
CONTROL ROOM
ACCELERATOR PHYSICS

Day 3
Mathematical Programming and the XAL Solver

1/29/14 J-PARC 1

Outline

1.  Introduction

2.  Quantizing the Optimum

3.  Mathematical Programming

4.  Optimization

5.  Solving Nonlinear Equations

1/29/14 USPAS 2

Mathematical Programming
Introduction: Real World Problem Formulation
•  Goals, Objectives, and Figure-of-Merit (FOM)

•  Goal - Want to make something happen
•  E.g. minimize orbit deviation

•  Figure of merit (FOM) quantizes progress of this goal
•  Figure of merit also called “objective” in mathematical programming

•  Variables
¡  What you vary to achieve your goal (affecting the figure-of-merit)

¡  E.g. dipole corrector strengths
¡  Usually these have limits (power supply capabilities)

•  Constraints
•  Variables can only live in a certain region of parameter space

•  E.g. keep the orbit deviation at some point fixed in order to go around an
obstruction

June 16-27, 2008 USPAS 3

Mathematical Programming
Introduction: Constrained Optimization

•  One way of implementing constraints is through penalty functions
•  Optimization is penalized when variables go out of bounds

•  Constrained optimization versus penalty functions
•  Some packages include constrained optimization directly
•  Otherwise you can augment the FOM with a penalty function

•  E.g. FOM = Cost + Penalty where
 penalty = 1 – (bending field/existing magnet capability)2

•  This has drawbacks though (the terms can fight each other)

•  Most optimization packages minimize the FOM,
•  If you need a maximization just use 1/FOM

•  Variables
•  Usually the user provides a list of the variables and their limits

Mathematical Programming
Introduction: Non-linear Constrained Optimization

• Great for solving real world problems

• You don’t need to know any math! (well, a little)

•  In years past with slower processors, many techniques involved
using advanced mathematical techniques – appropriate for the
particular application

• Now-days a sledge hammer works fine

• Open XAL has such a sledge hammer in its toolbox (the “Solver”)

Example of a Non-linear Solver Application

• XAL RF Phase
setting application
(PASTA)

•  Large variations of
the RF phase result
in non-linear effects
on the beam

RF Phase setpoint (vary 10’s of degrees)

B
ea

m
 A

rr
iv

al
 T

im
e

D
ow

ns
tre

am

Linear response regime

Mathematical Programming
Overview
•  Most problems involving optimization and/or the solution of

nonlinear equations can be put into the framework of mathematical
programming.
•  Usually we have several free parameters (e.g., magnet strengths) - the vector

x represents these parameters in the vector space where we are looking for
solutions (typically Rn)

•  We take an initial “guess” for the solution x0

•  Using an (intelligent?) algorithm we iteratively update the current value of xi
to xi+1 usually with a policy of the form

 xi+1 = xi + αid

where di is the search direction and αi is the search length at the ith iteration.

June 16-27, 2008 USPAS 7

Mathematical Programming
Overview (cont.)
•  The method by which we chose the search direction di identifies the

algorithm. (Still a topic of current research.)

•  Some of the more popular are…
•  Newton (Ralphson) – simple technique based on derivatives
•  Conjugate gradients – the “expanding subspace” theorem
•  GMRES – Generalized minimal residual (reducing res. error)
•  Simplex – Inspection of constraint vertices
•  Genetic Algorithms – Analogous to genetic base pair expression
•  Dynamic Programming – Hamilton-Jacobi-Bellman equation

•  For example, when using the Newton method to minimize a functional
J(x), the search directions are picked in the direction opposite to the
gradient ∇J(x)

June 16-27, 2008 USPAS 8

Mathematical Programming
Overview (cont.)

• Many of these algorithms are “canned” in mathematical
software packages
•  Consequently they are easy to employ
•  In order to use one of these canned mathematical programming packages

(for equation solving, or for optimization), we need to formulate our
problem as a mathematical programming problem.

•  For example, nonlinear optimization is a basic mathematical
programming application
•  Basic (unconstrained) minimization problem
 Given a functional J : Rn → R,

June 16-27, 2008 USPAS 9

find x ∈ Rn such that J(x) ≤ J(x) for all x ∈ Rn

or x = argmin
x∈Rn

J(x)

J is the
Figure of

Merit

Mathematical Programming
A Warning on Algorithms

•  Some mathematical programming algorithms rely upon the smoothness of
the objective J(x)
•  These algorithms tend to use derivative information to compute the {di}
•  Taking derivatives of noisy data can lead to problems – the noise component is

usually amplified

•  When working with parameters x obtained from experimental data it may be
wise to avoid the so-called descent algorithms that typically employ the
gradient of J(x) (at least approximately). Instead, try algorithms using direct
evaluation…
•  Genetic algorithms
•  Simplex algorithms
•  Etc.

