)



Type 4 generating function

Forth canonical transformation is attained via adding and subtracting of the Z Q; dp;
from Eq. (5.5):

dF=) pidg -Q PidQ +Q qidpi -D qidp; +> QdP; -> QdP;+(H' - H)dt
Generating function of the 4th ype is defined as follow:
Fs=F-) pigi +) PiQ (5.22)
It results in the eqution for total differential of the generating function:
dF4= - qdp; +> QdP; +(H -H)dt (5.23)

Canonical transformation of the 4th type are descibed by equations:

0F4 Qi = 0F4

- Fs=F P.t 5.24
ap: oP: 4 =F4(p,P,1) (5.24)

di =




Example: Canonical transformation from Cartesian to cylindrical coordinates

Very often, particle dynamics in accelerators is described in a cylindrical
system of coordinates (7, 6, z), because of axial symmetry inherent to
accelerating structures.

Y

pd .
1 -
| x

Relationship between cylindrical and Cartesian coordinates.



A canonical transformation of the Hamiltonian from Cartesian to cylindrical system
of coordinates is accomplished by selecting a generating function of the
transformation, as a function of new position variables and old momentum:

F5(r,0,z, Py, Py, P,)=-rPxcosO -rPysin0-zP; . (1.45)

The relationships between new and old variables in a canonical transformation are
obtained using the equations

_OFs L _oFs__ oF;
P’ P, ° P, (1.46)

0F3 0F3 0F;

p=-9  p,_ 9 p_ OF
or 90 > oz (1.47)

Calculation of the partial derivatives, Eqgs. (1.46), (1.47), gives the relationship
between Cartesian and cylindrical coordinates:

x=rcosO, y=rsinf 2 =2z, (1.48)
P, =P, cosO+ Py sin0 (1.49)
Po=r (-Px sin@ + Py cos0) , (1.50)

Pz=Pz. (151)



Inverse transformation of Egs. (1.49) (1.50), (1.52), (1.53) gives

Py =P, cos6- F8 sing (1.56)
4 2

Py =P, sin0 + Po cos6 (1.57)
r 2

P, =P,. (1.51)

Ax= ArcosO- Ag sinf (1.58)

Ay = A, sinf + Ag cos0 . (1.59)

A, = A (154)



After a canonical transformation, the new Hamiltonian is expressed m
terms of the old one as

0F;

K=+=" (1.55)

Since the generating function, Eq. (1.45), does not depend on time
explicitly, the new Hamiltonian equals the old one, K = H:

H=c v (mc)” + <Pf - gAe) + (Pr - gAY + (P- - gA)” +qU (1.60)

Hamilton’s equations in cylindrical coordinates read

dr _ 9H d6 _ oH d — OH |
& P & Py & OP. (1.61)
&, _ OH Py OH . 9H

dt or’ dt 00 ° dt 0z ° (1.62)



Calculating the partial derivatives, Egs. (1.61), the equations for
particle position are

dr _ Pr-qAr
d;— my (1.63)
do_ 1 (Po
& myr (r - qAo) | (1.64)
dz _ P:-qA;
b omy (1.65)

Again, instead of canonical momentum, it is more common to use

mechanical momentum, components of which are obtained from Egs.
(1.63) — (1.65) by

pr=my eL=Pr-gAr. (1.69)
pe=myr2—9=’%—qu, (1.70)

p.=my ”Z=Pz-qu. (1.71)



Equations of motion in cylindrical coordinates are

dr _ Pr do_ Pé dz _ Pz
da my”’ da myr dr my
d pr

(1.81)

(1.84)

(1.85)

(1.86)



Averaged Particle Trajectories

Field gradient G(7), particle trajectory x(z), and beam envelope R,(7)
as functions of longitudinal coordinate 7 = z/L in an alternating-
gradient focusing structure.



Consider one-dimensional particle motion in the combination of constant field

U(x) and fast oscillating field
f(x,t)= f(x)coswt + f,(x)sin t

Fast oscillations means that frequency @ >> 1 , Where T'is the time period for

particle motion in the constant field U only. Equation of particle motion:

d’x v + f. coswt + f, sinwt
m =—
a*>  dx ’

Let us express expected solution is a combination of slow variable X(?) and fast

oscillation &) :
x(t) = X(1)+&(1)

where  |E(0)| << | X (2)|

dU
Fields can be expressed as: Ux)=U(X)+ d_X S

f(x)=f(X)+j—§§



Substitution of the expected solution into equation of motion gives:

. - dU _dU
mX+m§:—dX—§d .

