

Fundamental Accelerator Theory, Simulations, and Measurement Lab

Sarah Cousineau, Jeffrey Holmes, Robert Potts, Yan Zhang, USPAS, University of Tennessee January, 2014

Schedule

Schedule Week 1

	Monday	Tuesday	Wednesday	Thursday	Friday
9 :00 am - 12:00 pm	Lecture 1	Lecture 3	Lecture 4	Lecture 5	Lecture 6
12:00 pm - 2:00 pm	Lunch	Lunch	Lunch	Lunch	Lunch
2:00 pm - 5:00 pm	Lecture 2	Labs	Labs	Labs	Labs
6:00 pm - 7:00 pm	Dinner	Dinner	Dinner	Dinner	Dinner
7:00 pm – 12:00 am	Homework	Homework	Homework	Homework	Homework

Schedule Week 2

	Monday	Tuesday	Wednesday	Thursday	Friday
9 :00 am - 12:00 pm	Lecture 7	Lecture 8	Lecture 9	Labs	Final Exam
12:00 pm - 2:00 pm	Lunch	Lunch	Lunch	Lunch	
2:00 pm - 5:00 pm	Labs	Labs	Labs	Labs	
6:00 pm - 7:00 pm	Dinner	Dinner	Dinner	Dinner	
7:00 pm – 12:00 am	Homework	Homework	Homework	Homework	

Course Grades

The final course grades will be based on:

- 1. Problem Sets 35%
- 2. Lab Reports 35%
- 3. Final Exam 30%
- The problem sets are due at 9am on the stated due date- they will be graded promptly.
- Laboratory write-ups will be due on the second Monday morning for week 1 labs, and on the second Friday morning for week 2 labs.

Syllabus

Day	Subject	Topics	Wiedemann Reference			
Monday Morning						
Lecture 1a	Introduction to Accelerators	Historical overview				
		Types of accelerators				
Lecture 1b	Basic Principles	Units	Appendix B			
		Special relativity	1.2			
		Electrodynamics/Maxwell's Equations	1.1			
		Accelerator coordinate systems	1.3			
		Monday Afternoon				
Lecture 2	Particle Acceleration	Forces on charged particles	1.1			
		Electrostatic Accelerators				
		RF Accelerators	Most of the book			
		Waveguides	15.2,			
		RF Cavities	15.2, 15.4			
	Tuesday					
Lecture 3	RF Acceleration in Linaces Part I	Transit-time factor	15.4			
		Linac RF power parameters	15.3 – 15.5			
		Coupled cavities and acceleration schemes	Wangler Chapter 2-3			
		Some linear accelerator structures	Wangler Chapter 2-3			
		Wednesday				
Lecture 4	RF Acceleration in Linaces Part II	Travelling wave structures	Wangler Chapter 2-3			
		Synchronicity conditions for acceleration	Wangler Chapter 2-3			
		Longitudinal dynamics	6			
Thursday						
Lecture 5	Transverse Beam Optics Part I	Particle beam guidance	2.2			
		Magnet current to field equations	2.2, 3.1.3			
		Multipole expansion of fields, design concepts	3.1			

Syllabus

Day	Subject	Topics	Reference (Wiedemann unless		
		Friday	otherwise noted)		
Lecture 6	Transverse Beam Optics Part II				
		Single Particle Equation of Motion	2.2		
		Piecewise Constant Solutions	2.5, 4.2-4.3		
		Periodic Focusing	4.2-4.3		
		Twiss Parameterization of Beam Distribution	5.1		
		Monday			
Lecture 7	Transverse Beam Optics Part III	Analytic (Twiss Parameter) Solution of Hill's Equation	5.2-5.3		
		FODO Lattice in terms of Twiss Parameters	7.1		
		General Periodic Lattice	7.2		
		Betatron Tune	7.2		
		Lattice Errors and Resonances	12.1		
		Tuesday			
Lecture 8	Off Momentum Effects and Longitudinal Motion in Rings	Dispersion	2.5.4, 5.4		
		Momentum Compaction	5.4		
		Chromaticity	12.2		
		Longitudinal motion in rings	6		
		Wednesday			
Lecture 9	Misc Topics	Collective Effects	Class Notes		
		Synchrotron Radiation	3.6, 20.1-20.2, 21.1		
Thursday					

Some Tips

 In the evening during the "homework time", instructors will be available for further discussion on course related topics.

• There will be daily homework. You are allowed, and even encouraged, to work in groups. Don't "stew" over problems too long...ask for help

• Everyone will perform 8 laboratory experiments and computer simulations. These will be done in groups, with each group submitting a lab report.

 Final exam on the morning of Friday, January 26 (three hours) and <u>no</u> <u>lab</u> in the afternoon.

- You sheet:
 - Email address
 - Role / Title
 - Simple picture that represents some part of your life.
 - A one word reminder of something you will tell us about yourself which nobody here knows (nothing too personal)
- Take 3 minutes to prepare, less than 1 minute to present:
 - Explain your sheet
 - We will applaud
 - Post it on the wall