
Off-Momentum Effects and 

Longitudinal Motion in Rings 

Lecture 8 



Outline 

• Dispersion (Sections 2.5.4,5.4) 

• Momentum Compaction (Section 5.4) 

• Chromaticity (Section12.2) 

• Longitudinal dynamics in rings (Chapter 6) 

 



Equation of Motion 

• Go back to full equation of motion for x: 
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• We solved the simplest case, the homogeneous differential equation, 

with all terms on the r.h.s equal to zero 
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• And found the solution 
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• We will now look at the highest-order energy (momentum)-

dependent perturbation term: 

)(/)( 00

2

00 sxkx xx  
00

0

p

p

p

pp 







Equation of Motion 

• The general solution of the equation of motion is the sum of the two 
principal solutions of the homogeneous part, and a particular solution 
for the inhomogeneous part, where we call the particular solution D(s) 
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• The function D(s) is called the dispersion function 

• We can write this solution as the sum of two parts: 
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• From which we conclude the the particle motion is the sum of the 

betatron motion (x) plus a displacement due to the energy error (x) 
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sx• We can write the trajectory above in 

terms of a 3x3 matrix that includes the 

off-momentum term 



Examples of trajectories 

• No betatron motion: x=0:  x(s)=x=D(s) 

x=D(s) x 

s 

x'
=D'(s) 

• with betatron motion: 

x=x + x x 

s 

x‘=x'
+x'

 



Where Does Dispersion Come From? 

• Imagine a particle entering a sector bending magnet with an energy that 

is a little lower than the design energy:  
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Where Does Dispersion Come From? 
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• Use the transport matrix for a sector bending magnet to calculate the 

dispersion 

• Giving the 3x3 transport matrix for a sector bend: 



3x3 Transport Matrices for Drifts and 

Quadrupoles 
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• Dispersion is generated in bending magnets 

• Quadrupoles and drifts are not sources of dispersion, although they 

influence the dispersion function because the off-momentum trajectory 

is bent by quadrupoles  



Propagation of Dispersion 
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• Suppose we set the starting betatron amplitude and slope equal to 

zero, that is, make x=0. 
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• We can write the coordinate vector as  

• And dividing by  we have 

• This means that if we know the 3x3 transport matrices, and the starting 

dispersion functions, we can calculate the dispersion anywhere 

downstream 



Periodic Dispersion 

• What is the dispersion in a FODO lattice? 

• Construct a simple FODO lattice from this sequence 

½Q-Bend- ½Q ½Q-Bend-½ Q 

Where for simplicity the “Bend” has  << 1 
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• We look for a periodic solution to the dispersion function in a FODO, 
that is, a function (s) that repeats itself  

• With that constraint, the (s) must reach a point of maximum or 
minimum at a quadrupole, that is ' =0. 
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• Which gives with Lf /



Periodic Dispersion 

 /1 K

   

h(s) =
b(s)

2sinpn

b(s)

r(s)
cos np -j(s) +j(s)[ ]

s

s+L p

ò ds
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• Can solve the equation of motion: 

• To arrive at the solution for (s)  

• Finally, the rms beamsize at a given location has two components, one 
from the betatron motion of the collection of particles, and another from 
the finite energy spread in the beam:  
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• Likewise for the angular beam divergence  



Example 

• Suppose one location in a lattice has a 

horizontal beta-function = 20 meters, 

vertical beta-function = 10 meters, and 

peak dispersion = 8 meters with x= y = 1 

mm-mrad, and  = 0.0007,  

– calculate the horizontal and vertical rms 

beamsizes  

 



Achromaticity 

• Suppose we want to arrange the lattice so that D=D‘=0 at some 
particular location in the beamline 

• Having established D=D‘=0 at some location, the lattice has D=0 
everywhere downstream, up to the next bending magnet 

• Such a lattice, or section of lattice is termed achromatic 

• Start with the integral equation for D(s) 

  

s

sdsSsCsCsS
s

sD
0

~)~()()~()(
)~(

1
)(



sc

sc

IsCIsSsD

IsCIsSsD

)()()(

)()()(













s

s

s

c

sdsS
s

I

sdsC
s

I

0 0

0 0

0~)~(
)~(

1

0~)~(
)~(

1





• The dispersion and dispersion derivative can be written 

• In terms of the integrals 



Example: Achromatic Bend 

• The integrals can be made to vanish in a lattice segment with 360 
horizontal phase advance through a FODO section with Bends 
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Accelerator Lattices: SNS Accumulator Ring 

 



Path length and momentum compaction 
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• The path length is given by 

• The deviation from the ideal path length is 

• With the momentum compaction factor defined as  

• The travel time around the accelerator is 

• The momentum compaction is c and the transition-gamma is  

 /1



Path length and momentum compaction 

• Three cases:  

–  > t , c>0, and  increases with energy, revolution 
frequency decreases with energy 

–  < t , c<0, and  decreases with energy, revolution 
frequency increases with energy 

–  = t,,  =0, independent of energy.  Such a ring is 
called isochronous 

• This behaviour is a result of the fact that the dispersion 
function causes higher energy particles to follow an orbit 
with slightly larger radius than the ideal orbit 

• All electron rings operate above transition 

• Many proton/hadron synchrotrons must pass through 
transition as the beam is accelerated 
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Chromaticity 

• The focusing strength of a quadrupole is  
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• A beam particle with momentum error  sees a focusing strength slightly 

different from that of a particle at the design energy   
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• In addition to dispersion, we 

would also expect some effect 

to the weaked or strengthened 

quadrupole focusing seen by 

off-momentum particles   

 

• This is the particle-beam equivalent of the chromatic aberration from light 

optics, which arises from the dependence of the index of refraction of a glass 

lens on the wavelength of light. 

