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Maxwell’s Equations 
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Fields in Focusing Channels 

Focusing magnets used in acceleratior facilities:
 dipole, quadrupole, sextupole. 
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Magnetostatic and Electrostatic Fields 
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Normal and Skew Magnets 
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Field Components 
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Expressions for Multipole Fields 
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Quadrupole Pole Shapes and Higher Order Harmonics 
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Hamiltonian dynamics 

x, y, z   position in real space 
Px, Py, Pz   components of canonical momentum 
Ax, Ay, Az       components of the vector – potential 
U(x,y,z)         scalar potential of the electromagnetic field 

Hamiltonian of charged particle with charge q and mass m  
 

H = c m2c 2 + (Px - qAx)
2 + (Py - qAy)

2 + (Pz - qAz)
2  + q U 
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Liouville’s	
  Theorem	
  

Conserva)on	
  of	
  phase	
  space	
  volume	
  occupied	
  by	
  par)cles	
  in	
  Hamiltonian	
  systems.	
  	
  

df
dt

 = ∂f
∂t

 + ∂f
∂x

 dx
dt

 + ∂f

∂P
 dP
dt

 = 0
 

Liouville’s	
  theorem:	
  if	
  the	
  mo)on	
  of	
  a	
  system	
  of	
  mechanical	
  par)cles	
  obeys	
  Hamilton’s
	
  equa)ons,	
  then	
  phase	
  space	
  density	
  remains	
  constant	
  along	
  phase	
  space	
  trajectories	
  and
	
  phase	
  space	
  volume	
  occupied	
  by	
  the	
  par)cles	
  is	
  invariant	
  (Liouville's	
  Equa)on):	
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Hamiltonian equations of motion 
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Canonical momentum P = (Px, Py, Pz) is related to mechanical momentum 
 p = (px, py, pz) via the expression: 
 

 p = P - q A                                                   (1.30) 

Note that the denominator in Eq.(1.29) is actually mc  where the relativistic 
factor   is: 

γ  = 1 + 
( Px  - q Ax)

2 + ( Py  - q Ay)
2 + ( Pz - q Az)

2

m 2c2  .      (1.31) 
 
Analogously, the equations for the rates of change of the y- and z - positions 
of the particle can be derived. So, the set of equations for the rate of change 
of the particle’s position is 
 

dx
dt

 = (Px  - q Ax )
 mγ ,       

dy
dt

 = 
(Py - q Ay)

 mγ  ,       dz
dt

 = (Pz - q Az)
 mγ  .           (1.32) 
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Taking partial derivatives of the Hamiltonian with respect to the particle’s 

positions, the equations for t he rate of change of the canonical momentum vector 
are: 

dPx

dt
 = q

mγ
 [(Px - qAx) ∂Ax

∂x
 + (Py - qAy) 

∂Ay

∂x
 + (Pz - qAz) ∂Az

∂x
] - q ∂U

∂x  
,             (1.33) 

 
dPy

dt
 = 

q
mγ

 [(Px - qAx) ∂Ax

∂y
 + (Py - qAy) 

∂Ay

∂y
 + (Pz - qAz) ∂Az

∂y
] - q 

∂U
∂y                 

(1.34) 
 

dPz

dt
 = 

q
mγ

 [(Px - qAx) ∂Ax

∂z
 + (Py - qAy) 

∂Ay

∂z
 + (Pz - qAz) ∂Az

∂z
] - q ∂U

∂z  
.                (1.35) 
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dx
dt =

p
mγ  

dp
dt = q{


E + [v


B]}

or 
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Canonical Transformations 

In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates (q,p,t) →
 (Q,P,t) that preserves the form of Hamilton's equations. Hamiltonian equations of motions are!

dqi
dt
= ∂H
∂pi

dpi
dt
=- ∂H
∂qi

New variables also obey canonical equations of motion  

dQi
dt

 = ∂H'

∂Pi
,              dPi

dt
 = - ∂H'