+ f(X, t)+§

For fast oscillating term: m’g’ = f(X,1)

After integration: E= f
2
ma
Let us average all terms over time, where averaging means mean value over period 7' = %r

<gt)> = % j o(t)dt

<mX>+<m§>——<d—U df

dX

Average value of () at the period of T :%r is zero, while function X(?) is changing slowly

during that time. Taking into account that
<X>=X <&E>=0



dU df dU 1 df
mX=-—+<—>=-—"-——-<f—>
dX dX dX mw dX
d 1 df
- Ll d
Taking into account that dX )¢
df’ 1 df? dff
AL ar
dX 2 dX dX
. . . . dU,
equation for slow particle motion is mX = — y
X
i C g U =U 1 2 2
where effective potential 1s g =UT Ay’ (i +1)



3D Averaging Method

Equations of motion: F=LIEF) - aUEF)]
m or

Fast oscillating field: EC, f)=kZ=1 Ey (r) sin wt

Particle trajectory (slow + fast  7(p) =E(t) + E@

components): .
_ = g oU(R)
Equation for slow R=—-——73
m  oOF
component _
. . . _ = E>(R)
Effective potential: Uy (R)=U(R) + 412 —
mi—

Fast component: mg 2



Let us apply averaging method to quadrupole channel. Single particle equations of
motion in quadrupole channel is

d?x = 9 G(y) x
dr2 ™My ©

where z = fct, focusing gradient G(z) = G,(z) for electrostatic quadrupole, and
G(z) = PcG,en(z) for magnetic quadrupole.
@ O] (] (0o (/] (0] (F£] 0 (A @O [F] @] R

SINUSOIDAL
TRAJECTORY

Ao

REAL

BEAM TRAJECTORY

»- e
/ N\ / A}

FDEDEHLDGEGOEDE © R
4———-—-L—————»

(Solid line) typical particle trajectory and (dashed line) the
sine approximation to that trajectory.




Consider periodic FD structure of quadrupole lenses with length of D = L/2, and field
gradient in each lens G,. In FD structure, focusing-defocusing lenses follow each other

without any gap. Let us expand focusing function G(z) in Fourier series:

4G . mz. 1 . 3Bmz. 1 . Srmz
G(z)= % [sin(—)+ —sin(—— )+ —sim(——) +...
(2) [sin( D) 3 ( 5 ) 5 ( 5 )+ ..
x direction | i . .
| | RIVA N\ A
: D F D . 7
90
y direction | | ;5@ 0
| i ]
\ ° | ] i i ° \ - v v 7
a Focusing celt >l i 1 i sz ) i

FD focusing structure and approximation of field gradient.



: d’x 4G, . mpc
Let us keep only first term mEE = x q 4G, sin( B f)
dt Yy @ D
d’x
Equation of particle motion in fast oscillating field m— = f,(x)sinwt
dt
2
can be substituted by slow motion in an effective potentialy; — h — 1 4 4G,D ) X
T Amew® 4m 'y w’fc
| o . du,
Equation for slow particle motion mX = —
dX
d’X 1 q4G,D
— ﬁ 0 )2 X

> 2m’ y 1 Be

d*X
dt*

+QX=0

Let us introduce new variable T=—"— where for FD structure L =2D



Equation of motion in new variables

Frequency of smoothed transverse oscillations
in the scale of the period of focusing structure

Taking into account, that 442 _ 1 and G, =pcG

> 3

magmr

2

o

X 2
+ U X=0
d’L‘2 ¢

_q 4\/§G0D2

ym 7 (Bc)’

frequency can be written as

_ 1 quagnD
° J3 myBe
Compare with matrix method for FODO period with L =2D :
L [ 4D 4GupD’ _ 1 4Gl
Ho 2D 3L myBc J3 myfe
q 4G, ”ﬁc nfc
Equation for fast component: &=-— > f=x= =—
ma D
. 4G,D* .
Solution for fast component: - x4 ————sin( pe 1)
ym () D

Amplitude of small fast oscillations in FD structure:

For typical values of u,=7/3...7/2 in transport channels, this ratio is of the order of Enar | X =

0.2...0.3.