• Special optical materials can be made in a telescope to make the image 

achromatic 

 



Chromaticity 
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• Go back to the equations of motion for x and y 

• Plug in    xxxx yy 

• We arrive at the equations of motion for the betatron amplitude, 
neglecting terms proportional to 2 or x

2 or y
2 
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Dipole 

Quad 

Sext 

Modified focusing 
strength due to 
momentum error  

Additional focusing 
from displaced 
closed orbit in 
sextupoles due to  
dispersion  



Chromaticity 
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• In the last lecture we studied gradient errors.  This new term is just 
another type of gradient error, as we anticipated, which will modify the 
beta-functions and therefore also the betatron tunes of a circular 
accelerator 

• We calculated the betatron tune shift due to gradient errors: 

• With the gradient error (k-m), this gives 
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• In an accelerator without sextupoles, or with sextupoles turned off, the 
resulting chromaticity is that due solely to the slightly different focusing 
seen by off-energy particles.  This value of chromaticity is called the 
natural chromaticity, which always has a negative value! 



Why do we care? 

1. Non-zero chromaticity means that each 

particle’s tune depends on energy.  If there is 

a range in energies, there will be a range in 

tunes. 

• A beam with a large range in tunes, or tune-spread 

occupies a large area on the tune-plane.  This 

opens the possibility of a portion of the beam being 

placed on a resonance line. 

2. The value of the chromaticity, as it turns out, is 

an important variable that determines whether 

certain intensity-dependent motion is stable or 

unstable. 



How Sextupoles Work 

• The field of a sextupole, in the horizontal plane is this: 
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• The vertical field gradient is: 
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• Where the coordinates for off-momentum particles (y=0, x=) has been 

taken.  
• Therefore, the sextupole provides 

quadrupole focusing in the 

horizontal plane, with focusing 

strength proportional to  

– particles with higher momentum are 

focused in the horizontal plane, and 

– particles with lower momentum are 

defocusing in the horizontal plane.  

• This is exactly what is needed to counteract the dependence of 

quadrupole focusing on energy. 



Chromaticity Correction: Sextupole Magnets 

• We can use this feature of the sextupole field to correct the 
chromaticity, that is, make x = y = 0 
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• Sextupoles placed at locations with large dispersion are more 
effective.  We also need x >> y at one location and y >> x at 
another. 

  0
4

1
2221110  xxxx lmlm 




  0
4

1
2221110  yyyy lmlm 




• We need at least two sextupole magnets to simultaneously make both 
chromaticities zero.  Let’s place two sextupoles in the lattice, with 
strength m1, m2 and length l.   



Chromaticity  in FODO Cells 

• The natural chromaticity in one-half FODO cell becomes: 
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• So a FODO channel with 90 degrees phase advance/cell has natural 
chromaticity -1/ 
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• Giving for a full FODO cell: 



Longitudinal Motion in Rings: Phase Stability 

• The formulation of longitudinal motion in linacs holds also for rings. 

• The synchronous phase is set according to the need to accelerate, and 
according to the sign of the momentum compaction so that phase 
stability is achieved 
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Acceleration 
in linac on-energy 

low-energy 

high-energy 

>tr no accel, 
no energy loss 

<tr , no accel, 
no energy loss 

>tr with accel 
or energy loss 

<tr , with accel 
or energy loss 



Phase Stability 

• Electron storage rings and Synchrotrons:   /2<s< 

• Proton storage rings and synchrotrons below transition:  
0<s</2 

• Proton storage rings and synchrotrons above transition: 
 /2 <s< 

• Proton synchrotrons may start with  < tr,but since the 
energy increases, eventually  crosses the transition-
energy to reach  > tr 

• This is called “transition-crossing”.  During this event, 
the synchronous phase of the RF system must jump by 
180 so that the higher energy beam remains phase-
stable.   

• Proton accelerators often have a “gamma-t 
jump”system consisting of a set of pulsed-quadrupole 
magnets that momentarily varies the momentum 
compaction by perturbing the dispersion function so that 
the lattice tr is pushed below the proton . 
 



Longitudinal Equation of Motion: Small 

Oscillations 
• Same analysis that we followed for the linac case can be repeated for 

the circular case 

• Results in the equation of motion for the particle phase: 

02  

• With an oscillation frequency given by: 
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• Where  
– h is the harmonic number, defined by  

 

– The particle’s energy gain in one ring revolution is: 

revRF hff 

sVe sinˆ
0

• The oscillation frequency is called the synchrotron frequency, and 
the ratio of synchrotron frequency to revolution frequency is the 
synchrotron tune 
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Longitudinal Motion 

• This should equal the result we obtained                                                 
previously for a linac: 

 

• We can see that these two are equal by noting that,  

– The convention for linacs is 

– Whereas that for rings is  

 

–  therefore, s
ring = s

linac + /2, so  

 

– The momentum compaction in the linac is just:  

 

– Since c=(L/L)/(p/p)=0 since there are no bending magnets, and therefore 
no dispersion in a linac 

– The energy gain in one ring revolution is: 

– Putting all this together, we arrive at the same frequency that we calculated 
for the linac. 

– The longitudinal dynamics that we learned in the linac applies directly to the 
ring case as well 

– The various parameters expressed for the ring contain the momentum 
compaction factor, which is zero in a linac 

 

tVVRF cos0

tVVRF sin0

)sin()2/cos()cos( linac

s

linac

s

ring

s  

22

11





 








 cc

)(ˆ
000 hTqETCqEVe 

ss

s
l

mc

TqE






32

0

2
2

2

)sin(



