Lecture 8

Off-Momentum Effects and Longitudinal Motion in Rings

Outline

- Dispersion (Sections 2.5.4,5.4)
- Momentum Compaction (Section 5.4)
- Chromaticity (Section12.2)
- Longitudinal dynamics in rings (Chapter 6)

Equation of Motion

- Go back to full equation of motion for x :

$$
x^{\prime \prime}+\left(k_{0}+\kappa_{x 0}^{2}\right) x=\kappa_{x 0}\left(\delta-\delta^{2}\right)+\left(k_{0}+\kappa_{x 0}^{2}\right) x \delta-k_{0} \kappa_{x 0} x^{2}-\frac{1}{2} m\left(x^{2}-y^{2}\right)+\ldots
$$

- We solved the simplest case, the homogeneous differential equation, with all terms on the r.h.s equal to zero

$$
x^{\prime \prime}+\left(k_{0}+\kappa_{x 0}^{2}\right) x=0
$$

- And found the solution

$$
\begin{aligned}
& x(s)=C(s) x_{0}+S(s) x_{0}^{\prime} \\
& x^{\prime}(s)=C^{\prime}(s) x_{0}+S^{\prime}(s) x_{0}^{\prime}
\end{aligned}
$$

- We will now look at the highest-order energy (momentum)dependent perturbation term:

$$
x^{\prime \prime}+\left(k_{0}+\kappa_{x 0}^{2}\right) x=\kappa_{x 0} \delta=\delta / \rho_{0}(s)
$$

$$
\delta=\frac{p-p_{0}}{p_{0}}=\frac{\Delta p}{p_{0}}
$$

Equation of Motion

- The general solution of the equation of motion is the sum of the two principal solutions of the homogeneous part, and a particular solution for the inhomogeneous part, where we call the particular solution $\delta \mathrm{D}(\mathrm{s})$

$$
\begin{aligned}
& x(s)=C(s) x_{0}+S(s) x_{0}^{\prime}+\delta D(s) \\
& x^{\prime}(s)=C^{\prime}(s) x_{0}+S^{\prime}(s) x_{0}^{\prime}+\delta D^{\prime}(s)
\end{aligned}
$$

- where

$$
D(s)=\int_{0}^{s} \frac{1}{\rho(\widetilde{s})}[S(s) C(\widetilde{s})-C(s) S(\widetilde{s})] d \widetilde{s}
$$

- The function $\mathrm{D}(\mathrm{s})$ is called the dispersion function
- We can write this solution as the sum of two parts:

$$
x(s)=x_{\beta}(s)+x_{\delta}(s)
$$

- From which we conclude the the particle motion is the sum of the betatron motion $\left(\mathrm{x}_{\beta}\right)$ plus a displacement due to the energy error $\left(\mathrm{x}_{\delta}\right)$
- We can write the trajectory above in terms of a 3×3 matrix that includes the off-momentum term

$$
\left[\begin{array}{c}
x(s) \\
x^{\prime}(s) \\
\delta
\end{array}\right]=\left[\begin{array}{ccc}
C(s) & S(s) & D(s) \\
C^{\prime}(s) & S^{\prime}(s) & D^{\prime}(s) \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x\left(s_{0}\right) \\
x^{\prime}\left(s_{0}\right) \\
\delta
\end{array}\right]
$$

Examples of trajectories

- No betatron motion: $x_{\beta}=0: x(s)=x_{\delta}=\delta D(s)$

- with betatron motion:

Where Does Dispersion Come From?

- Imagine a particle entering a sector bending magnet with an energy that is a little lower than the design energy:

$$
\begin{aligned}
& \frac{1}{\rho[m]}=0.3 \frac{B[T]}{c p[G e V]} \\
& \frac{\rho}{\rho_{0}}=\frac{c p}{c p_{0}}=\frac{p_{0}+\Delta p}{p_{0}}=1+\delta \quad \begin{array}{l}
\left(x_{0}, y_{0}\right) \quad x_{0}=0, y_{0}=\rho_{0} \\
\\
\delta D(s)=y_{\delta}-y_{0}=\left(\rho_{0}-\rho\right) \cos \theta_{0}+\rho \cos \left(\theta-\theta_{0}\right)-\rho_{0} \\
\delta D(s)=-\delta \rho_{0} \cos \theta_{0}+(1+\delta) \rho_{0} \cos \left(\theta-\theta_{0}\right)-\rho_{0} \\
\\
\delta D(s) \approx \delta \rho_{0}\left(1-\cos \theta_{0}\right)
\end{array}
\end{aligned}
$$

Where Does Dispersion Come From?