•  Note, however, repeated direct evaluation can be expensive!

June 16-27, 2008 USPAS 10

Mathematical Programming
Example: Function Minimization via Newton

Newton minimization: Newton minimization is arguably the most simple
descent-type algorithm where the search directions are picked as -∇J(xi)

•  For any point xi, the gradient -∇J(xi) gives search direction di

•  The search length αi is determined through a separate line search
algorithm which minimizes the scalar function

 φi(α) ≡ J(xi + αdi)

•  Thus we have

June 16-27, 2008 USPAS 11

α
αi

φi(α)

iiii

ii

n

ii

xJ

xJ
J

dxx

xd

α

αφα
α

+=

=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∂∂

∂∂

−=−∇=

+1

1

)(minarg
/

/
)(

Mathematical Programming
Example (cont.): Function Minimization via Newton

Consider the nonlinear functional on the plane R2

•  For any point x, the gradient ∇J(x) gives -d

June 16-27, 2008 USPAS 12

J(x) = sin x1 + x2
2() where x =

x1
x2

!

"

#
#

$

%

&
& ∈ R

n

() () ⎥⎦
⎤

⎢⎣
⎡ +−++−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
−=−∇=

22
212

2
2

2
211

2
212

2
21

)cos(2)cos(sinminarg

)cos(2
)cos()(

xxxxxxx

xxx
xxJ

i

ii

ααα
α

xd

()221sin)(xxJ +=x

x0

Mathematical Programming
Example (cont.): Function Minimization via Newton

•  For example, starting at x0 = (0,0)

•  For the next iterate we compute

June 16-27, 2008 USPAS 13

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
=⇒

⎪
⎭

⎪
⎬

⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
=

=

0
2/

0
1
2/

1
0

0 π
πα

xd

After which xi = (-π/2,0) for i >1 0.5 1.0 1.5 2.0 2.5 3.0
a

-1.0

-0.8

-0.6

-0.4

-0.2

f0HaL α0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
0
0

1d

x1

Mathematical Programming
Example (cont.): Function Minimization via Newton

•  However, if we start from a different initial
guess x0 = (0, 1/2)

 we end up in a different place.

•  This is the general nature of nonlinear

programming.
•  Existence - Local solutions ?
•  Uniqueness - Global solution ?

June 16-27, 2008 USPAS 14

,
077.0
577.1

,
2/1
1

,
2/1
0

210 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= xxx

Plot of J(x) over larger domain

Mathematical Programming
Mathematical Program Eg.: Function Minimization via Newton

•  Our example problem

 has solutions wherever

 They are ubiquitous.

•  This is another property

nonlinear programming

June 16-27, 2008 USPAS 15

()221sin)(min xxJ +=x
x

…… ,1,0,1,
2
122

21 +−=
+

=+ nnxx π

previous domain

Mathematical Programming
Solution of Nonlinear Equations

•  Many times we are faced with a problem of the form

• 

which we abbreviate f(x) = y (vector notation)
•  The functions fi are nonlinear in their arguments xi.

•  For example, consider the system

June 16-27, 2008 USPAS 16

mnm

n

yxxf

yxxf

=

=

),,(

),,(

1

111

…

…

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

+≡

+≡

⎭
⎬
⎫

=+

=+

1
0

,)(
,)(

1
0

2
2

2
12

211
2
2

2
1

21 y
x
x

xxf
xxf

xx
xx

Mathematical Programming
Solution of Nonlinear Equations: Example (continued)

•  Consider geometric interpretation of
example problem

•  The solution of the nonlinear problem occurs
at points in the plane where both equations
are satisfied.
•  Here we have two solutions

June 16-27, 2008 USPAS 17

,1)(

,0)(

2
2
2

2
12

1211

yxxf

yxxf

==+=

==+=

x

x

x1

x2
f2(x) = y2

f1(x) = y1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

+
=

2/1
2/1,

2/1
2/1x

Mathematical Programming
Solution of Nonlinear Equations: Variational Techniques

•  Rather than trying to solve the nonlinear equation f(x) = y directly
(there are techniques for this), another approach is to minimize the
functional J(x)

 That is,

•  If we find an x0 such that J(x0) = 0, then clearly f(x0) = y.