∂Qi
                                               (5.1) 

where H' is a new Hamiltonian. New v ariables can be considered as f unctions of old 
variables and time Qi = Qi (pi,qi,t) , Pi = Pi (pi,qi,t) . Transformations from old variables 
to new variables, which keep ca nonical structure of the equation of motion (5.1) are 
called canonical transformations. 
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From classical mechanics it follows, that both new and old variables obey principle of 
least action : 

δ ( pi dqi  - Hdt∑  ) = 0                                                    (5.2) 

δ ( Pi dQi  - H' dt∑  ) = 0                                                  (5.3) 
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Type 1 generating function 

To be a total differential, equation (5.5) has to have the following form: 

dF = ∂F
∂qi

 dqi ∑  + ∂F
∂Qi

 dQi ∑  + ∂F
∂t  dt                                        (5.6) 

From comparison of equations (5.5) and (5.6) it is clear, that the variables and the new 
Hamiltonian have to obey the following equatons: 

pi = ∂F
∂qi

 ,                  Pi = - ∂F
∂Qi

              (H' - H) dt = ∂F
∂t  dt                   (5.7) 

Therefore new Hamiltonian is connected with the old one via relationship  

H' = H + ∂F
∂t                                                             (5.8) 

Equations (5.7) provide canonical transformation from old variables to new variables, if 
generating function depends on old and new coordinates: 

  pi = ∂F1
∂qi

          Pi = - ∂F1
∂Qi

           F1 = F1 (q, Q, t)                                        (5.9) 

 21 
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Type 3 generating function 

To find third canonical transformation, let us add and subtract qi dpi ∑  from eq. (5.5): 

dF = pi dqi ∑  - Pi dQi ∑  + qi dpi ∑  - qi dpi ∑  + (H' - H) dt                      (5.16) 

Introducing generating function of the 3rd type 

F3 = F - pi qi∑ ,              dF3 = dF - pi dqi∑  - qi dpi∑                            (5.17) 

the eqution for total differential of the generating function is as follow: 

dF3 =  - Pi dQi ∑    - qi dpi ∑  + (H' - H) dt                                       (5.18) 

Last equation forms the canonical transformation of the 3rd type: 

Pi = - ∂F3
∂Qi

         qi = - ∂F3
∂pi

         F3 = F3 (Q, p, t)                               (5.19) 
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Type 4 generating function 

Forth canonical transformation is attained via adding and subtracting of the Qi dPi ∑  
from Eq. (5.5): 

dF = pi dqi ∑  - Pi dQi ∑  + qi dpi ∑  - qi dpi ∑  + Qi dPi ∑  - Qi dPi ∑ + (H' - H) dt  

Generating function of the 4th ype is defined as follow: 

F4 = F - pi qi ∑  + Pi Qi ∑                                                     (5.22) 

It results in the eqution for total differential of the generating function: 

dF4 =    - qi dpi ∑  + Qi dPi ∑  + (H' - H) dt                                   (5.23) 

Canonical transformation of the 4th type are descibed by equations: 

qi = - ∂F4
∂pi

        Qi =  ∂F4
∂Pi

         F4 = F4 (p, P, t)                                     (5.24) 
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Example: Canonical transformation from Cartesian to cylindrical coordinates 

Very often, particle dynamics in accelerators is described in a cylindrical 
system of coordinates (r, , z), because of axial symmetry inherent to 
accelerating structures.  
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Inverse transformation of Eqs. (1.49) (1.50), (1.52), (1.53) gives 
 

Px = Pr cosθ - Pθ
r

 sinθ ,                                   (1.56) 
 

Py = Pr sinθ + Pθ
r

 cosθ ,                                   (1.57) 
 

Pz  = Pz .                                                     (1.51) 
 

Ax = Ar cosθ - Aθ sinθ ,                                  (1.58) 
 

Ay = Ar sinθ + Aθ cosθ .                        (1.59) 
 

Az  = Az                                                 (1.54) 
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After a canonical transformation, the new Hamiltonian is expressed in 
terms of the old one as 

 

 K = H + ∂F3
∂t  .                                          (1.55) 

