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Basic Units and Relationships 

Energy and momentum in accelerators are usually expressed in units 

of “electron Volts”: 

 1 eV = 1.602 x 10-19 Joules 

 

We will use energy units:  

 keV  = 103 eV 

 MeV = 106 eV 

 GeV = 109 eV 

 TeV  = 1012 eV 

Similarly, the units of momentum, p, are eV/c. 

In practice, we will sometimes drop the factor of c. 

And finally, for mass, the units are eV/c2. For instance 

 mp = mass proton = 938 MeV/c2 

 me = mass electron = 511 keV/c2 



Relativistic Relationship 

In most accelerators, particles move at relativistic speeds, and therefore 

we need to use relativistic mechanics to describe particle motion and 

fields.   

Einstein’s Special Theory of Relativity: 

 

1) The laws of physics apply in all inertial (non-accelerating) reference 

frames.  

2) The speed of light in vacuum is the same for all inertial observers. 

Notice that (1) does not mean that the answer to a physics calculation is 

the same in all inertial reference frames. It only means that the physics 

law’s governing the calculation are the same.  



Example: Consider a light bulb hanging in a boxcar moving at relativistic 

velocity. How long does it take a light ray, moving directly down in the boxcar 

frame, from the bulb to reach the floor:  

 a) as computed by an observer in the car? 

 b) as computed by an observer on the ground?    

The answers differ by a factor of:    
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Therefore time is dilated for the observer on the ground, compared 

with the observer in the boxcar. 
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Other Relativistic Relationships 

These principles give rise to time dilation and length contraction: 

  t = t* 

  L = L*/ 

 

The LHS quantities are given in the rest frame of the observer who 

perceives an object in motion. We often call this the “lab frame”. The 

RHS quantities (*) are in the rest frame of the moving object, often 

called the “center of mass” frame. 

Time dilation is an important concept in particle physics because many 

particles have limited lifetimes. Time dilation says that the particle 

lifetimes are longer in the “Lab frame”. 

omm 

For an observer in the lab frame, the mass of an object also appears to 

increase at high velocity. The object becomes infinitely heavy as it 

approaches the speed of light. 



Relativistic Energy Equations 

The factors  and  are 

commonplace in most 

relativistic equations: 

In fact, the total energy of a 

particle (sum of kinetic and rest 

energy), is given by:  

For accelerators, it is often 

convenient to find  using the kinetic 

energy, T, of a particle:  

c

v
 2

2

2 1

1

1

1











c

v

  

E 2 = p2 +moc
2

2

2 1    )1(
cm

T
cmT

o

o  

And finally, for the relationship 

between momentum and energy, 

we have:  
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Example Problem 

A pion of rest mass mo = 139.6 MeV decays into to another particle in a 

time t = 26e-9 seconds, as measured in the pion’s own rest frame.  For a 

pion that is accelerated to a kinetic energy of  T=100 MeV, calculate: 

 

a.The relativistic factors β and γ. 

b.The distance the pion will travel in the lab frame before decay. 

g =1+
T

m0

=1+
100

139.6
=1.72 b = 1-

1

g 2
= 0.81a. 

b. t =gt* =1.72*26´10-9 = 4.5´10-8s



Relativistic Beta Function 

The  function is the speed of a particle divided by the speed of light. As a 

massive particle is accelerated,  increases asymptotically towards 1 (speed 

of light), but never gets there: 

• Heavier particles become relativistic at higher energies. 

• No particle with finite mass can travel at the speed of light in vacuum 
(=1). Massless particles always satisfy =1. 
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Maxwell’s Equations 

In accelerators, we use electric fields to accelerate particles and 

magnetic fields to guide and focus particles. The standard equations 

used to describe the fields are Maxwell’s equations (in MKS units): 
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e = ereo,       eo =  permittivity of free space

m = mrmo,      mo =  permeability of free space
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A Closer Look 

+ 

Gauss Law for Electric Fields: The total electric field flux 

through a surface is equal to the charge enclosed by the 

surface (to within a multiplicative factor). 

