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Mathematical Programming 
Introduction: Real World Problem Formulation 
•  Goals, Objectives, and Figure-of-Merit (FOM) 

•  Goal - Want to make something happen 
•  E.g. minimize orbit deviation 

•  Figure of merit (FOM) quantizes progress of this goal 
•  Figure of merit also called “objective” in mathematical programming 

•  Variables 
¡  What you vary to achieve your goal (affecting the figure-of-merit) 

¡  E.g. dipole corrector strengths 
¡  Usually these have limits (power supply capabilities) 

•  Constraints 
•  Variables can only live in a certain region of parameter space 

•  E.g. keep the orbit deviation at some point fixed in order to go around an 
obstruction 
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Mathematical Programming 
Introduction: Constrained Optimization 

•  One way of implementing constraints is through penalty functions 
•  Optimization is penalized when variables go out of bounds 

•  Constrained optimization versus penalty functions 
•  Some packages include constrained optimization directly 
•  Otherwise you can augment the FOM with a penalty function 

•  E.g. FOM = Cost + Penalty where  
   penalty = 1 –  (bending field/existing magnet capability)2 

•  This has drawbacks though (the terms can fight each other) 

•  Most optimization packages minimize the FOM,  
•  If you need a maximization just use 1/FOM 

•  Variables  
•  Usually the user provides a list of the variables and their limits 



Mathematical Programming 
Introduction: Non-linear Constrained Optimization 

• Great for solving real world problems 

• You don’t need to know any math! (well, a little) 

•  In years past with slower processors, many techniques involved 
using advanced mathematical techniques – appropriate for the 
particular application 

• Now-days a sledge hammer works fine  

• Open XAL has such a sledge hammer in its toolbox (the “Solver”) 



Example of a Non-linear Solver Application 

• XAL RF Phase 
setting application 
(PASTA) 

•  Large variations of 
the RF phase result 
in non-linear effects 
on the beam 

RF Phase setpoint (vary 10’s of degrees) 
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Mathematical Programming 
Overview 
•  Most problems involving optimization and/or the solution of 

nonlinear equations can be put into the framework of mathematical 
programming. 
•  Usually we have several free parameters (e.g., magnet strengths) -  the vector 

x represents these parameters in the vector space where we are looking for 
solutions (typically Rn) 

•  We take an initial “guess” for the solution x0  

•  Using an (intelligent?) algorithm we iteratively update the current value of xi 
to xi+1 usually with a policy of the form 

   xi+1 = xi + αid  
 
where di is the search direction and  αi is the search length at the ith iteration. 
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Mathematical Programming 
Overview (cont.) 
•  The method by which we chose the search direction di identifies the 

algorithm.  (Still a topic of current research.) 

•  Some of the more popular are… 
•  Newton (Ralphson) – simple technique based on derivatives 
•  Conjugate gradients – the “expanding subspace” theorem 
•  GMRES – Generalized minimal residual (reducing res. error) 
•  Simplex – Inspection of constraint vertices 
•  Genetic Algorithms – Analogous to genetic base pair expression 
•  Dynamic Programming – Hamilton-Jacobi-Bellman equation 

•  For example, when using the Newton method to minimize a functional 
J(x), the search directions are picked in the direction opposite to the 
gradient ∇J(x) 
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Mathematical Programming 
Overview (cont.) 

• Many of these algorithms are “canned” in mathematical 
software packages 
•  Consequently they are easy to employ 
•  In order to use one of these canned mathematical programming packages 

(for equation solving, or for optimization), we need to formulate our 
problem as a mathematical programming problem. 
 

•  For example, nonlinear optimization is a basic mathematical 
programming application 
•  Basic (unconstrained) minimization problem 
 Given a functional J : Rn → R, 
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find x ∈ Rn such that J(x) ≤ J(x) for all x ∈ Rn

or x = argmin
x∈Rn

J(x)

J is the 
Figure of 

Merit 



Mathematical Programming 
A Warning on Algorithms 

•  Some mathematical programming algorithms rely upon the smoothness of 
the objective J(x) 
•  These algorithms tend to use derivative information to compute the {di}  
•  Taking derivatives of noisy data can lead to problems – the noise component is 

usually amplified 

•  When working with parameters x obtained from experimental data it may be 
wise to avoid the so-called descent algorithms that typically employ the 
gradient  of J(x) (at least approximately).  Instead, try algorithms using direct 
evaluation… 
•  Genetic algorithms 
•  Simplex algorithms 
•  Etc. 

•  Note, however, repeated direct evaluation can be expensive! 
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Mathematical Programming 
Example: Function Minimization via Newton 

Newton minimization: Newton minimization is arguably the most simple 
descent-type algorithm where the search directions are picked as -∇J(xi) 
 
•  For any point xi, the gradient -∇J(xi) gives search direction di 

•  The search length αi is determined through a separate line search 
algorithm which minimizes the scalar function 
 

 φi(α) ≡ J(xi + αdi) 

•  Thus we have 
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Mathematical Programming 
Example (cont.): Function Minimization via Newton 

Consider the nonlinear functional on the plane R2  

•  For any point x, the gradient ∇J(x) gives -d 
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Mathematical Programming 
Example (cont.): Function Minimization via Newton 

•  For example, starting at x0 = (0,0) 

•  For the next iterate we compute 
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Mathematical Programming 
Example (cont.): Function Minimization via Newton 

•  However, if we start from a different initial 
guess x0 = (0, 1/2) 

 we end up in a different place. 
 