 
Since the generating function, Eq. (1.45), does not depend on time 
explicitly, the new Hamiltonian equals the old one, K = H : 

 

H = c (mc)2 + (Pθ
r

 - qAθ)2 + (Pr - qAr)2 + (Pz - qAz)2  + qU .              (1.60) 
 

Hamilton’s equations in cylindrical coordinates read 
 

d r
dt

 = ∂H
∂Pr

,              dθdt
 = ∂H
∂Pθ

,                dz
dt

 = ∂H
∂Pz

 ,                (1.61) 
 

dPr

dt
 = - ∂H

∂r ,           
dPθ

dt
 = - ∂H

∂θ  ,         
dPz

dt
 = - ∂H

∂z  .                 (1.62) 
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Calculating the partial derivatives, Eqs. (1.61), the equations for 
particle position are 
 

d r
dt

 = Pr - qAr
mγ  ,                           (1.63) 

 
dθ
dt

 = 1
mγ  r

 (Pθ
r

 - qAθ) ,               (1.64) 
 

 dz
dt

 = Pz - qAz
mγ  ,                         (1.65) 
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Field gradient G( ), particle trajectory x( ), and beam envelope Rx( ) 
as functions of longitudinal coordinate  = z/L in an alternating-
gradient focusing structure. 

Averaged	
  Par3cle	
  Trajectories	
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m d 2x
dt 2

= −
dU
dx

+ f1 cosωt + f2 sinωt

Consider one-dimensional particle motion in the combination of constant field  

U(x) and fast oscillating field   

f (x,t) = f1(x)cosωt + f2 (x)sinωt

Fast oscillations means that frequency                            , where T is the time period for 

 particle motion in the constant field U only. Equation of particle motion: 

Let us express expected solution is a combination of slow variable X(t) and fast
 oscillation       : 

x(t) = X(t)+ξ(t)
where  ξ(t) << X(t)

Fields can be expressed as: U(x) =U(X) + dU
dX

ξ

f (x) = f (X) + df
dX

ξ

ξ(t)

ω >> 1T
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Average value of         at the period of                                  is zero, while function X(t) is changing slowly  
during that time. Taking into account that  

Substitution of the expected solution into equation of motion gives: 

 
m X +mξ = −

dU
dX

− ξ d
2U
dX 2 + f (X,t) + ξ df

dX

For fast oscillating term:  m
ξ = f (X,t)

After integration: ξ = −
f

mω 2

Let us average all terms over time, where averaging means mean value over period  

 
< m X > + < mξ >= − <

dU
dX

> − < ξ d
2U
dX 2 > + < f (X,t) > + < ξ df

dX
>

< g(t) > = 1
T

g(
0

T

∫ t)dt

 < X > ≈ X  <
ξ >= 0

T = 2πω

ξ(t) T = 2πω
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mX = −

dU
dX
 + < ξ

df
dX

> = −
dU
dX

−
1

mω 2 < f
df
dX

>

Taking into account that  < f
df
dX

>=
1
2
<
df 2

dX
>

<
df 2

dX
> =

1
2
(
df1

2

dX
+
df2

2

dX
)

 
mX = −

dUeff

dX
equation for slow particle motion is 

Ueff =U +
1

4mω 2 ( f1
2 + f2

2 )where effective potential is 
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3D	
  Averaging	
  Method	
  

Equa)ons	
  of	
  mo)on:	
  

Fast	
  oscilla)ng	
  field:	
  

 


r = q

m
[

E(r , t)  −  ∂U(

r )
∂r

]

Par)cle	
  trajectory	
  (slow	
  +	
  fast
	
  components):	
  

 


R = − q

m
∂Ueff (


R)

∂r

 
Ueff (


R) =U(


R) +  q

4m


Ek
2 (

R)

ω k
2

k=1

∞

∑

Equa)on	
  for	
  slow
	
  component	
  

Effec)ve	
  poten)al:	
  

Fast	
  component:	
  
35 



(Solid line) typical particle trajectory and (dashed line) the
 sine approximation to that trajectory.	
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G(z) = 4Go

π
[sin(π z

D
)+ 1
3
sin(3π z

D
)+ 1
5
sin(5π z

D
)+ ...]