- Use the transport matrix for a sector bending magnet to calculate the dispersion

$$
\begin{aligned}
& \boldsymbol{\mathcal { M }}_{S B}=\left[\begin{array}{ll}
C(s) & S(s) \\
C^{\prime}(s) & S^{\prime}(s)
\end{array}\right]=\left[\begin{array}{cc}
\cos \left(s / \rho_{0}\right) & \rho_{0} \sin \left(s / \rho_{0}\right) \\
-\frac{1}{\rho_{0}} \sin \left(s / \rho_{0}\right) & \cos \left(s / \rho_{0}\right)
\end{array}\right] \\
& D(s)=\frac{1}{\rho_{0}} \int_{0}^{s}\left[\rho_{0} \sin \frac{s}{\rho_{0}} \cos \frac{\bar{s}}{\rho_{0}}-\rho_{0} \cos \frac{s}{\rho_{0}} \sin \frac{\bar{s}}{\rho_{0}}\right] d \bar{s} \\
& D(s)=\rho_{0}\left(1-\cos \frac{s}{\rho_{0}}\right) \\
& D^{\prime}(s)=\sin \frac{s}{\rho_{0}}
\end{aligned}
$$

- Giving the 3×3 transport matrix for a sector bend:

$$
\boldsymbol{\mathcal { M }}_{s, p}=\left[\begin{array}{ccc}
\cos \theta & \rho_{0} \sin \theta & \rho_{0}(1-\cos \theta) \\
-\frac{1}{\rho_{0}} \sin \theta & \cos \theta & \sin \theta \\
0 & 0 & 1
\end{array}\right] \quad \boldsymbol{\mathcal { N }}_{s, 0}=\left[\begin{array}{lll}
1 & l & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

3×3 Transport Matrices for Drifts and Quadrupoles

- Dispersion is generated in bending magnets
- Quadrupoles and drifts are not sources of dispersion, although they influence the dispersion function because the off-momentum trajectory is bent by quadrupoles

$$
\boldsymbol{M}_{\text {drift }}=\left[\begin{array}{ccc}
1 & l & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \boldsymbol{\mathcal { M }}_{\text {thinquad }}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 / f & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Propagation of Dispersion

- We can write the coordinate vector as

$$
\left[\begin{array}{c}
x(s) \\
x^{\prime}(s) \\
\delta
\end{array}\right]=\mathcal{M}\left[\begin{array}{c}
x\left(s_{0}\right) \\
x^{\prime}\left(s_{0}\right) \\
\delta
\end{array}\right]=\mathcal{M}\left[\begin{array}{c}
x_{\beta}\left(s_{0}\right)+x_{\delta}\left(s_{0}\right) \\
x_{\beta}^{\prime}\left(s_{0}\right)+x_{\delta}^{\prime}\left(s_{0}\right) \\
\delta
\end{array}\right]
$$

- Suppose we set the starting betatron amplitude and slope equal to zero, that is, make $x_{\beta}=0$.

$$
\left[\begin{array}{c}
x(s) \\
x^{\prime}(s) \\
\delta
\end{array}\right]=\left[\begin{array}{c}
\delta D(s) \\
\delta D^{\prime}(s) \\
\delta
\end{array}\right]=\boldsymbol{\mathcal { N }}\left[\begin{array}{c}
x_{\delta}\left(s_{0}\right) \\
x_{\delta}^{\prime}\left(s_{0}\right) \\
\delta
\end{array}\right]=\boldsymbol{\mathcal { N }}\left[\begin{array}{c}
\delta D\left(s_{0}\right) \\
\delta D^{\prime}\left(s_{0}\right) \\
\delta
\end{array}\right]
$$

- And dividing by δ we have

$$
\left[\begin{array}{c}
D(s) \\
D^{\prime}(s) \\
1
\end{array}\right]=\mathcal{M}\left[\begin{array}{c}
D\left(s_{0}\right) \\
D^{\prime}\left(s_{0}\right) \\
1
\end{array}\right]
$$

- This means that if we know the 3×3 transport matrices, and the starting dispersion functions, we can calculate the dispersion anywhere downstream

