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Linear Beam Optics 
Overview 

•  Accelerator systems employ a full complement of magnetic and RF 
devices for their operation 
•  The RF devices are used for acceleration 
•  The magnetic devices are used for transport and containment 

•  Here we focus on magnets, modeling acceleration is beyond scope 
•  Motion of charged particles through these magnets is analogous to the 

behavior of light rays through optical devices 

•  Consider only the 1st order forces of magnetic fields 
•  The resulting equations of motion are linear – Matrices! 

•  Some magnets are specifically 2nd order and higher 
•  We shall not consider these in linear beam optics 
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Motion about the Reference Trajectory 

When designing an accelerator, the first step is to define a reference 
trajectory.  Only the ideal, or synchronous, particle actually follows this 
trajectory.  All other beam particles follow trajectories about the design 
trajectory. 
 
What we really need is a model describing particle deviations from the 
reference trajectory.   

φo 
ρo 

ds 

φ 

ρ 

dσ 

x 

The idea is to subtract the 
reference trajectory from the 
actual trajectory, and then take the 
linear approximation by 
discarding all higher order 
terms…  
 
This gives us equations for “x, y, 
and z”, which are the particle 
coordinates about the reference 
trajectory. 

Motivation 
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Implementing the Beamline 
Beamline Elements 

• Once the reference trajectory is 
agreed upon we employ a 
series of magnets to define the 
physical beamline 
•  These magnets are typically 

“multi-pole” structures which 
produce the simplest type of fields 
possible 
•  Simplifies analysis 
•  Reduces beam degradation 

•  The fields, in turn, produce the 
required forces on the beam 
particles 

1/27/14 

N 

S 

N 

S 

S 

N 

N 

S S 

S 

N N 

5 USPAS 



We name magnet types by the number n of pole faces from which it is 
composed. 

180° between 
poles 

90° between poles 60° between 
poles 

n=1: Dipole  n=2: Quadrupole n=3: Sextupole n=4: Octupole 

45° between 
poles 

•  In general, poles are equally space and 360°/2n apart. 
• The pole faces and their spacing determine the magnetic field pattern 
•  The “skewed” version of the magnet is obtained by rotating magnet by 180°/2n. 
• The field patterns determine the forces applied on the beam particles. 

Other N-Pole Magnets Magnet Families 
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N-Pole Uses 
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Bending (following reference 
trajectory) 

Focusing the beam 

“Chromatic compensation” 

Multi-pole Magnet Applications for Beamlines 
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Magnet Photos 
Magnet examples 

Dipole 

Quadrupole 

Sextupole 
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Magnet Forces 
From Physics to Engineering: Designing the Particle Forces 

•  Magnets produce magnetic field B(x,y,z)  
•  For field-free region of multi- pole, field equations are Laplace’s Eq. 

•  Fields create a force F on particle with velocity V at position (x,y,z)  from 
the Lorentz force law 

•  Forces then affect the motion of the particles through Newton’s equations 
of motion (or Hamiltonian dynamics) 
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Magnetic Forces 
Designing the Beamline 
•  It is up to the skill of the designer to  

1.  Create a magnet with high-quality fields using the field equations 
2.  Align the magnet to produce the correct force on the particle using the 

Lorentz force law 
3.  Ensure that the particles are deflected appropriately using the 

equations of motion 
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Modeling the Reference Trajectory 
Beam Frame Coordinates 

•  Now consider a special coordinate system (x,y,z) that follows the 
synchronous particle along the design orbit parameterized by 
path length s.  We call it the beam frame. 

•  Synchronous particle located at origin (x,y,z) = (0,0,0)  
•  Coordinates x and y are horizontal  and vertical offsets, resp. 
•  Coordinate z represents longitudinal offset from origin.   