E 

Divergence theorem: The divergence integrated 

over the volume of a region is equal to the flux 

through the surface area of the region.  



A Closer Look 

 0 B

There are no magnetic 

monopoles! 

Magnetic fields do not 

diverge. Net magnetic flux 

through a closed surface is 

zero. 

Magnetic fields lines for a dipole run from North to South. For a field 

generated by a current, I, point your right thumb in the direction of current – 

your fingers will curl in the direction of B. 

I 
B 



A Closer Look 

A changing magnetic field 

induces an electric field... 

 

A changing electric field 

induces a magnetic field… 

This concept is important in RF 

acceleration of particles. 



A Closer Look 

Stokes Theorem: Curl integrated over an area inside a closed curve 

equals the line integral around the curve.   

The “curl” of a vector function is a measure of its “swirl” or “twist”. For the 

total “swirl”, all  contributions cancel except those at the boundary.   
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“Stokes’ Law for Magnetic Fields”: For a constant E field, the component of 

the B field along any closed path is equal to the total current enclosed.   



Scalar Potential 

For any material-free field region, if the integral from point A to point B is 

independent of the path, then the field can be expressed as the gradient 

of a scalar potential. 
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Field Region 

So, for electric and magnetic fields in a material-free region, we can write:  
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We will find these expressions useful! 



The Lorentz Force Equation 

For a charged particle passing through an E or B field the force is 

governed by the Lorentz Force Equation: 

  

F = q(E +v ´ B)

Force from the 

electric field is 

in the direction 

of E 

Force from the magnetic field is 

perpendicular to the direction of 

v and B, as given by the “Right 

Hand Rule” 

Right Hand Rule for a=b x c : Point your fingers in the direction of b, then 

curl your fingers toward the direction of c, and then your thumb will point in 

the direction of a. (**Example**) 
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A force is the change 

in momentum with 

respect to time. 



Lorentz Transformation of Fields 

Do the fields E and B look the same in all inertial reference frames? 

Example: A particle is passing by an observer at velocity v. 

In the “lab frame”, the moving charged 

particle produces a current, and thus it has 

both an E field and a B field.  

 

But, in the frame of reference moving with 

the particle, the particle is at rest and has 

only an E field.  

B 

+ 

E 

v 

The Special Theory of Relativity states that the laws of physics, i.e.,  

Maxwell’s equations in this case, are the same in all inertial reference 

frames. But the results of the laws can appear different in different 

reference frames. 
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Lorentz Transformation of the Fields 
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The transverse fields, E and B, transform according to the following 

equations.   

Here, the (*) quantities on the left hand side are taken in the reference 

frame moving with velocity s, relative to the non-(*) quantities, which are 

in the lab frame. 



Accelerator Coordinate Systems 

In general, any accelerator will be designed (shaped) to give a “reference 

trajectory” for particle travel. This reference trajectory is defined by the 

physical centers of the beam line elements. 

In beam physics, we are generally interested in deviations from the reference 

trajectory. Therefore it is most convenient to place the coordinate system 

origin on the reference trajectory, and align one (the longitudinal) coordinate 

axis with the reference trajectory. The remaining (transverse) axes are chosen 

perpendicular to the longitudinal axis. 

Longitudinal axis points in the  

direction of the reference 

trajectory at any point (tangent 

to the reference path).  
 



Curvilinear Coordinate System (continued) 

• The z (or s) axis of the coordinate system is the instantaneous tangent to the 

reference curve. 

• Looking down along the z axis, positive x is to the left and in the plane of reference, 

and positive y is up and perpendicular to the plane of reference. 
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Curvilinear Coordinate System (continued) 
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r(x, y, z) = r0(z)+ x(z)ûx (z)+ y(z)ûy(z)
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Differentiating:  

Grouping Terms:  

The result is the position relative to an moving origin on the reference trajectory:  

The position of a particle w.r.t. a fixed origin:  

(See Wiedemann 1.3.3) 