•  However, a minimizer x0 of J(x) does not guarantee that J(x0) = 0
(that is, it is possible that J(x0) > 0 even though J(x0) is a minimum)

June 16-27, 2008 USPAS 18

2)()(xfyx −≡J

2)(min)(xfyyxf
x

−⇒=

J(x)

Mathematical Programming
Variational Technique Example

•  Recall our nonlinear problem example

•  The variational form is

•  It has the same solutions

June 16-27, 2008 USPAS 19

() ()

() ()
122

1

)()()()(

2
2

2
121

2
2

2
1

4
2

4
1

22
2

2
1

2
21

2
22

2
11

2

+−−+++=

−−++=

−+−=−≡

xxxxxxxx

xxxx

fyfyJ xxxfyx

,1)(

,0)(

2
2
2

2
12

1211

yxxf

yxxf

==+=

==+=

x

x

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

+
=

2/1
2/1,

2/1
2/1x

global
minima

feasible region

Mathematical Programming
Constraints: A Variational Approach and Penalties

Sometimes we are faced with a constrained problem,
where the solution must lie in a feasible region
described by the equation

 h(x) = 0

•  This equality indicates that the solution exists on
a smooth surface (or “manifold”) in Rn

•  A variation approach also works here by
introducing a “tuning parameter” c > 0

•  In general, the penalty function “pushes” the
minimization process into the feasible region.

June 16-27, 2008 USPAS 20

22)()(min xhxfy
x

c+− The magnitude of tuning
parameter c determines
how hard we push.

Mathematical Programming
Review
•  Mathematical programming

implies
xi+1 = xi + αid

•  Every mathematical
programming problem has a
weak (or variational) form.

•  Solutions of the weak form
are not guaranteed to be
solutions of the original
problem

June 16-27, 2008 USPAS 21

0xg
0xh
yxf

0xh
yxf

yxf

≤

=

=

=

=

=

)(
)(
)(

)(
)(

)(

0xg
0xg

xgxxfy

xxfy

xfy

x

x

x

>>

≤=

++−

+−

−

)(if0
)(if0

)()()(min

)()(min

)(min

222

22

2

d
d

dhc

hc

Original Problem Variational Form

(see supplemental material)

Supplemental Material
• More details on mathematical programming

June 16-27, 2008 USPAS 22

Mathematical Programming
Problems with Constraints

•  Many times we are faced with
problems whose solutions must
remain within a specific region of
parameter space
•  For example, we cannot drive magnet

strengths beyond their power supply
ratings.

•  These constraints are usually
expressed as inequalities of the form

which can be abbreviated g(x) ≤ 0

June 16-27, 2008 USPAS 23

,0),,(

,0),,(

1

11

≤

≤

nm

n

xxg

xxg

…

…

Mathematical Programming
Problems with Constraints

•  The following (linear) constraints
defined the shaded region in the
plane:

•  Most nonlinear programming
packages accept solution constraints
if put into this form.

June 16-27, 2008 USPAS 24

,0),,(

,0),,(

1

11

≤

≤

nm

n

xxg

xxg

…

…

0
0
,022
,022

2

1

21

21

≤−

≤−

≤−+

≤−+

x
x

xx
xx

Mathematical Programming
Solution of Nonlinear Equations with Constraints

• Most nonlinear equations with constraints can be put
into the vector form

 f(x) = y
 g(x) ≤ 0

•  In general, problems with constraints
are much more difficult to solve than those without.
•  However, by using “canned” software packages and expressing

the constraints in the form described, this fact is hidden from
the user.

June 16-27, 2008 USPAS 25

Mathematical Programming
Constrained Nonlinear Equations: Penalty Function Approach

•  Starting with the nonlinear problem
 f(x) = y
 g(x) ≤ 0

•  As before, we convert f(x) = y to the weak
form
min | y – f(x) |2

•  We then add a term, the “weak” form for the
constraints g(x) ≤ 0, typically called the
penalty term

 min | y – f(x) |2 + c 2 | g(x) | 2

 c > 0 if g(x) > 0
 c = 0 if g(x) < 0

June 16-27, 2008 USPAS 26

Note: If g(x) ≤ 0 then we are
in the feasible region and the
constraints are not binding;
thus, c = 0.

 feasible region
 g(x) ≤ 0

 ⇒ c = 0

unfeasible region c ≠ 0