FD focusing structure and approximation of field gradient.	
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Let us keep only first term:	
  

 
m X = −

dUeff

dX
Equation for slow particle motion 

m d 2x
dt 2

= x q
γ
4Go

π
sin(πβc

D
t)

Equation of particle motion in fast oscillating field 

can be substituted by slow motion in an effective potential	
  

d 2X
dt 2

= − 1
2m2 (

q
γ
4GoD
π 2βc

)2 X

d 2X
dt 2

+Ωr
2X = 0

Let us introduce new variable	
  	
   τ = tβc
L

where for FD structure	
  	
   L = 2D

m d 2x
dt 2

= f1(x)sinωt

Ueff =
f1
2

4mω 2 =
1
4m

(q
γ
4GoD
π 2βc

)2 X 2
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d 2X
dτ 2

+ µo
2X = 0

µo =
q
γm

4 2GoD
2

π 2 (βc)2

4 2
π 2 ≈ 1

3

Equation of motion in new variables	
  	
  

Frequency of smoothed transverse oscillations 
in the scale of the period of focusing structure	
  

Taking into account, that                       and                       ,   frequency can be written as 

f = x q
γ
4Go

π
sin(πβc

D
t)

ξ = −x q
γm

4GoD
2

π 3(βc)2
sin(πβc

D
t)

ξmax
X

= 4 3
π 3 µo

Solution for fast component: 

Amplitude of small fast oscillations in FD structure:   

ξ = −
f

mω 2

µo =
1
3
qGmagnD

2

mγβc

Equa)on	
  for	
  fast	
  component:	
   ω = πβc
D

Compare	
  with	
  matrix	
  method	
  for	
  FODO	
  period	
  with	
  L	
  =2D	
  :	
  

Go = βcGmagn

µo =
L
2D

1− 4
3
D
L
qGmagnD

2

mγβc
= 1

3
qGmagnD

2

mγβc
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Beam Emittance 

 
The general ellipse equation can be written as 
 

γ x 2 + 2 α x x' + β  x'2 = ∍  

parameters  are called Twiss parameters 

40 



Realistic beam distribution in phase space.  41 



 g(
x, 

P, t)= x

42 



An expression of the form <x n1 y n2 zn3 Px
n4 Py

n5 Pz
n6 > is r eferred to as the nth order moment, 

Mn1,  n2, n3,  n4, n5,  n6, of the distribution function, where n = n1 + n2+ n3+ n4 + n5 + n6: 
 

<x n1 y n2 z n3 Px
n4  Py

n5 Pz
n6> = 1

N
  
- ∞

∞

 
- ∞

∞

 
- ∞

∞

 
- ∞

∞

 
- ∞

∞

 
- ∞

∞

dx dy dz dPx dPy dPz

 
 

 x n1y n2zn3Px
n4Py

n5Pz
n6  f (x, y, z, Px, Py, Pz, t) .  

43 



The following combination of second moments of distribution function is called  
the root-mean-square beam emittance: 
 

∍rms  = <x2> <x'2> - <x x'>2  
 
and the normalized root-mean-square beam emittance is given by 
 

εrms  = 1mc <x2> <Px
2> - <xPx>2  

 
By the reasons discussed below, beam emittance is adopted as the value, four times 
large than rms emittance 
 

∍ = 4 <x 2> <x'2> - <x x'>2  
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Let us calculate rms beam parameters and rms beam emittance for an arbitrary function 
ρx (x, x'). We begin by changing variables: 

 

{  
 x
σx

 = rx cosϕ            

xσx'  - x'σx  = rx  sinϕ  
 
Now we rewrite it as  
 

{  x = rxσxcosϕ            

x' = rxσx' cosϕ - rx
σx

 sinϕ 

The absolute value of the Jacobian of transformation gives us the volume  
transformation factor of the phase space element: 
 

dx dx' = (abs 
 ∂x
∂rx

        ∂x
∂ϕ

 