Beam Emittance

In the phase plane, the beam is usually approximated by an ellipse. The area of
ellipse with semi-axes M and N is simply

S=nmMN

The general ellipse equation can be written as
yx2+2ax x+ B x%=>3

parameters o, [3, yare called Twiss parameters

Eﬂipse of the beam at phase plane of

transverse oscillations.



Root-mean-square (rms) beam emittance

G o XP-PROJ] E =  750.0 Kev
> b*g = 0.04000
Polarity: +
Scale: 10 uA
) File:
g /epics/1 cs(data/em/
n'. X-W console/emitdata. 22549
x
2.51 cm by 37.4 mr X-AXIS| .~
Run:22549 Stn: TDEMQ1-H
14:04:39 19-May-2010
Beam: H- Meas, Norm
E(total)= 1.881, 0.075 pi
E(edge) = 1.737 pi
ECrmey’ = 0281, 0.011 pi
tht‘rms: 6.69
: Alpha = -1.438
\ Beta = 0.266
74 i 4*E(rms)= 1.126 pi
7 C = -0.083 cm
=~ \ CP = -0.?97 mr
4 X Sigma = 0.2735 cm
=’/ L XP Sigma= 1.8022 mr
PV N Thol = 2.0 %, 6 cnts
=— SR
= eam resh=
Total Beam = 41598
= Cletr Pos= 1320 1921
Jaw Pos 1338 1930

Realistic beam distribution in phase space.



Consider a beam with a distribution function f(x, P, #) and let g (x, P, f) be an arbitrary

function of position, momentum, and time. The average value of the function g (x, P, 1) is
defined as:

’g@Pﬁﬂiﬂﬂﬁﬁ

<g>="

”f@Rﬂﬁ&

The integral in the denominator is just the total number of particles. Now, let us consider
some examples of physically significant average values. For g(%, P, t)=x, the average value

<»:III x f(x, P, 1) dx dP
N

gives the center of gravity of the beam in the x-direction.



Analogously, for g(x, ;, 1) = x*, the average value of x° is defined as

<x?>=1 x2 f(x, P, 1) dx dP

N J-o -
and 1s called the mean-square value of x. The correlation between variables x and P, is given
by the following expression: taking g(;, P,t)=x Py

o OO

<)ch>=L
N._oo

o OO

x Py f(x, P, t) dx dP

o =00

An expression of the form <xmtym ;3 ppisple> is referred to as the n™ order moment,
My, ns. ns, na, ns, ne Of the distribution function, where n = n; + ny+ n3+ ny + ns + ng:

> OO0 * OO0

<x" yn2 zn3 pit4 pits phes — 1 I I

. ’ dx dy dz dPy. dPy dP-

J -0 J-00

xMym2m3plapisplio £ (x, y, z, Px, Py, P, 1).



The following combination of second moments of distribution function is called
the root-mean-square beam emittance:

2 2
dpms = \/ <xI><xX>-<x 1>

and the normalized root-mean-square beam emittance is given by

Erms :mlcV <x2> <P,%> - <xP>?2

By the reasons discussed below, beam emittance 1s adopted as the value, four times
large than rms emittance

2 P
5=4 V<x2> <x?> - <x x'>



Consider the rms beam emittance concept in more detail. The density of particles in
phase space, normalized by the total number of particles A, is described by a distribution
function p, (x, x'), which is an integral of the beam distribution function over the

remaining variables:

. OO . OO . OO . OO

Px (X, x') = ;]I I ’ ’ f(X, X', y, yv, Z, Z‘) dy dy dZ dZ‘

It is convenient to consider distributions in phase space with elliptical symmetry:
Py (X, x) = py (Vx X% +2 0xx X' + By x'2)
Such distributions have particle densities, py (x, x'), that are constant along concentric

ellipses
2

12 =7y X242 o,x X' + Py X
but are different from ellipse to ellipse, so one can write py (x, x') = px (). Namely,
equation this describes a family of similar ellipses, which differ from each other by
their areas. Using transformation