Periodic Dispersion

- What is the dispersion in a FODO lattice?
- Construct a simple FODO lattice from this sequence $1 / 2 Q$-Bend- $1 / 2$ Q $1 / 2$ Q-Bend- $1 / 2$ Q
Where for simplicity the "Bend" has $\theta \ll 1$

$$
\boldsymbol{\mathcal { M }}_{1 / 2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / f & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & L & L^{2} / 2 \rho \\
0 & 1 & L / \rho \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 / f & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1-L / f & L & L^{2} / 2 \rho \\
-L / f^{2} & 1+L / f & \frac{L}{\rho}\left(1+\frac{L}{2 f}\right) \\
0 & 0 & 1
\end{array}\right]
$$

- We look for a periodic solution to the dispersion function in a FODO, that is, a function $\eta(s)$ that repeats itself
- With that constraint, the $\eta(\mathrm{s})$ must reach a point of maximum or minimum at a quadrupole, that is $\eta^{\prime}=0$.

$$
\left[\begin{array}{c}
\eta^{-} \\
0 \\
1
\end{array}\right]=\mathcal{M}_{1 / 2}\left[\begin{array}{c}
\eta^{+} \\
0 \\
1
\end{array}\right]
$$

- Which gives with $\kappa=f / L$

$$
\eta^{+}=\frac{f^{2}}{\rho}\left(1+\frac{L}{2 f}\right)=\frac{L^{2}}{2 \rho} \kappa(2 \kappa+1) \quad \eta^{-}=\frac{f^{2}}{\rho}\left(1-\frac{L}{2 f}\right)=\frac{L^{2}}{2 \rho} \kappa(2 \kappa-1)
$$

Periodic Dispersion

- Can solve the equation of motion:

$$
\eta^{\prime \prime}+K \eta=1 / \rho
$$

- To arrive at the solution for $\eta(s)$

$$
(s)={\frac{\sqrt{(s)}^{(s)}}{2 \sin }}_{s}^{s+L_{p}} \frac{\sqrt{(~)}}{(~)} \cos [\quad(s)+()] d
$$

- Finally, the rms beamsize at a given location has two components, one from the betatron motion of the collection of particles, and another from the finite energy spread in the beam:

$$
\sigma_{u}(s)=\sqrt{\varepsilon_{u} \beta(s)+\eta^{2}(s) \sigma_{\delta}^{2}}
$$

- Likewise for the angular beam divergence

$$
\sigma_{u^{\prime}}(s)=\sqrt{\varepsilon_{u} \gamma_{u}(s)+\eta^{\prime 2}(s) \sigma_{\delta}^{2}}
$$

Example

- Suppose one location in a lattice has a horizontal beta-function $=20$ meters, vertical beta-function $=10$ meters, and peak dispersion $=8$ meters with $\varepsilon_{x}=\varepsilon_{y}=1$ $\mathrm{mm}-\mathrm{mrad}$, and $\sigma_{\delta}=0.0007$,
- calculate the horizontal and vertical rms beamsizes

Achromaticity

- Suppose we want to arrange the lattice so that $D=D=0$ at some particular location in the beamline
- Having established $D=D^{\prime}=0$ at some location, the lattice has $\mathrm{D}=0$ everywhere downstream, up to the next bending magnet
- Such a lattice, or section of lattice is termed achromatic
- Start with the integral equation for $D(s)$

$$
D(s)=\int_{0}^{s} \frac{1}{\rho(\widetilde{s})}[S(s) C(\widetilde{s})-C(s) S(\widetilde{s})] d \widetilde{s}
$$

- The dispersion and dispersion derivative can be written

$$
\begin{aligned}
& D(s)=-S(s) I_{c}+C(s) I_{s} \\
& D^{\prime}(s)=-S^{\prime}(s) I_{c}+C^{\prime}(s) I_{s}
\end{aligned}
$$

- In terms of the integrals

$$
\begin{aligned}
& I_{c}=\int_{0}^{s} \frac{1}{\rho_{0}(\tilde{s})} C(\tilde{s}) d \tilde{s}=0 \\
& I_{s}=\int_{0}^{s} \frac{1}{\rho_{0}(\tilde{s})} S(\tilde{s}) d \tilde{s}=0
\end{aligned}
$$

Example: Achromatic Bend

- The integrals can be made to vanish in a lattice segment with 360° horizontal phase advance through a FODO section with Bends

Accelerator Lattices: SNS Accumulator Ring

Path length and momentum compaction

- The path length is given by

$$
L=\int(1+\kappa x) d s=\int\left(1+\frac{1}{\rho} \delta D(s)\right) d s \quad \kappa=1 / \rho
$$

- The deviation from the ideal path length is

$$
\Delta L=L-L_{0}=\delta \int \frac{D(s)}{\rho(s)} d s=\delta L_{0} \alpha_{c}
$$