•  Sometimes use phase θ w.r.t. the RF 
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Synchronous particle 
•  Has position x = y = z = 0 
•  No momentum offset x’ = y’ = z’ = 0 
•  Travels at velocity v0 = β0c  
•  Has design momentum p0 = β0γ0mc 



Modeling the Reference Trajectory 
The “Beam Frame” 

•  The beam frame is not an inertial frame 
•  A laboratory frame that follows synchronous particle 
•  All beam particles are identified by their coordinates in this frame 
•  We can Lorentz transform to the stationary beam frame if necessary 

•  (This is done for space charge calculations) 

Reference trajectory 
s(t) 

z 

x 
y 

Synchronous 
particle at R0(s) 

( x(s), y(s), z(s) ) Beam particle at  
r = (x,y,z) 
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0
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p

ds
dzz

p
p

ds
dyy

p
p

ds
dxx

y

x

Δ
≈=ʹ′

≈=ʹ′

≈=ʹ′

γ

“Momentum” 
coordinates 

R0(s) 

12 USPAS 



Longitudinal Coordinate 
Longitudinal Coordinate Conventions (Open XAL Longitudinal Coordinate) 
•  Phase space coordinate z’ is different than commonly used 

momentum offset parameter δ 
•  Coordinate z’ represents positional drift away from origin  
•  Coordinate δ represents the fractional deviation from design momentum 
•  They are related according to  

•  γ0
2 is the relativistic factor 

(length contraction and time dilation) 
 

•  Note finally total longitudinal velocity v is  
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Longitudinal Coordinate 
Special Relativity 

ONCE AGAIN: 
Longitudinal coordinate is special because it points in 

direction of propagation 
•  Special Relativity must be considered, ergo the relation 

 

 
• Alternate representations longitudinal “momentum”  

•  Longitudinal divergence angle z’ ≡ dz/ds  
•  Off-momentum parameter       δ  ≡ (p - p0)/p0  
•  Energy difference parameter ΔW ≡ W - W0  
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XAL uses z’ 
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Longitudinal Momentum  
Comparison 

Longitudinal Divergence z’ 

•  z’ → 0 as γ0 → ∞ (as v → c) 
•  Symmetric dynamics equations 
•  Convenient for space charge  
•  Numerically sensitive at high energy 
•  Probably better suited for protons 

Momentum difference δ 

•  δ can remain finite even if γ0 → ∞ 
•  Asymmetric dynamics equations 
•  Convenient for dispersion 
•  Numerically stable at high energy 
•  Probably better suited for elections 
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Modeling the Beamline 
Transfer Matrix Approach to Linear Beam Optics 

•  Because we only consider linear forces we 
can use linear algebra 

•  We represent each beamline element n as a 
(transfer) matrix Φn(un) with element 
control parameters un identifying  
•  Magnet strength 
•  Magnet length 
•  Etc. 

•  Beam Particle Coordinates 
•  Each particle will be represented as a 

point in the six-dimension phase space 
 

•  z = (x,x’,y,y’,z,z’) 

•  Follows from the three spatial coordinates 
and the three corresponding momentum 
coordinates required for a solution to 
equations of motion 
 
 

•  Particle dynamics 

Our task then, is to start from the equations of motion and derive a matrix 
for each element which includes the effects of motion in a curva-linear 
coordinate system 
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Φ0 Φm Φm+1 Φnz1z0 zm

umu1

zm+1 zm+2 zn zn+1

um+1 un

Φm-1zm-1

um-1

Φm-1…Φ0

Φm…Φ0

Φ0 Φm+1-1…Φn-1

ΦnΦn-1…Φ0

Motivation 
Modeling the Entire Beamline 
•  Once we have each beamline element n represented (mathematically) as a 

transfer matrix Φn, the entire beamline can be modeled as a cascade of these 
elements; multiplication of the {Φn} being the dynamics 

•  We can propagate forward or backward through the network using the {Φn} 

1/27/14 

Note that each beamline 
element may also have 
a control parameter u 
associated with it. 
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Modeling the Beamline 
Strategy for Transfer Matrix Model Derivation 
•  The computational details for determining each beamline element 

matrix can be found in many excellent texts in accelerator physics. 
•  We will not present these derivations here 

•  We focus on a (somewhat nonstandard) high-level picture of how 
these computation follow 
•  In some global coordinate system (where the beamline is defned) we define 

the design trajectory as the spatial curve R0(s) 
•  We form a moving coordinate frame (x,y,z) with origin at R0(s) about which 

beam particles have coordinates r = (x,y,z) within that frame 
•  We write the equations of motion in the global frame, then take only first-

order terms of the forces 
•  We then translate the forces into the new moving frame 
•  From there, the matrices for individual elements can be derived without 

regard to the original (global) beamline 
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Modeling the Beamline Elements 
Equations of Motion (cont.) 