4
o= o =-
g T
the ellipse equation can be rewritten as
2 = (0 - X0y) + (5
Ox



Let us calculate rms beam parameters and rms beam emittance for an arbitrary function
py (x, x"). We begin by changing variables:

A =ry cos@

{ 5
‘ .
XOy - X'Oy =1y SINQ

Now we rewrite it as

{ X=I’xGxCOS§D

' .
X' =1y OypcosQ - 1 sing
X

The absolute value of the Jacobian of transformation gives us the volume
transformation factor of the phase space element:

ox  Ox
ory AQ
dx dx' = (abs Ydry do=rydry do
dx' dx'
ory JQ




Then, the rms values are:

2w [
<x?>= I (ry GxCOSQD)sz(”)%) rydrx do

JOo

. 27-[ * 00
2 ! Ix . 2 2
<x'">= (ryOxcos @ - =X sin Q) Py (re) ry dry d@
Ox
o JO
. 2% -~ 00
<xx'>= ’ ¥y Oy COSQ (Tx G)'Ccosq) - c:x singo)px(r%) ry dryd@
X
JO JO

Let us take into account previously introduced expressions:

o= 1B
o' =. O
B



Calculation of integrals over @ gives:

* OO

<x?>=7 f 12 Pr(rg) dry

Jo

* OO

| ”)?Px(”%)d”x
Jo

2o _
<X'> =7y,

* OO

Jo

Therefore, beam emittance 1s given by

* OO

3y =4r ’")? px(”%) dry




Twiss parameters
!
o =-4 <X x>
Ix

Rms beam ellipse

2 <x”>
ﬁx=4<§> yx:4—
X

(4 <x’2>)x2 ) (4 <x)é>) X X+ (4 <x2>)x|2 =3,
x dx dx

Beam distribution and rms ellipse.



Example: Uniformly populated ellipse

Consider an example, where the beam ellipse has an area o f 4., and is uniformly populated
by particles. Particle density is constant inside the ellipse 12 = A,

(r2)= 1
Px(Tx A,

Calculation of the rms value, <x?>, gives:

<x?> =7 By 2 Py(rd) dry = —Zﬁx

J0

21073

11073

-1-1073

21 0—3

1 L L
-1.0 0.0 1.0
X

Uniformly populated ellipse at phase plane (x, x’).



The beam boundary is given by
Rx =\ Ax ﬁx

Radius of the beam represented as a uniformly populated ellipse 1s equal to twice the
rms beam size:

R=2V<x*>

Rms beam emittance:
VA,

Ax-O

Therefore, the area of an ellipse, uniformly populated by particles, coincides with the 4 x
rms beam emittance. This explains the choice of the coefficient 4 in the definition of
rms beam emittance.



Different Particle Distributions in Phase Space

Consider quadratic from of 4-dimensional phase space variables:
. ! ) X 2 ' N Y \2
I=(0cx-0x)+(—)+(0)y—-0y)+()
o o,

Consider different distributions f = f{1) in phase space which depend on
quadratic form:

2
Water Bag: T2F2 I<F,
f=t 0, I>F,
6 1

Parabolic: S = mF? (I_FO)
Gaussian f : xp( ! )
. = exp(——

7E

Normalization: T T T ]i fdxdx'dydy'=1

—00 —00 —00 —00



Characteristics of Beam Distributions

Distribution Definition Distribution in Space charge Space charge field
p(x,x',y,y") = p(I) phase space density
I=r+r? p(x,x)=p(r;)
2=y X’ +2a xx'+ B x"
ry =7,y +2a,yy'+ B,y"
KV 1 1 I I
’F, T3, nR*Bc 27e R’ P
Water Ba 2 2 )
¢ 5. I<F, (1—3’—) Y_a-2r 2 -
n°F; 3>, 3nR*Bc 3R 3me Pc R 3R
Parabolic 6 I 3 r2 31 3 r r rt
2 2( -—) (1- =) i (- z)2 s A=o—+ 4
n'F; F 213, 23, 2TR*Bc” 2R 4me Bc R 2R" 12R
Gaussian 1 I 2 r2 2] 2
exp(—— ——exp(—2 =+ exp(—2 1—exp(—2—
n’F? P F ) R p( x) TR’ Bc p( 2) 271'80ﬂcr[ p( R? )