•  This is the general nature of nonlinear 

programming. 
•  Existence - Local solutions ? 
•  Uniqueness - Global solution ? 
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Plot of J(x) over larger domain 

Mathematical Programming 
Mathematical Program Eg.: Function Minimization via Newton 

•  Our example problem   

 has solutions wherever  
 
 
 
 They are ubiquitous. 

 
•  This is another property 

nonlinear programming 
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Mathematical Programming 
Solution of Nonlinear Equations 

•  Many times we are faced with a problem of the form 
 
 

•   
 
 
which we abbreviate f(x) = y (vector notation ) 
•  The functions fi are nonlinear in their arguments xi. 

•  For example, consider the system 
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Mathematical Programming 
Solution of Nonlinear Equations: Example (continued) 

•  Consider geometric interpretation of 
example problem 

•  The solution of the nonlinear problem occurs 
at points in the plane where both equations 
are satisfied. 
•  Here we have two solutions 
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Mathematical Programming 
Solution of Nonlinear Equations: Variational Techniques 

•  Rather than trying to solve the nonlinear equation f(x) = y directly 
(there are techniques for this), another approach is to minimize the 
functional J(x)  
 
 

 That is,  
 

  
•  If we find an x0 such that J(x0) = 0, then clearly f(x0) = y. 

•  However, a minimizer x0 of J(x) does not guarantee that J(x0) = 0 
(that is, it is possible that J(x0) > 0 even though J(x0) is a minimum) 
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Mathematical Programming 
Variational Technique Example 

•  Recall our nonlinear problem example 

•  The variational form is     

•  It has the same solutions 

June 16-27, 2008  USPAS 19 

( ) ( )

( ) ( )
122

1

)()()()(

2
2

2
121

2
2

2
1

4
2

4
1

22
2

2
1

2
21

2
22

2
11

2

+−−+++=

−−++=

−+−=−≡

xxxxxxxx

xxxx

fyfyJ xxxfyx

,1)(

,0)(

2
2
2

2
12

1211

yxxf

yxxf

==+=

==+=

x

x

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

+
=

2/1
2/1,

2/1
2/1x

global 
minima 



feasible region 

Mathematical Programming 
Constraints: A Variational Approach and Penalties 

Sometimes we are faced with a constrained problem, 
where the solution must lie in a feasible region 
described by the equation 

  h(x) = 0  

•  This equality indicates that the solution exists on 
a smooth surface (or “manifold”) in Rn  

•  A variation approach also works here by 
introducing a “tuning parameter” c > 0 
 
 

•  In general, the penalty function “pushes” the 
minimization process into the feasible region.   
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Mathematical Programming 
Review 
•  Mathematical programming 

implies  
xi+1 = xi + αid  

•  Every mathematical 
programming problem has a 
weak (or variational) form. 

•  Solutions of the weak form 
are not guaranteed to be 
solutions of the original 
problem 
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Supplemental Material 
• More details on mathematical programming 
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Mathematical Programming 
Problems with Constraints 

•  Many times we are faced with 
problems whose solutions must 
remain within a specific region of 
parameter space 
•  For example, we cannot drive magnet 

strengths beyond their power supply 
ratings. 
 

•  These constraints are usually 
expressed as inequalities of the form 
 
 
 
 
which can be abbreviated g(x) ≤ 0 
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Mathematical Programming 
Problems with Constraints 

•  The following (linear) constraints 
defined the shaded region in the 
plane: 

•  Most nonlinear programming 
packages accept solution constraints 
if put into this form. 
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Mathematical Programming 
Solution of Nonlinear Equations with Constraints 

• Most nonlinear equations with constraints can be put 
into the vector form 
 

 f(x) = y   
 g(x) ≤ 0  

•  In general, problems with constraints  
are much more difficult to solve than those without. 
•  However, by using “canned” software packages and expressing 

the constraints in the form described, this fact is hidden from 
the user. 
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Mathematical Programming 
Constrained Nonlinear Equations: Penalty Function Approach 

•  Starting with the nonlinear problem 
 f(x) = y   
 g(x) ≤ 0  

•  As before, we convert f(x) = y to the weak 
form 
min | y – f(x) |2 

•  We then add a term, the “weak” form for the 
constraints g(x) ≤ 0, typically called the 
penalty term 

   min | y – f(x) |2 + c 2 | g(x) | 2  
 

  c > 0   if g(x) > 0 
  c = 0   if g(x) < 0 
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Note: If g(x) ≤ 0 then we are 
in the feasible region and the 
constraints are not binding; 
thus, c = 0. 

 
 
     feasible region 
            g(x) ≤ 0 
 
        ⇒ c = 0  
 

unfeasible region c ≠ 0 