After some manipulation, the equations of motion for a beam 
particle can be put into the matrix form 

where  

z is the phase coordinate vector in the moving frame (re-ordered coordinates) 
Γ is the effect of the rotating frame (a gauge or connection, Coriolis, etc.)  
G is the 1st order force matrix in the moving frame 
 
In linear accelerators (linacs) Γ = 0 since the frame (x,y,z) does not rotate 
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Note here we have separated the position coordinate r = (x,y,z) from the 
momentum coordinates v = (x’,y’,z’) 
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Modeling the Beamline Elements 
Transfer Matrices 
•  Typically the matrices Γ(s) and G(s) are constant within a beamline 

element (e.g., magnet) 
•  Thus, the solution to  

 
 
is given by the matrix exponential z(s) = es(G-Γ) z0 where z0 = z(0)  

•  For particle motion within a beamline element n we have 
 

 
where 
 

 Gn is the generator matrix for element n (the applied forces) 
Γn is the coordinate connection for element n (inertial forces) 

 Φn is the transfer matrix for element n  
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Modeling the Beamline and Elements 
Summary 

•  The beamline is designed according to a reference orbit R0(s) and 
synchronous velocity V0(s) for distance s along the beamline. 
•  The quantities R0(s) and V0(s) are the position and velocity of the 

synchronous particle in the global coordinates (X,Y,Z) at a distance s. 

•  All other particles will propagate down the beamline in the vicinity 
of the synchronous particle.  To model this motion, we… 
•  Construct a moving, local coordinate system (x,y,z) about the synchronous 

particle to describing the relative position of the beam particles. 
•  Translate the 1st order forces of the magnets to this frame and also account 

for the internal forces of the moving frame with the connection  Γ. 
•  Express the equation of motion in the local frame.  The result is… 

A matrix-vector equation for the generalized particle coordinates r and 
momentum v (or phase coordinates z = (r,v) ). 
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Modeling the Beamline 
Practical Considerations 
•  In general we let the theoreticians and engineers compute the 

transfer matrices and connections for the beamline. 
•  Then we use the results for our model reference control and other high-

level applications 

• However, there are some cases that are simple to compute and, 
consequently, instructive for observing the process. 
•  Drift space – a field free region in a straight section of beamline 
•  Quadrupole magnet – a magnet in a straight section of beamline 
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Beamline Element Transfer Matrices 
Example: Drift Space 

•  The beamline is straight; therefore Γ(s) = 0 
•  No fields are present, thus, Gr and Gv are both zero so the matrix G is 
 
 
 
•  The solution for Φdrift(s) is  
 
 
 
•  Thus, the solution is Φdrift (s) = I + sG, or explicitly 
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This form differs slightly from others 
in the literature because we have taken 
z=(r,v) = (x,y,z,x’,y’,z’) rather than z = 
(x,x’,y,y’,z,z’) 

However, the matrix G is 
idempotent, that is,G2 = 0.  Thus 
esG is easy to compute. 
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Beamline Element Transfer Matrices 
Example: Drift Space (cont.) 
The single particle phase trajectory through a field free region (drift space) is then 

given by the matrix-vector equation 
 
 
where z0 is the phase coordinate at the entrance of the drift and  
 
 
 
 
 
 
 
is the transfer matrix for the drift space. 
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Beamline Element Transfer Matrices 
Example: Quadrupole Lens 
•  Ideal quadrupole magnets have fields B at position R defined by 

 
 
 
   (in global coordinates) where g is the field gradient ∂B/∂x, ∂B/∂y of the quadrupole 

•  The beamline is straight, thus Γ(s) = 0 

•  Computing the force differentials yields  

B(R) = Bx By Bz( ) = g(Y −Y0 ) g(X − X0 ) 0( )
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Beamline Element Transfer Matrices 
Example: Quadrupole Lens (cont.) 