Projection of distributions on phase plane

Prx (xx') = ’ fx,x',y,y) dydy
: ' : “oyy=T
Let us change the variables (¥, ¥ )for new variables 7T,y Oyy yyy cos y

<~ =T sin
Oy v

Phase space element dy dy’ is transformed as

dy 9y
dydy =T OV lardy=Tdrdy
Wy oy
oT oy
The quadratic form is I=r2+ T2

. . . ‘ ‘ 2 2
where the following notation is used: 77 = (0.x' + 0YX)” + (?) :
X

With new variables, the projection on phase space is

e

o, =m| fe2+T?dlr?*

J O



2 2
s [=r T <K,

Water Bag distribution F={ Tr,

0, I>F,
1s restricted by surface P2 +T2=F,. T =F, r2
. T12 ,
' -2 2_ 2 (q_If
Projection of Water Bag distribution on (X,X) Pr (X, X) = - dr —-— (1 Fo)
o JO

For Parabolic distribution, projection on x, x' plane is

'T12 5

2 2 2

pe(x, =0 | q-mErITygrao 3 (o
nFOz,O FO EFO FO

For Gaussian distribution projection on x, x' plane is

* CO

2 72 >
exp (- @) dr?=—1_ exp( 1)

xx,X::#
p( ) F() 7TF() F().

nF?

JOo
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Rms emittance of distributions with elliptical symmetry

. _ )
Four rms beam emittance X =4n 1i Py (ry) dr

Water bag distribution, 1s limited by the surface
r¢ +ri¢ < Fos or
r¢<Fo-r¢

Maximum value of ;2 is achieved when ry2 =(0 and vise versa

Therefore, projection of water bag distribution, is limited by
rv. max = Fo. Substituion of expressions for p«(r?), and integration gives:

VF, ,
=3 (- dr,=2F,,
3

o o



Analogously, for parabolic distribution

VF,

22
P (1-18y dr =Le

[

=12

o

b

JO

For Gaussian distribution

* GO

2
"XYdr =2F,,

o

»=4 e exp (-

o

1O



Fraction of particles residing within a specific emittance

The distribution p(r7) is the particle density in the phase plane (x, x),
divided by the total number of particles, N. Fraction of particles

77: N(3X)/No

within the emittance 3 is an integral of p () over an ellipse area of 3

P rydry dp=m | py(f) dry

JO JO

27 ’\/; i)

pe(d) dxdx = I

JO



Distributions on phase plane are:

2
Water bag px(r,% =4 (1 -;ri)
37T 3 3

2

2
Parabolic  pyrd)=—>—(1-1%)
27T 2 3

2
Gaussian  py(r2) =2 exp( -2 15)
TT Oy Iy

Fraction of particles within phase space area is:

Water bag NG _4 ) (1-123)
N, 3 3 3 3

N_@zi(i)[l_Li+L(i)2]
Ny, 2 3 23 12 3

Parabolic

Gaussian NG _. exp(-22)
NO 3)(



N/N_,

ele,

Fraction of particles versus phase space area for different
particle distributions.



Self-Consistent Particle Dynamics

Example of self-consistent dynamics: two - body problem

Every point mass attracts every single other point mass by a force pointing along the line intersecting both points.
The force is directly proportional to the product of the two masses and inversely proportional to the square of the

distance between the point masses:-
nmqms
F=dG

2
where:

T

Fis the magnitude of the gravitational force between the two point masses,
Gis the gravitational constant,

m; is the mass of the first point mass,

m5 is the mass of the second point mass, and

ris the distance between the two point masses.

In classical mechanics, the two-body problem is to determine the motion of two point particles that interact only
with each other.



Self-Consistent Approach to N — Particle Dynamics

Solution to the equations of motion of the particles, together with the equations for the
electromagnetic field which they create.