 ∂x'
∂rx

        ∂x'
∂ϕ

 
 ) drx dϕ = rx  drx  dϕ 
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σ = β 

 
σ ' = - α

β  

 
βγ  - α 2 = 1 

Let us take into account previously introduced expressions: 
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Calculation of integrals over  gives: 
 

<x 2> = π  βx  
o

∞
rx3 ρx (rx2) drx  

 

<x'2> =πγ x  
o

∞
rx3ρx(rx2) drx  

 

<x x'> = - π  αx  
o

∞
rx3 ρx(rx2) drx

 
 

Therefore, beam emittance is given by 
 

∍x  = 4π   
o

∞
rx3 ρx(rx2) drx  

48 



Rms beam ellipse        ( 4 <x'2>
∍x

) x2 - 2 (4 <xx'>
∍x

) x x' + (4 <x2>
∍x

) x'2 = ∍x 

 

 
    Beam distribution and rms ellipse. 
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Consider an example, where the beam ellipse has an area o f Ax, and is uniformly populated 
by particles. Particle density is constant inside the ellipse rx2 = Ax: 
 

ρx (rx2) = 1
πAx

 
 

Calculation of the rms value, <x 2>, gives: 
 

<x2> = π  βx  
o

Ax

rx3  ρx(rx2) d rx  = Ax βx

4  

Uniformly populated ellipse at phase plane (x, x’).  

Example: Uniformly populated ellipse 
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The beam boundary is given by 
 

Rx = Ax βx 
 
Radius of the beam represented as a uniformly populated ellipse is equal to twice the 
rms beam size: 
 

R = 2 <x 2> 
 
Rms beam emittance: 

∍x = 4
Ax

  
o

Ax

rx3 drx = Ax 

Therefore, the area of an ellipse, uniformly populated by particles, coincides with the 4 x 
rms beam emittance. This explains the choice of the coefficient 4 in the definition of 
rms beam emittance. 
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Different Particle Distributions in Phase Space 

Consider quadratic from of 4-dimensional phase space variables: 

I = (σ xx
' −σ x

' x)2 + ( x
σ x

)2 + (σ yy
' −σ y

' y)2 + ( y
σ y

)2

Consider different distributions f = f(I) in phase space which depend on
 quadratic form: 

Water Bag: 
f = {

2
π 2Fo

2 ,   I ≤ Fo

0,    I > Fo

Parabolic: 

Gaussian: f = 1
π 2Fo

2 exp(−
I
Fo
)

f = 6
π 2Fo

2 (1−
I
Fo
)

−∞

∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

∞

∫ f dx dx 'dydy ' = 1Normalization: 
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Characteristics of Beam Distributions 



Projection of distributions on phase plane 

Let us change the variables            for new variables  

ρx (x,x') =  
-∞

∞
 

-∞

∞
 f (x, x', y, y') dy dy'

 

T ,ψ  σyy'- σy'y = T cos ψ     

 y
σy

 = T sin ψ  
(y, y' )
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For Parabolic distribution, projection on x, x' plane is 
 

ρx  (x, x') = 6 
π  Fo

2
  
0

T12

 (1 - rx2 + T 2

Fo
) dT2 = 3

πFo
 (1 - rx2

Fo
)
2
    

Water Bag distribution 

is restricted by surface rx2 + T1
2 = Fo ,      T1

2 = Fo - rx2 

ρx (x, x') = 2
πFo

2
  

o

T12

 dT 2 = 2
πFo

 (1 - rx2

Fo
)
 Projection of Water Bag distribution on   (x, x ' )

f = {

2
π 2Fo

2 ,   I = rx
2 +T 2  ≤ Fo

0,    I > Fo
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KV	
  

Water	
  Bag	
  

Parabolic	
  

Gaussian 

Particle distributions with equal values
 of        . 

εmax = 4εrms

εmax = 6εrms

εmax = 8εrms

εmax =∞

εrmsParticle distributions with equal values of        . 

