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Advantages of using 

Laser 

 Short pulse duration 

 Large Bandwidth 

 Large EM field 

 Accurate phase 

information 

Methods: 

 Generated photons 

 FEL 

 Compton Scattering 

 Modify laser profile 

 Electro-optic effect 
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Invasive Techniques 
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Source of radiation and use of radiation for 

electron diagnostics  

Courtesy: E. Saldin et al. Proc. Of PAC 07, P. 965 

Use standard optical technique to measure beam parameters 

Slice emittance, longitudinal distribution of short (100 fs) electron 

bunch can not be measured by standard techniques generate 

optical replica of the electron beam 
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Laser wire scan 
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Courtesy: 

http://www.hep.ph.rhul.ac.uk/~kamps/lbbd/welcome.html#ScientificCase 



Non-invasive Techniques 
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Electro optic effect as e-  beam 

diagnostics 
What is electro-optic effect? 
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The electric polarization P can be written as 

ε0  is vacuum permittivity, (n) nth order tensor electric susceptibility, I,j, and k 

are Cartesian indices, Ei, Ej can have different frequencies   



Triveni Rao, USPAS 2013, Duke 

University 

The first term P = ε0 
(1) : E applies to all linear optics and 

leads to optical index of refraction and dielectric constant . 

 

For a linear material, terms with higher order  vanish and  
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The second term ∑ ∑ ijk E j Ek

  

gives rise to optical mixing ε 0  χ 
(ω1+ω2  and ω1-ω2)j =a1 ndk =1second harmonic generation (ω1=ω2). 

When one of the fields varies very slowly compared to the other 
(ω1>>ω2), then it is Pockel’s effect where the input and output 

frequencies  are  the  same  and  the  index  of  refraction  varies 
linearly with the applied slowly varying field. 
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Index Ellipsoid: Uniaxial crystal 
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d E


  = (/40) (y) dy/r2
 r


  

The field decays rapidly along the y 

direction, past the extent of the beam 
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For Lithium Niobate 
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 Direction of propagation of Laser 
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Rotation  of Principal axes 

 Is independent of field for 4 cases, dependent on field along 

one direction in 1 case 
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 Direction of propagation of Laser 
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Total Retardation  experienced by the laser beam for 3 possible directions of the 

laser and electron beams  



Two specific cases 
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e along y axis, laser along x axis 
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e along z axis, laser along x axis 
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No cross filed terms, Large Static term, Large coefficient for case 1 

Need to compensate for the static term 
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We showed that  

If laser polarization is set at 45˚ to field free optical axis (θ =45˚ 

I(t) = I0 + sin2(b+ (t)) 

where  is the intensity extinction 

coefficient of the optical arrangement 

(fraction of the transmitted intensity in 

the absence of the crystal), b is the 

static retardation and  (t) is the time 

dependent component of the 

retardation. 
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Preset operation in linear regime 
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For Measurements 
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Measurement of Pulse duration in a single shot using CW laser 

and fast detector 
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Using 7 GHz Oscilloscope: 

Resolution limited by the bandwidth 

of scope 

Using Streak Camera, 3 single shot 

traces superimposed 



Triveni Rao, USPAS 2013, Duke 

University 

Measurement of pulse duration in multiple shots using  

ultrafast laser (12 fs) and photodiode  

NIM A 475 (2001) 504-508 
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Converting temporal information to Spatial information: 

Information on pulse duration shape, distribution and timing 
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Cross correlation between unchirped and chirped pulse-single 

shot, information on pulse duration, shape and timing 

Replace CCD by spectrometer for spectral encoding of the e beam on chirped pulse 
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Spectral encoding of electron beam on chirped pulse Single shot 



Limitations 

Crystal absorption and dispersion beyond 

10 THz (100 fs) regime 

 Short distance between e beam and 

crystal 

 Edge effects in low relativistic regime 
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