•  The external force generator matrix is then 

•  where k2 = qg/p0 is the focusing constant 

•  The transfer matrix is given by Φquad(s) = esG  
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Beamline Element Transfer Matrices 
Example: Quadrupole Lens (cont.) 
•  The transfer matrix is then 
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Once again this form differs slightly 
from others in the literature because 
we have taken z=(x,y,z,x’,y’,z’) rather 
than z = (x,x’,y,y’,z,z’) 
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Beamline Element Transfer Matrices 
Example: Quadrupole Lens (cont.) 
•  In the conventional phase space coordinate z = (x,x’,y,y’,z,z’), ordering the 

quadrupole transfer matrix appears as 
 
 
 
 
 
 
 

 
where k ≡ (qG/p0)1/2    
 

•  NOTE: For straight beamlines it is also possible to compute this result directly 
using standard ODE techniques 
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Modeling the Beamline 
Putting It Together - Transfer Matrix Equations 
•  The transfer matrix Φn(s) for element n describes the element’s effects 

upon the state vector z of the beam particle through the length of the 
element. 

•  If the element has length ln then Φn(ln) is the effect of passing completely 
through the element. 

•  We can cascade each beamline element passing the beam state from the exit of 
one to the entrance of the next to simulate the effects of the entire beamline. 

•  The resulting modeling equations are 

 
where zn is the beam state at the entrance to element n and Φn is shorthand for Φn(ln). 

 
•  This formula describes the internal workings of the XAL online model 

nnn zΦz =+1
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Φ0 Φm Φm+1 Φnz1z0 zm

umu1

zm+1 zm+2 zn zn+1

um+1 un

Φm-1zm-1

um-1

Φm-1…Φ0

Φm…Φ0

Φ0 Φm+1-1…Φn-1

ΦnΦn-1…Φ0

Modeling the Entire Beamline 
Multi-stage control network 
•  In controls parlance we call such a configuration a multi-stage 

control network 
•  We can propagate forward or backward through the network using the {Φn} 

1/27/14 

Note that each beamline 
element may also have 
a control parameter u 
associated with it. 
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Modeling the Entire Beamline 
Applications: Model Reference Control 
•  If we have model of the beamline, that we can compare actual measurements 

from the machine to simulated ones from the online model.   

•  We can use the differences in these values to make inference about the 
operation of the machine. 

Δ	
 error ε 
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Beamline Modeling 
Beam Steering from a Control Theoretic Perspective 

•  Say we have Beam Position Monitors (BPMs) as our sensors, 
then our observables are the coordinates (x,y,z); that is, we do 
not have access to the full state vector – no momentum 
components 

•  Set  

•  Then 
 
where 

•  Our modeling equations are then 
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These are in the form of the discrete 
state space representation we have 
seen in linear systems 
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Summary 
•  We have a convenient method of modeling the beamline to 1st order 

•  This model provides a convenient reference for model reference 
control applications 

•  The model can be extended in a straightforward manner to handle the 
RMS statistics for a beam bunch. 

•  We can also treat the 1st order effects of space charge using this 
extension. 

•  Later we demonstrate how to instantiate an XAL online model that 
configures itself automatically for a selected AcceleratorSeq object. 
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Supplemental Material 
• More details on Linear Beam Optics 
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Modeling the Beamline 
Modeling the Particle Forces 

•  Let the global coordinates be (X,Y,Z) 
•  The design trajectory is represented by  

R0(s) = (X(s),Y(s),Z(s)) 
 

•  Let r = (x,y,z) be the position of an 
arbitrary particle in the beam frame. 
•  The  position R(s) of the beam particle in 

the global coordinates is then 
 
            R(s) = R0(s) + O(s)r  
 
where O(s) in SO(3) is an orthogonal matrix 
representing the orientation of  (x,y,z) with 
(X,Y,Z) 

•  (Recall that SO(3) is the set of 3D rotations) 
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Beamline Modeling 
Example: Local to Global Coordinate Transform 
•  For example, for a bend in the horizontal direction the matrix 

O(s) in SO(3) in R3×3 appears as 
 
 
 
 
where θ(s) is the angle between the x and X axes (or z and Z 
axes). 
•  Here O(s) is simply a clockwise rotation of (x,y,z) about the y axis. 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

≡=

θθ

θθ

θ

cos0sin
010
sin0cos

))(()( ss yOO

Z 

z 
θ 

X x 

1/27/14 36 USPAS 



Beamline Modeling 
Velocity vector in beam coordinates: Covariant Formulation 

To find the divergence R’(s) we 
differentiate R(s) with respect to s 
 
 
 