KV 

Water Bag 

Parabolic 
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Four rms beam emittance ∍x = 4π  
o

∞
rx
3 ρx (rx

2) drx
 

Rms emittance of distributions with elliptical symmetry 
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Fraction of particles residing within a specific emittance 

N (∍)
No

 =   ρx(rx2)  dx dx '
  

o

2π
 

o

∍
ρx (rx2) rx  drx  dϕ = π   

o

∍
 ρx (rx2)  drx2 

=η =

59 



Distributions on phase plane are:  
 

Water bag   ρx(rx2) = 4
3π ∍x

 (1 - 2
3

 rx2

∍x
)
 

 

Parabolic     ρx(rx2) = 3
2π ∍x

 (1 - rx2

2 ∍x
)
2

 
 

Gaussian    ρx(rx2) = 2
π ∍x

 exp( - 2 rx2

∍x
)
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Fraction of particles versus phase space area for different
 particle distributions.  61 



Self-Consistent Particle Dynamics 

Example of self-consistent dynamics: two - body problem 

In classical mechanics, the two-body problem is to determine the motion of two point particles that interact only !
with each other. !
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Self-Consistent Approach to N – Particle Dynamics 

2. 63 
63 



Field created by the beam is described by Maxwell's equations: 

ρ = q  
- ∞

∞

 
- ∞

∞

f dPx dPy dPz

- ∞

∞

 
space charge density       

 j = q  
- ∞

∞

 
- ∞

∞

 
- ∞

∞

v f dPx dPy dPz
 

beam current density  

o = 8.85 x 10-12 F/m is the electric permittivity 
o = 4  10-7 H/m is the magnetic permeability of free space 

2. 64 
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Consider system of coordinates, which moves  with the average beam velocity . We will 

denote all values in this frame by prime symbol. Potentials U ' , A
'
 are connected with that in  

laboratory system, U, A, by Lorentz transformation 
 

     
 

U = γ  (U ' + β cAz
')      

 
Ax = Ax

' ,   Ay = Ay
'
           

 
 

Laboratory and moving systems of coordinates 

Az = γ (Az
' + β

c
U ')
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In the moving system of coordinates, particles are static, therefore, vector potential of the 

beam equals to zero, Ab
'
 = 0. According to Lorentz transformations, components of vector 

potential of the beam are converted into laboratory system of coordinates as follow 
 

Axb = 0 ,      Ayb = 0 ,  Azb = β Ub
c            

 
 

Equation for unknown potential of the beam together with Vlasov’s equation
 for beam distribution function constitute self-consistent system of equations
 describing beam evolution in the field created by the beam itself.  

66 



Vlasov's equation describes behavior of non-interactive particles in given external field.  
Charged particles within the beam interact between themselves: 
 (i) interaction of large number of particles resulted in smoothed collective charge  
density and current density distribution 
(ii) individual particle - particle collisions, when particles approach to each other 
 at the distance, much smaller than the average distance between particles.  
 
First type of interaction results in generation of smoothed electromagnetic field,  
which, being added to the field of external sources, act at the beam as an external field.  
The second type of interaction has a meaning of particle collisions resulting in  
appearance of additional fluctuating electromagnetic fields.  
 
Using Vlasov's eqauiton, we formally expand it to dynamics of interacting charged 
particles, assuming that the total electromagnetic filed of the structure (U, A) 
 

U = Uext + Ub 
 

A = Aext + Ab 
Uext, Aext, external field 
Ub, Ab field created by the beam  
 
and neglecting individual particle-particle interactions.  

Applicability of Vlasov's equation to particle dynamics 
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λD = εo kT
q2n  Radius of Debye shielding in plasma :  

Combining all equation one gets: 
 

r << 2π  λD      or           ND >> 1,          or    ND = (2π )3/2nλD
3  

 
where ND is the number of particles within Debye sphere.  
 
Individual particle-particle collisions can be neglected if number of particles w ithin 
Debye sphere is much larger than unity (or average distance between particles is much 
smaller than D).  
 
Particle density within uniformly charged cylindrical beam of radius R, with current I, 
propagating with longitudinal velocity c, is  
 

n = I
π q βc R2   
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