- With the momentum compaction factor defined as

$$
\alpha_{c}=\frac{\Delta L / L_{0}}{\delta}
$$

- The travel time around the accelerator is

$$
\begin{aligned}
& \tau=L / c \beta \\
& \frac{\Delta \tau}{\tau}=\frac{\Delta L}{L}-\frac{\Delta \beta}{\beta} \\
& \frac{\Delta \tau}{\tau}=\left(\alpha_{c}-\frac{1}{\gamma^{2}}\right) \frac{\Delta p}{p}=\eta_{c} \frac{\Delta p}{p}
\end{aligned}
$$

- The momentum compaction is η_{c} and the transition-gamma is

$$
\gamma_{t}=\frac{1}{\sqrt{\alpha_{c}}}
$$

Path length and momentum compaction

$$
\frac{\Delta \tau}{\tau}=\eta_{c} \frac{\Delta p}{p}=\left(\frac{1}{\gamma_{t}^{2}}-\frac{1}{\gamma^{2}}\right) \frac{\Delta p}{p}
$$

- Three cases:
$-\gamma>\gamma_{t}, \eta_{c}>0$, and $\Delta \tau$ increases with energy, revolution frequency decreases with energy
$-\gamma<\gamma_{t}, \eta_{c}<0$, and $\Delta \tau$ decreases with energy, revolution frequency increases with energy
$-\gamma=\gamma_{\mathrm{t}, \mathrm{t}} \Delta \tau=0$, independent of energy. Such a ring is called isochronous
- This behaviour is a result of the fact that the dispersion function causes higher energy particles to follow an orbit with slightly larger radius than the ideal orbit
- All electron rings operate above transition
- Many proton/hadron synchrotrons must pass through transition as the beam is accelerated

Chromaticity

- The focusing strength of a quadrupole is

$$
k\left[\mathrm{~m}^{-2}\right]=0.3 \frac{\partial B / \partial x[\mathrm{~T}]}{c p[\mathrm{GeV}]}
$$

- A beam particle with momentum error δ sees a focusing strength slightly different from that of a particle at the design energy

$$
k\left[\mathrm{~m}^{-2}\right]=0.3 \frac{\partial B / \partial x[\mathrm{~T}]}{(1+\delta) c p[\mathrm{GeV}]}
$$

- In addition to dispersion, we would also expect some effect to the weaked or strengthened quadrupole focusing seen by off-momentum particles

- This is the particle-beam equivalent of the chromatic aberration from light optics, which arises from the dependence of the index of refraction of a glass lens on the wavelength of light.
- Special optical materials can be made in a telescope to make the image achromatic

Chromaticity

- Go back to the equations of motion for x and y

$$
\begin{aligned}
& x^{\prime \prime}-\left(k_{0}-\kappa_{x 0}^{2}\right) x \in \kappa_{x 0}\left(\delta-\delta^{2}\right)+\left(k_{0}-\kappa_{x 0}^{2}\right) x \delta\left(k_{0} k_{x 0} x^{2}-m\left(y^{2}-y^{2}\right)+\ldots\right. \text { Quad } \\
& y^{\prime \prime}-\left(k_{0}+\kappa_{y 0}^{2}\right) y=\kappa_{y 0}\left(\delta-\delta^{2}\right)-\left(k_{0}-\kappa_{y 0}^{2}\right) y \delta+k_{0} \kappa_{y 0} y^{2}+m x y+\ldots . \square \operatorname{sext}
\end{aligned}
$$

- Plug in

$$
x=x_{\beta}+x_{\delta}=x_{\beta}+\delta \eta \quad y=y_{\beta}
$$

- We arrive at the equations of motion for the betatron amplitude, neglecting terms proportional to δ^{2} or $\mathrm{x}_{\beta}{ }^{2}$ or $\mathrm{y}_{\beta}{ }^{2}$

$$
\begin{gathered}
x_{\beta}^{\prime \prime}+\left(k+\kappa_{x 0}^{2}\right) x_{\beta}=\left(k+\kappa_{x 0}^{2}\right) x_{\beta} \delta-m x_{\beta} \delta \eta \\
y_{\beta}^{\prime \prime}-\left(k+\kappa_{x 0}^{2}\right) y_{\beta}=-\left(k+\kappa_{x 0}^{2}\right) y_{\beta} \delta-m y_{\beta} \delta \\
x_{\beta}^{\prime \prime}+K x_{\beta}=(K-m \eta) \delta x_{\beta} \\
y_{\beta}^{\prime \prime}-K y_{\beta}=-(K-m \eta) \delta y_{\beta}
\end{gathered}
$$