Evolution of charged particles interacting through long-range (Coulomb) forces is
determined by Viasov’s equation

Solution of self-consistent problem: the phase space density, as a constant of motion, can
be expressed as a function of other constants of motion /;, 1, ....

f=fUU, I, ....)

This equation automatically obeys Vlasov's equation

d_ dh I dh,  —_y
d o d oJobL dt

because of vanishing derivatives, dI; /dt = 0. Distribution function determined in this
way, 1s then substituted to Maxwell’s equation to find self-consistent field created by the
beam together with the external electromagnetic field.



Field created by the beam is described by Maxwell's equations:

v.E=£
<0
V-B=0
oB
I x BE=———
M ot
OE
V Hod + HoSo By
space charge density p=q ’ ’ fdP dP, dP,
beam current density Jj=q l ’ T/ fdPx dPy dP,

g, = 8.85x 10" F/m is the electric permittivity
U, = 41 10”7 H/m is the magnetic permeability of free space



A A
; >
| Pe
X i «x
|// »_ __________________ >
Z 4

Consider system of coordinates, which moves with the average beam velocity 5. We will
denote all values in this frame by prime symbol. Potentials [/ X are connected with that in

laboratory system, U, A, by Lorentz transformation

Ig:ﬂ4+ﬁU5
C
U=y (U + BcA))

Ay =A,, Ay=A,



In the moving system of coordinates, particles are static, therefore, vector potential of the

beam equals to zero, Xb =0. According to Lorentz transformations, components of vector

potential of the beam are converted into laboratory system of coordinates as follow

H

In a particle beam, the vector potential and the scalar potential are related via the

expression A, =;Z /c 2Up, therefore, it is sufficient to only solve the equation for the
scalar potential. The unknown distribution function of the beam is then found by
substituting equation for distribution function into the field equation and solving it.
For example, for beam transport, equation for unknown space charge potential is

o« OO

AUy=-1L | fi,b,..)dP

o

J =00

Equation for unknown potential of the beam together with Vlasov’s equation
for beam distribution function constitute self-consistent system of equations
describing beam evolution in the field created by the beam itself.



Applicability of Vlasov's equation to particle dynamics

Vlasov's equation describes behavior of non-interactive particles in given external field.
Charged particles within the beam interact between themselves:

(1) interaction of large number of particles resulted in smoothed collective charge
density and current density distribution

(11) individual particle - particle collisions, when particles approach to each other

at the distance, much smaller than the average distance between particles.

First type of interaction results in generation of smoothed electromagnetic field,
which, being added to the field of external sources, act at the beam as an external field.
The second type of interaction has a meaning of particle collisions resulting in
appearance of additional fluctuating electromagnetic fields.

Using Vlasov's eqauiton, we formally expand it to dynamics of interacting charged
particles, assuming that the total electromagnetic filed of the structure (U, A)

U = Uext + Ub

A=A+ Ap
Uext, Aext, external field

Us, Ap field created by the beam

and neglecting individual particle-particle interactions.



Vlasov's equation treats collisionless plasma, where individual particle-particle
interactions are negligible in comparison with the collective space charge field

Quantative treatment of validity of collisionless approximation dynamics to particle
dynamics:

n - particle density within the beam
r - the average distance between particles.

nro =1 ,or r=n13

Individual particle-particle collisions are neglected, when kinetic energy of thermal
particle motion within the beam is much larger than potential energy of Coulomb

particle-particle interaction:

2
my; >> q

2 4e,r

2

Vv, 1s the root-mean square velocity of chaotic particle motion within the beam:

mv? _ kT
2 2

T 1s the “temperature” of chaotic particle motion
k=8.617342x10° eV K' =1.3806504 x 10> J K" is the Boltsman's constant.




kT
Radius of Debye shielding in plasma: Ap=, | Lottt zk
q n

Combining all equation one gets:

r<<V2m Ap or Np>>1, or N,=Q2n)"ni,

where Nj 1s the number of particles within Debye sphere.

Individual particle-particle collisions can be neglected if number of particles w ithin
Debye sphere 1s much larger than unity (or average distance between particles 1s much

smaller than Ap).

Particle density within uniformly charged cylindrical beam of radius R, with current /,
propagating with longitudinal velocity Bc, is

l
7t q Bc R

n=