 
•  Let V0(s) ≡ βcR0’(s) be the velocity of the 

synchronous particle 
•  Let v ≡ βcOT(s)O’(s)r + βcr’ be the 

particle velocity w.r.t. the moving frame 
•  Define Ω(s) ≡ OT(s)O’(s) then  

 
 v = βcΩ(s)r + βcr’ 
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To find the velocity component V(s) first note that  
 

 V(s) = dR/dt = dR(s)/ds⋅ ds/dt = R’(s) ⋅ βc  
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Modeling Beam Dynamics 
The Covariant Formulation 
•  The matrix Ω(s) is known as a connection and contains the 

inertial effects of the moving frame (e.g., centripetal forces, 
Coriolis forces) 
•  Since we know O(s) from the design trajectory R0(s), we can always 

compute Ω(s) ≡ OT(s)O’(s)  a priori. 

•  This is the called the covariant formulation.   

•  Within the beam frame we can replace the differentiation operator d/ds 
with Ω(s) + d/ds to obtain the frame-invariant equations of motion. 

•  For example, we can find the acceleration vector A(s) in the global 
coordinates using the same procedure… 
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Modeling the Beamline 
Acceleration Vector: Covariant Formulation 

•  Starting from the velocity vector V(s) given by 
 
 
we have 

 
 

• Collecting everything 
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Beamline Modeling 
Example: Horizontal Bend 
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Modeling the Beamline Elements 
First-Order Forces 
•  The global particle force F is a function of particle position R 

and particle velocity V; that is  

 F = F(R,V) = F(R0 + Or,V0 + Ov) 
 
Expanding 
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Modeling the Beamline Elements 
Equations of Motion 
•  The mechanical momentum P = (Px,Py,Pz)for a beam particle 

(in global coordinates) is 

P ≡ γmV 
 
where  
 γ is the relativistic factor 
 m is particle mass 
 V = (Vx,Vy,Vz) is particle velocity 

•  The equations of motion for a beam particle with momentum P 
are ( )OaAAVPF +==ʹ′== 0mcmccm

dt
d

βγβγβγ

If there is no 
acceleration, then β’ and 
γ’ are zero 
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Modeling the Beamline Elements 
Equations of Motion (cont.) 

• Combining the previous equation with the force 
expansion out to first order produces 

•  Note that βγmcA0(s) = F[R0(s),V0(s)] is the equation of the 
synchronous particle, that is, this equation defines the design 
trajectory R0(s) and the design velocity V0(s). 
•  We may remove it from the above since it is already known 

•  The remaining component is the 1st order equations of motion 
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Modeling the Beamline Elements 
Equations of Motion (cont.) 
•  To make the previous equation more transparent define the 

following: 

•  These matrices are the 1st order force differentials about the design 
trajectory in the beam frame coordinates (x,y,z).   
(Usually we have these explicitly.) 

•  The equations of motion are then 
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Modeling the Beamline Elements 
Equations of Motion (cont.) 
•  The previous equation, along with the definition for v provides 

a complete set for the description of beam-particle 1st order 
motion 

•  where p0(s) ≡ β(s)γ (s)mc is the design particle momentum. 

•  We can put this into matrix-vector form (recognize this form?) 
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Modeling the Beamline Elements 
Equations of Motion (cont.) 

•  Even more compactly 

where 

z is the phase coordinate vector in the moving frame (re-ordered coordinates) 
Γ is the connection for the moving frame 
G is the 1st order force in the moving frame 
 
In linear accelerators (linacs) Γ = 0 since the frame (x,y,z) does not rotate 
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Modeling the Beamline Elements 
Transfer Matrices 
•  Typically the matrices Γ(s) and G(s) are constant within a beamline 

element (e.g., magnet) 
•  Thus, the solution to  

 
 
is given by the matrix exponential z(s) = es(G-Γ) z0 where z0 = z(0)  

•  For particle motion within a beamline element n we have 
 

 
where 
 

 Gn is the generator matrix for element n (the applied forces) 
Γn is the coordinate connection for element n (inertial forces) 

 Φn is the transfer matrix for element n  
  
 
 

0)()( zΦz ss n= ( )nns
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