- or

Modified focusing strength due to momentum error δ

Additional focusing from displaced closed orbit in sextupoles due to dispersion

Chromaticity

- In the last lecture we studied gradient errors. This new term is just another type of gradient error, as we anticipated, which will modify the beta-functions and therefore also the betatron tunes of a circular accelerator
- We calculated the betatron tune shift due to gradient errors:

$$
\Delta v_{x}=-\frac{1}{4 \pi} \oint \beta_{x}(\Delta k) d s
$$

- With the gradient error (k-m η), this gives

$$
\begin{aligned}
& \Delta v_{x}=-\delta \frac{1}{4 \pi} \oint \beta_{x}(k-m \eta) d s=\delta \xi_{x} \\
& \Delta v_{y}=\delta \frac{1}{4 \pi} \oint \beta_{y}(k-m \eta) d s=\delta \xi_{y}
\end{aligned}
$$

- In an accelerator without sextupoles, or with sextupoles turned off, the resulting chromaticity is that due solely to the slightly different focusing seen by off-energy particles. This value of chromaticity is called the natural chromaticity, which always has a negative value!

$$
\begin{aligned}
& \xi_{x 0}=-\frac{1}{4 \pi} \oint \beta_{x} k d s \\
& \xi_{y 0}=\frac{1}{4 \pi} \oint \beta_{y} k d s
\end{aligned}
$$

Why do we care?

1. Non-zero chromaticity means that each particle' s tune depends on energy. If there is a range in energies, there will be a range in tunes.

- A beam with a large range in tunes, or tune-spread occupies a large area on the tune-plane. This opens the possibility of a portion of the beam being placed on a resonance line.

2. The value of the chromaticity, as it turns out, is an important variable that determines whether certain intensity-dependent motion is stable or unstable.

How Sextupoles Work

- The field of a sextupole, in the horizontal plane is this:

$$
\begin{array}{ll}
\frac{e}{c p} B_{x} & =m x y \\
\frac{e}{c p} B_{y} & =\frac{1}{2} m\left(x^{2}-y^{2}\right)
\end{array}>\begin{aligned}
\frac{e}{c p} B_{x} & =0 \\
\frac{e}{c p} B_{y} & =\frac{1}{2} m x^{2}
\end{aligned}
$$

- The vertical field gradient is: $\frac{e}{c p} \frac{\partial B_{y}}{\partial x}=m x=m \delta \eta$
- Where the coordinates for off-momentum particles $(y=0, x=\delta \eta)$ has been taken.
- Therefore, the sextupole provides quadrupole focusing in the horizontal plane, with focusing strength proportional to δ
- particles with higher momentum are focused in the horizontal plane, and
- particles with lower momentum are
 defocusing in the horizontal plane.
- This is exactly what is needed to counteract the dependence of quadrupole focusing on energy.

Chromaticity Correction: Sextupole Magnets

- We can use this feature of the sextupole field to correct the chromaticity, that is, make $\xi_{\mathrm{x}}=\xi_{\mathrm{y}}=0$

$$
\begin{aligned}
& \xi_{x}=\xi_{x 0}+\frac{1}{4 \pi} \oint m \beta_{x} \eta d s \\
& \xi_{y}=\xi_{y 0}-\frac{1}{4 \pi} \oint m \beta_{y} \eta d s
\end{aligned}
$$

- We need at least two sextupole magnets to simultaneously make both chromaticities zero. Let's place two sextupoles in the lattice, with strength $\mathrm{m}_{1}, \mathrm{~m}_{2}$ and length $/$.

$$
\begin{aligned}
& \xi_{x}=\xi_{x 0}+\frac{1}{4 \pi}\left(m_{1} l \eta_{1} \beta_{x 1}+m_{2} l \eta_{2} \beta_{x 2}\right)=0 \\
& \xi_{y}=\xi_{y 0}-\frac{1}{4 \pi}\left(m_{1} l \eta_{1} \beta_{y 1}+m_{2} l \eta_{2} \beta_{y 2}\right)=0
\end{aligned}
$$

- Sextupoles placed at locations with large dispersion are more effective. We also need $\beta_{x} \gg \beta_{y}$ at one location and $\beta_{y} \gg \beta_{x}$ at another.

