
CONTROL ROOM ACCELERATOR PHYSICS 

Day 4  
Introduction to Acceleration 



Outline 

1.  Introduction 

2.  Accelerating structures 

3.  Axial fields 

4.  The Panofsky equation 
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Basic Acceleration Principles 

1.  Particle Beam 
1.  Ensemble of self-interacting 

particles 

2.  Accelerating structure 
1.  Resonant RF cavity specially 

shaped to provide strong 
fields on beam axis 
 

3.  RF Power 
1.  RF energy converted to 

particle kinetic energy  
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Basic Accelerator Principles 
We Use a Lot of RF Power 

1/30/14 USPAS 4 

warm linac klystron galleries at SNS 

SNS’s electric bill for operations is about $1M per month 



Basic Acceleration Principles 
Lorentz Force and Work  

•  Lorentz Force Law 
•  Describes force F on a particle in EM field 

( )BvEF ×+= q
W = F ⋅dr∫

= q E ⋅dr∫ + q dr×B ⋅dr
dt∫

= q E ⋅dr∫
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F – force on particle 
q – particle charge 
v – particle velocity 
E – electric field 
B – magnetic field 
  

¡  Energy Gain from EM field 
•  Work W done on particle by field 

Only electric fields in the direction of 
propagation affect energy gain 

• Accelerating structures create strong electric fields in the 
direction of propagation 

0 



Lorentz Force and Work 
Summary 

• Physics of beamlines 
• Magnetic fields cannot be used to accelerate particles 
• Acceleration occurs along the direction of electric field 
•  Energy gain is independent of the particle velocity 

 
• Engineering beamlines 

•  Longitudinal electric fields in the direction propagation are 
designed to be as large as possible 

• Magnetic fields are designed to bend particles for guidance 
and focusing along the beam path 
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Basic Accelerator Structures 
Van der Graff Acceleration 
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¡  Static acceleration  
l  Charged parallel plate capacitor with beam aperture  
l  Particle falls through a potential V 

particle beam 

V 

energy increased by V eV 

¡  So why use RF? 
l  For the SNS linac we would require a stack of plates with a total 

floating voltage of 1 GV   (about 667 million D-cell batteries) 



Acceleration to Higher Energies 
•  Terminal voltages of 20 MV provide sufficient beam 

energy for nuclear structure research, however particle 
physics, neutron production, and accelerator driven 
systems require beam energies > 1 GeV 

•  How to attain higher beam energies? 

•  How to swing a child? 
1.  Pull up to maximum height and let go: difficult 

and tiring (electrostatic accelerator) 

2.  Repeatedly push in synchronism with the period 
of the motion 
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Acceleration by repeated application of RF accelerating 
fields 

Two approaches for accelerating with time-varying fields  
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Circular Accelerators 

Use one or a small number of RF cavities and 
make use of repeated passage through them: This 
approach leads to circular accelerators: 

Cyclotrons, synchrotrons and their variants 

Linear Accelerators 

Use many cavities in which each 
particle only passes through once: 

These are linear accelerators, or 
“linacs” 



3. Linear Accelerating Structures 
The Drift Tube Linac (DTL) 

•  DTL invented by Luis Alvarez in 1946 at Berkeley 
•  Pillbox resonant cavity with grounded shielding tubes 
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¡  RF Drive 
l  Use fundamental TM010 mode (longitudinal E field) 

¡  Beam 
l  Beam injected after RF standing 

wave established 
l  “Drift” tubes isolate beam while 

RF reverses in time 



3. Accelerating Structures 
Drift Tube Linac (cont.) 

Without drift tubes no net acceleration 
could occur 

•  Drift Tubes  
•  Shield particle from negative RF cycle 
•  Length = βλ, β = v/c 
•  Must get longer as particle accelerates 
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β1λ β2λ β3λ 



3. Examples of Actual DTL Tanks 
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CERN DTL Fermilab DTL Tank #2 



3. Accelerating Structures 
SNS Facility - DTL Tanks and CCDTL Tanks 
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SNS DTL tanks 6 pre-install 

SNS CCDTL tanks installed in tunnel 



RF Cavity Excitation  
Standing Waves 
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DTL Phase Synchronism 
Synchronizing Particle Velocity and RF Phase 
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TM010 Cavities 
Drift spaces 

•  Suppose we want a particle to arrive at the center of each gap at φ=0.  Then 
we space the drifts so that transit time Δt is equal to the RF period 1/f. 

For example…. 

l1 l2 l3 l4 l5 

β1 β2 β3 β4 β5 



Zero-mode excitation of a Drift Tube Linac Tank 

φ = ωt = 0, Ez = E0 
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Zero-mode excitation of a Drift Tube Linac Tank 

φ = ωt = π/2, Ez=0 
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Zero-mode excitation of a Drift Tube Linac Tank 

φ =ωt = π, Ez= -E0 
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Zero-mode excitation of a Drift Tube Linac Tank 

φ = ωt = 3π/2, Ez = 0 
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Zero-mode excitation of a Drift Tube Linac Tank 

φ = ωt = 2π, Ez = E0 
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Accelerating Structures 
Control Room Application – Phase Synchronization 
•  In order for the (linear) accelerating structure to accelerate to full energy 

•  The phase of the klystron must be synchronized to the arrival of the particle beam. 
 

•  This is a common accelerator system task and building an application to do so is 
also common 
 

•  The basic technique many such applications employ is to scan the phase of a 
single klystron driving a cavity then note the propagation time of the beam to 
some downstream location 
•  The propagation time is smallest for the largest acceleration by the cavity 
•  The klystron phase corresponding to the largest acceleration must be the zero reference 

phase of the cavity. 