Chromaticity in FODO Cells

- The natural chromaticity in one-half FODO cell becomes:

$$
\begin{aligned}
& \xi_{x 0}=-\frac{1}{4 \pi} \oint \beta_{x} k d s=-\frac{1}{4 \pi}\left(\beta^{+} \int k^{+} d s+\beta^{-} \int k^{-} d s\right) \\
& \xi_{x 0}=-\frac{1}{4 \pi}\left(\beta^{+}-\beta^{-}\right) \int k d s
\end{aligned}
$$

- Giving for a full FODO cell:

$$
\xi_{x 0}=-\frac{1}{\pi} \frac{1}{\sqrt{\kappa^{2}-1}}=-\frac{1}{\pi} \tan \left(\varphi_{x} / 2\right)
$$

- So a FODO channel with 90 degrees phase advance/cell has natural chromaticity $-1 / \pi$

Longitudinal Motion in Rings: Phase Stability

- The formulation of longitudinal motion in linacs holds also for rings.
- The synchronous phase is set according to the need to accelerate, and according to the sign of the momentum compaction so that phase stability is achieved

Phase Stability

- Electron storage rings and Synchrotrons: $\pi / 2<\phi_{s}<\pi$
- Proton storage rings and synchrotrons below transition: $0<\phi_{s}<\pi / 2$
- Proton storage rings and synchrotrons above transition: $\pi / 2<\phi_{s}<\pi$
- Proton synchrotrons may start with $\gamma<\gamma_{\mathrm{tr}}$, but since the energy increases, eventually γ crosses the transitionenergy to reach $\gamma>\gamma_{\text {tr }}$
- This is called "transition-crossing". During this event, the synchronous phase of the RF system must jump by 180° so that the higher energy beam remains phasestable.
- Proton accelerators often have a "gamma-t jump"system consisting of a set of pulsed-quadrupole magnets that momentarily varies the momentum compaction by perturbing the dispersion function so that the lattice γ_{tr} is pushed below the proton γ.

Longitudinal Equation of Motion: Small Oscillations

- Same analysis that we followed for the linac case can be repeated for the circular case
- Results in the equation of motion for the particle phase:

$$
\ddot{\varphi}+\Omega^{2} \varphi=0
$$

- With an oscillation frequency given by:
- Where

$$
\Omega^{2}=\omega_{r e v}^{2} \frac{h \eta_{c} e \hat{V}_{0} \cos \varphi_{s}}{2 \pi \beta c p}
$$

- h is the harmonic number, defined by

$$
f_{R F}=h f_{r e v}
$$

- The particle's energy gain in one ring revolution is:

$$
e \hat{V}_{0} \sin \varphi_{s}
$$

- The oscillation frequency is called the synchrotron frequency, and the ratio of synchrotron frequency to revolution frequency is the synchrotron tune

$$
v_{s}=\frac{\Omega}{\omega_{\text {rev }}}
$$

Longitudinal Motion

- This should equal the result we obtained previously for a linac:

$$
\omega_{l}^{2}=\frac{\omega^{2} q E_{0} T \lambda \sin \left(-\phi_{s}\right)}{2 \pi m c^{2} \gamma_{s}^{3} \beta_{s}}
$$

- We can see that these two are equal by noting that,
- The convention for linacs is

$$
\begin{aligned}
& V_{R F}=V_{0} \cos \omega t \\
& V_{R F}=V_{0} \sin \omega t
\end{aligned}
$$

- therefore, $\varphi_{s}{ }^{\text {ring }}=\phi_{\mathrm{s}}{ }^{\text {linac }}+\pi / 2$, so $\quad \cos \left(\varphi_{s}^{\text {ring }}\right)=\cos \left(\phi_{s}^{\text {linac }}+\pi / 2\right)=\sin \left(-\phi_{s}^{\text {linac }}\right)$
- The momentum compaction in the linac is just: $\quad \eta_{c}=\left(\frac{1}{\gamma^{2}}-\alpha_{c}\right)=\frac{1}{\gamma^{2}}$
- Since $\alpha_{c}=(\Delta L / L) /(\Delta \mathrm{p} / \mathrm{p})=0$ since there are no bending magnets, and therefore no dispersion in a linac
- The energy gain in one ring revolution is: $\quad e \hat{V}_{0}=q E_{0} T C=q E_{0} T(h \beta \lambda)$
- Putting all this together, we arrive at the same frequency that we calculated for the linac.
- The longitudinal dynamics that we learned in the linac applies directly to the ring case as well
- The various parameters expressed for the ring contain the momentum compaction factor, which is zero in a linac