•  (Typically the cavity design phase is retarded by 20 to 30 degrees to provided 
longitudinal focusing) 
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Modeling Acceleration 
The Panofsky Equation 

In general, for an RF gap (say, between drift tubes) we can approximate the 
energy gain ΔW of a particle with the following assumptions: 

•  The RF structure (i.e., “tank”) is cylindrically symmetric 

•  The velocity of the particle does not drastically increase in the gap 
•  Proton or heavy ion 
•  Relativistic electron 

•  The total gap electric potential is V = ∫Ezdz (across the gap) 

•  The “wave number” of the particle is                  where    is the “average” 
velocity through the gap 

•  The the following equation is known as the Panofsky equation … 
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Modeling Energy Gain 
The Panofsky Equation and Interpretation 

•  V is the potential drop across the entire gap 
•  φ0 is the RF phase when the particle is in the gap center 
•  T is the Fourier cosine transform of Ez with a centered gap 

•  In Accelerator vernacular, it is call the transit time factor  
•  After normalization, the largest value is unity 
•  Loosely represents lost energy from finite time gap transit 

 
•  S is the Fourier sine transform of Ez with a centered gap 

•  It then represents the field error from mis-shapen electrodes 
•  When φ0 is 90 degrees these errors are most serious 

•  Bessel function I0(Kr) represents off-axis loss in energy  
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ΔW = qV T (k )cosϕ0 − S(k )sinϕ0#$ %&I0 (Kr) γβ
ω 1
c

K =



Acceleration 
Summary 
• Only electric fields in the direction of propagation can affect 

energy gains of the beam particles 
• Accelerating structures are resonant RF cavities which are 

designed to have strong electric fields in the longitudinal 
direction 

• Because of time-varying fields, particles must enter the 
acceleration gaps at the proper RF phase to experience 
acceleration 

•  The modeling equation for RF gaps is the Panofsky equation 
which relations energy gain to gap potential, particle velocity, 
and transit time factor 
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Supplemental Material 
• Derivation of the Panofsky equation 
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Details of Energy Gain* 
The Panofsky Equation and Transit Time Factor 

Objective: compute the energy gain ΔW of particle through an RF 
gap 
•  To preserve Liouville’s theorem there is also an associated phase jump Δφ 

for particle 

•  An analytic computation is difficult because 
•  The fields are functions of time 
•  The fields are functions of position 
•  The particle’s position is a function of time 

•  We can make simplifications and approximations to arrive at 
Panofsky Equation 
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Energy Gain 
Cylindrical RF Gap 

Energy gain through RF gap 

•  Given 
•  Cylindrical Symmetry 
•  Time-harmonic fields 
•  Ez(r,z) on axis 

•  Assumptions 
•  Particle axial velocity vz can be 

approximated constant through gap 
•  No radical change in radial position r 

through gap 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure : RF gap geometry 

1/30/14 USPAS 27 

r

s−L/2 +L/2
s = 0

E(r,z)

a



Electromagnetic Fields 
Longitudinal Electric Fields 

•  Maxwell’s Equations 

•  Combining E creates vector 
wave equation 

•  Assuming time-harmonic form 
cos(ωt+φ0) 

•  Vector harmonic oscillator 
equation where  
  k2=ω2/c2   
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The general solution for the spatial component of the longitudinal electric 
field Ez(r,z) to the above can be expressed  



Electromagnetic Fields 
Longitudinal Electric Fields 

•  Radial standing wave with dispersion relation 

•  Applying boundary conditions at on axis (r = 0) and by properties 
of Fourier transform 
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T(k) is Fourier cosine transform of Ez(0,z)  

S(k) is Fourier sine transform of Ez(0,z)  

(in the transform we assume Ez is from a single gap so that Ez → 0 far from the gap) 



Energy Gain 
Computing Work with Longitudinal Electric Fields 

•  Putting it all together 

•  Where we have interchanged the order of integration 
 

•  The dispersion relation is 

•  The particle is at location z at time t(z) where 
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Energy Gain 
The Velocity Assumption 

•  The particle is at location z at time t(z) where 
•  This expression is inconvenient since axial velocity is a function of 

energy W  
•  Inconvenient or not t(0) = 0  ⇒ φ0 is the mid-gap RF phase 

•  Assumption: The axial velocity vz(t) through the gap can be 
approximated by a constant vz 
•  Typically valid for protons at most energies 
•  Valid for electrons for energies > 511 MeV 

•  The value of vz is usually taken to be the average of the 
initial and final velocities through the gap.  
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Energy Gain 
The Velocity Assumption (cont) 

•  On average 

•  Thus,  

•  where  
 

•  Note 

•  We can now compute the integration over z for ΔW  
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Energy Gain 
Computing Work with Longitudinal Electric Fields 

• Using the following facts 

• We get 
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Where we have ignored the dependence of r upon z. 



Energy Gain 
Computing Work with Longitudinal Electric Fields 

•  One final adjustment: note that for the Fourier cosine transform 
 
 
where V is the potential across the gap. 

•  This is the largest value for both T(k) and S(k) and we usually 
normalize to it.   
•  That is, T → 2πT(k)/V  

             S → 2πT(k)/S  
Thus…  

•  The above is referred to as the Panofsky equation 
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Energy Gain 
Interpreting the Panofsky Equation 

•  V is the potential drop across the entire gap 
•  φ0 is the RF phase when the particle is in the gap center 
•  T is the Fourier cosine transform of Ez with a centered gap 

•  In Accelerator vernacular, it is call the transit time factor  
•  After normalization, the largest value is unity 
•  Loosely represents lost energy from finite time gap transit 

 
•  S is the Fourier sine transform of Ez with a centered gap 

•  It then represents the field error from misshapen electrodes 
•  When φ0 is 90 degrees these errors are most serious 

•  I0(Kr) represents off-axis lose in energy  
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